Online information services personalize the user experience by applying recommendation systems to identify the information that is most relevant to the user. The question how to estimate relevance has been the core concept in the field of information retrieval for many years. Not so surprisingly then, it turns out that the methods used in online recommendation systems are closely related to the models developed in the information retrieval area. In this lecture, I present a unified approach to information retrieval and collaborative filtering, and demonstrate how this let’s us turn a standard information retrieval system into a state-of-the-art recommendation system.
Lecturer: Prof. Arjen P. de Vries