Knowledge Based Semantic Indexing

SSMS 2010, Amsterdam

Yiannis Kompatsiaris Giorgos Papadopoulos, Stamatia Dasiopoulou, Spyros Nikolopoulos

CERTH - Informatics and Telematics Institute

http://mklab.iti.gr

Outline

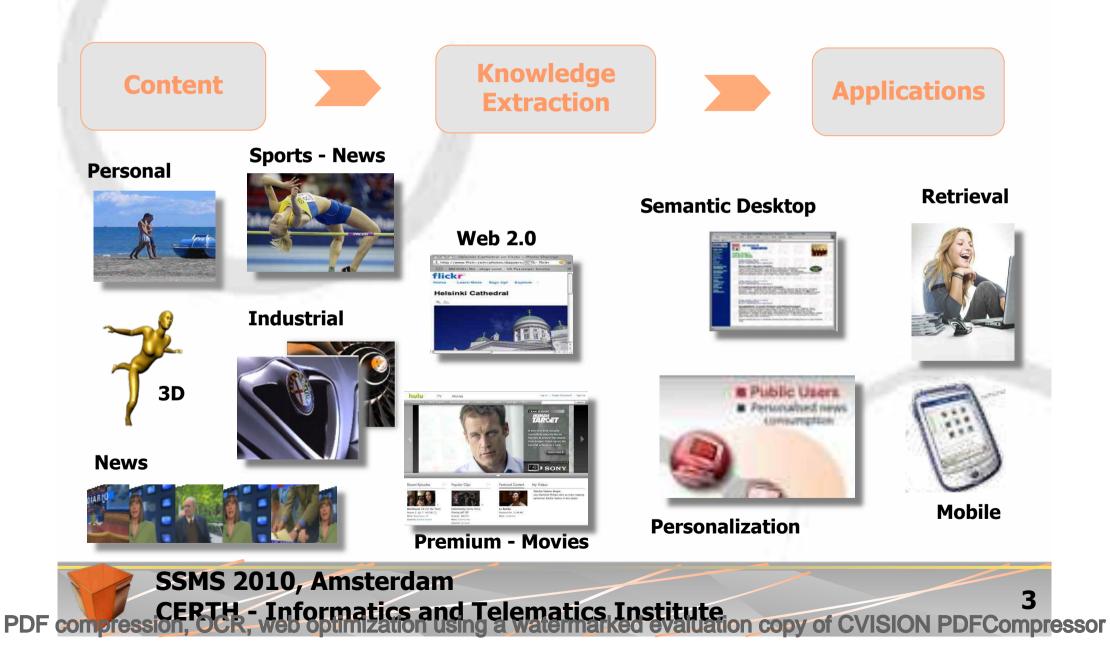
- Introduction
- Content Applications
- Problem Definition
- Context and Reasoning
- Combined Approaches
 - Visual + Context
 - Visual + Fuzzy DL Reasoning
 - Visual + Probabilistic Inference

copy of CVISION PDFCompressor

Conclusions

SSMS 2010, Amsterdam CERTH - Informatics and Telematics Institute

Content - Applications



Need for annotation + metadata

"The value of information depends on how easily it can be found, retrieved, accessed, filtered or managed in an active, personalized way...

...matching user needs"

SSMS 2010, Amsterdam CERTH - Informatics and Telematics Institute

otherwise... we are LOST in content

SSMS 2010, Amsterdam CERTH - Informatics and Telematics Institute PDF compression, CCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

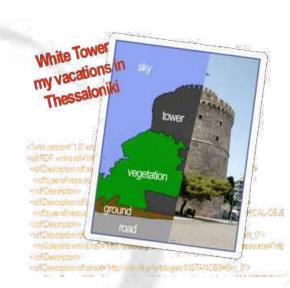
Multimedia Content

Networks

Storage & **Devices**

Web 2.0 photo video applications

SSMS 2010, Amsterdam



Segmentation **KA Analysis**

Labeling

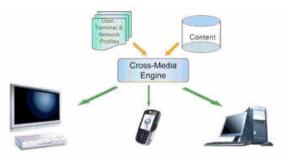
Cross-media analysis

Context

Reasoning

Metadata **Generation &** Representation

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor



Content adaptation and distribution -**Multiple Terminal &**

tomorro

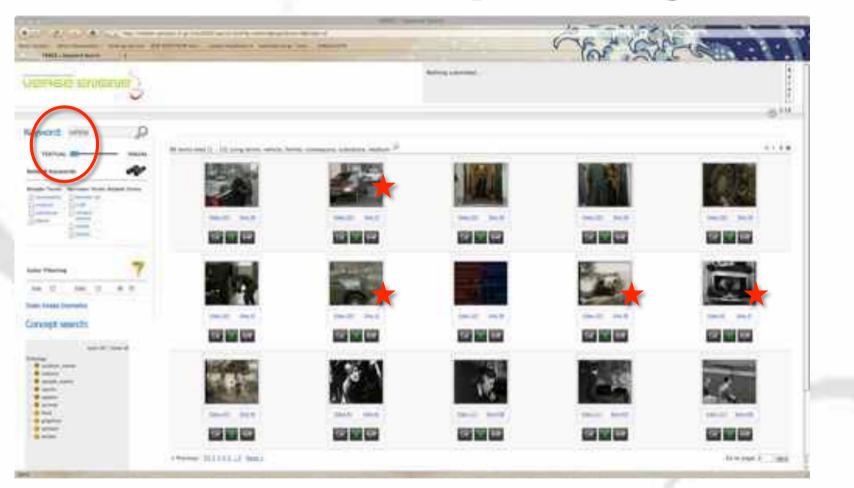
6

/ Content-based

nendations and alization

Semantic technology in **Markets**

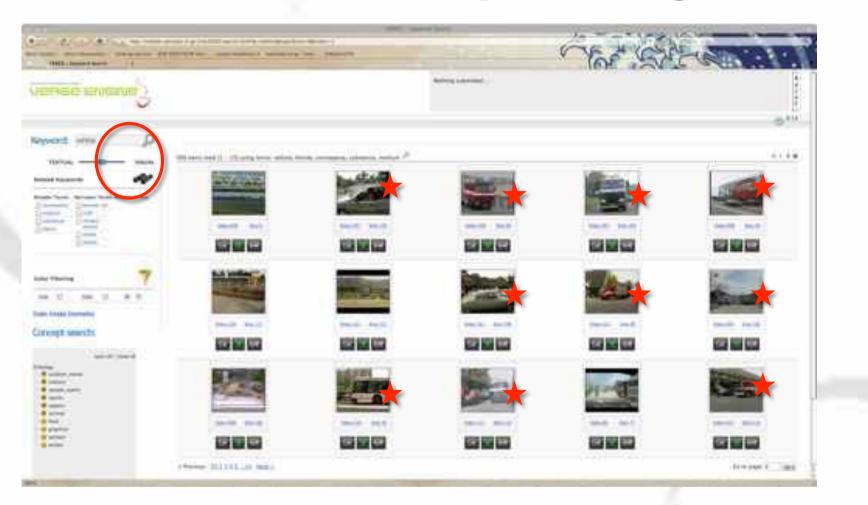
Text is not always enough...



http://mklab.iti.gr/verge/

7

Text is not always enough...



http://mklab.iti.gr/verge/

8

Addressing the Semantic Gap

• Semantic Gap for multimedia: To map automatically generated numerical low levelfeatures to higher level human-understandable

```
<?xml version='1.0' encoding='ISO-8859-1' ?>
<Mpeg7 xmlns...>
<DescriptionUnit xsi:type = "DescriptorCollectionType">
<Descriptor xsi:type = "DominantColorType">
<SpatialCoherency>31</SpatialCoherency>
<Value>
<Percentage>31</Percentage>
<Index>19 23 29 </Index>
<ColorVariance>0 0 0 </ColorVariance>
</Value>
</Descriptor>
```

This image contains a sky region and is a holiday image

copy of CVISION PDFCompressor

```
</Mpeg7>
```

Dominant Color Descriptor of

a sky region

SSMS 2010, Amsterdam

CERTH - Informatics and Telematics Institute

Visual features based Classification

Natural-Person: 0.456798 Sailing-Boat: 0.463645 Sand: 0.476777 Building: 0.415358 Pavement: 0.454740 Road: 0.503242 Body-Of-Water: 0.489957 Cliff: 0.472907 Cloud: 0.757926 Mountain: 0.512597 Sea: 0.455338 Sky: 0.658825 Stone: 0.471733 Waterfall: 0.500000 Wave: 0.476669 Dried-Plant: 0.494825 Dried-Plant-Snowed: 0.476524 Foliage: 0.497562 Grass: 0.491781 Tree: 0.447355 Trunk: 0.493255 Snow: 0.467218 Sunset: 0.503164 Car: 0.456347 Ground: 0.454769 Lamp-Post: 0.499387 Statue: 0.501076

SSMS 2010, Amsterdam CERTH - Informatics and Telematics Institute pression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

PDF com

10

Semantics goes beyond perceptual manifestations

Best Possible

	Search Topic	Best Detector	AP
en	Two visible tennis players on the court	Athlete	0.6501
hetwee	A goal being made in a soccer match	Stadium	0.3429
ancy atic as	Basketball players on the court	Indoor Sports Venue	0.2801
creparmanivener	A meeting with a large table and people	Furniture	0.1045
screpancy between semantic semantic	People with banners or signs	People Marching	0.1013
ett	One or more military vehicles	Armored Vehicles	0.0892
	Helicopter in flight	Helicopters	0.0791
	A road with one or more cars	Car	0.0728
	An airplane taking off	Classroom	0.0526
	A tall building	Office Building	0.0469
2	A ship or boat	Cloud	0.0427
atweeted	George Bush entering or leaving vehicle	Rocket Propelled Grenades	0.0365
cy be learne	Omar Karami	Chair	0.0277
repart and tics	Graphic map of Iraq, Baghdad marked	Graphical Map	0.0269
Discindeumain	Condoleeza Rice	US National Flag	0.0237
Discrepancy between Discrepancy and learned intended and learned	One or more palm trees	Weapons	0.0225
Snoek et	al., "Adding Semantics to Detectors for V	ideo Retrieval", IEEE Multim	edia, 200

Snoek et al., "Adding Semantics to Detectors for Video Retrieval", IEEE Multimedia, 2007

CERTH - Informatics and Telematics Institute CERTH - Informatics and Telematics Institute

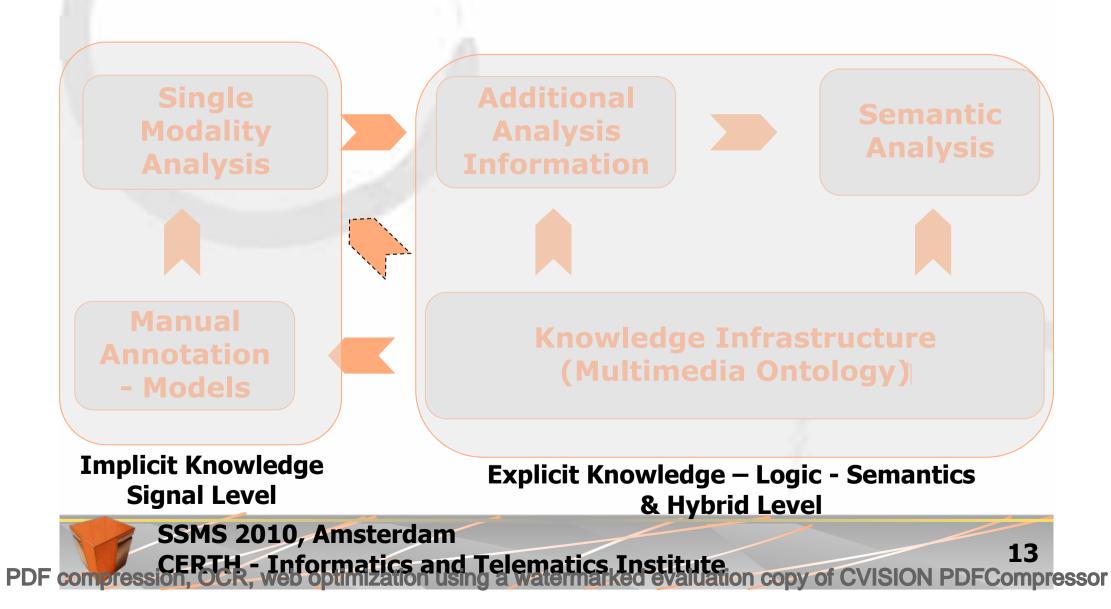
SSMS 2010, Amsterdam

PDF

GO

Problem definition

- Semantic image and video analysis: how to translate the automatically extracted visual descriptions into human like conceptual ones
- Low-level features provide *cues* for strengthen/weaken evidence based on visual similarity
- **Prior knowledge** is needed to support semantics disambiguation / enforce coherent interpretations



Knowledge Extraction 1 common viev Reasoning

Feature extraction Text, Image analysis Segmentation, SVMs **Evidence** generation "Vehicle", "Building"

Classifiers fusion Global vs. Local Modalities fusion Context "Ambulance"

Information

Fusion of annotations Consistency checking Higher-level concepts/ events

"Emergency scene"

milaly 313

Manual

Analysis

Multimedia content annotation tools Training (Statistical)

Modeling

PDF com

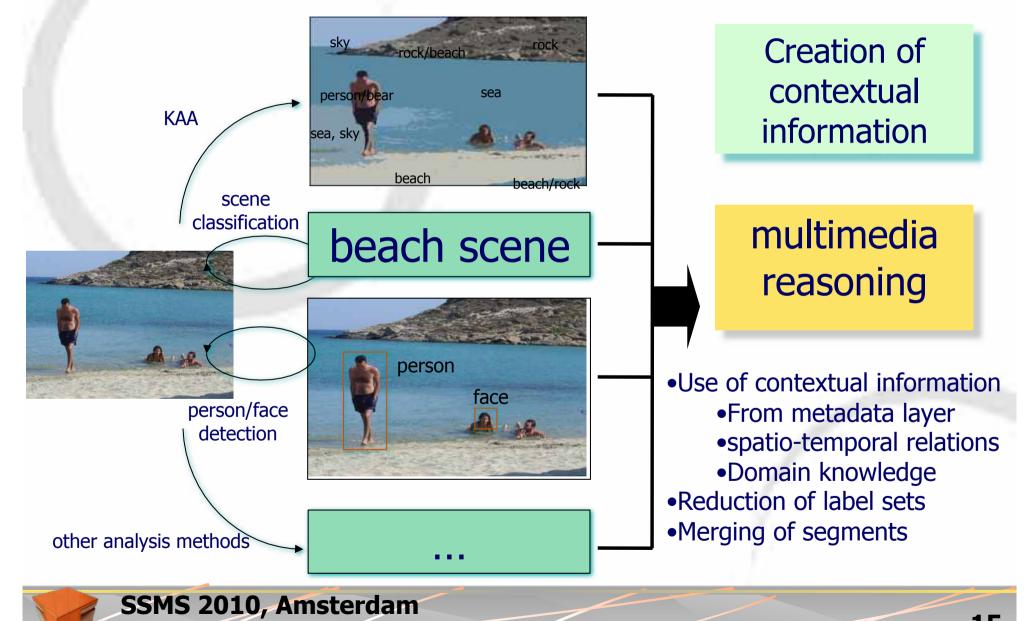
Knowledge Infrastructure

(Multim Domain Multimedia content Annotations Algorithms - Features Context

SSMS 2010, Amsterdam

CERTH - Informatics and Telematics Institute pression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

Context and Reasoning for Analysis



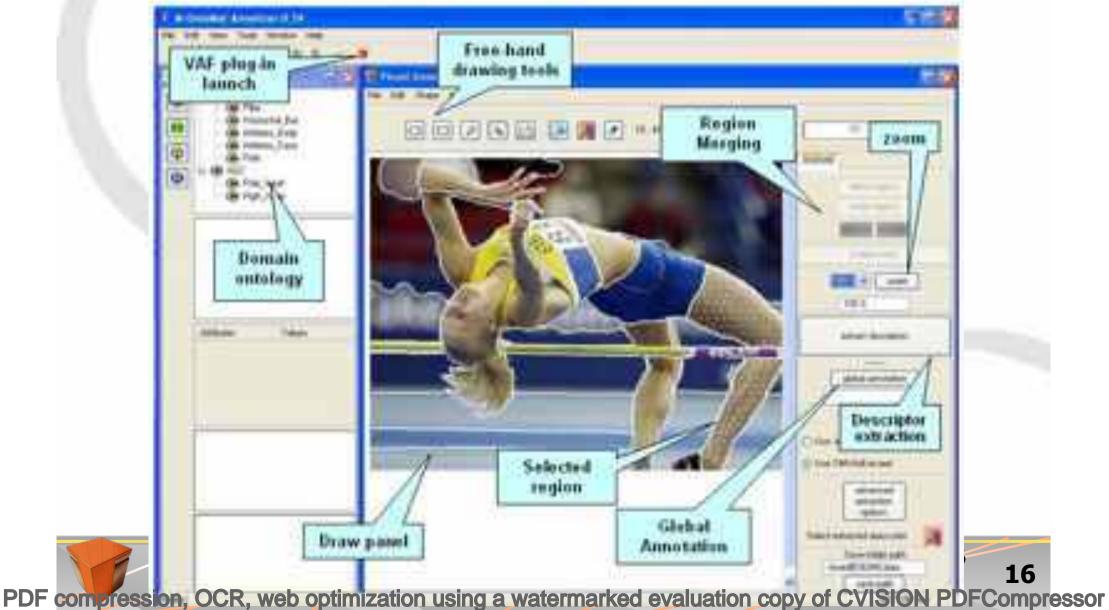
CERTH - Informatics and Telematics Institute on OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

PDF

COM

Multimedia Content Annotation

VIA: http://mklab.iti.gr/via/



Multimedia Content Analysis (Implicit)

- MPEG-7, SIFT, ... widely used for LL features
- Segmentation and feature extraction tools
- Well-known classifiers applied and developed
 - SVMs, EM, HMM
 - Bio-inspired approaches
- Increasing use of context
 - Spatial, Frequency, EXIF
- Fusion
 - Classifiers (global+local)
 - Modalities
 - Text+Image+1D data
 - Text+Speech+Video
 - Tags+Image (Web 2.0)
- Mostly statistical and machine learning (implicit) based but also
 - Hybrid (implicit + explicit)

SSMS 2010, Amsterdam CERTH - Informatics and Telematics Institute

Support Vector Machines

- Widely used in semantic image analysis tasks due to their reported generalization ability
- Receive as input the estimated region-level descriptors
- An individual SVM introduced for every defined highlevel semantic concept
- `one-against-all' approach followed for training
- Each SVM estimates degree of confidence for region– concept association
- Every region evaluated by all trained SVMs

Approaches

- Spatial Context
 - Optimisation: genetic algorithm
- Fuzzy DL Reasoning
 - Imprecise ontology reasoning: fuzzy DLs
- Probabilistic inference
 - Bayesian network

SSMS 2010, Amsterdam CERTH - Informatics and Telematics Institute

Spatial Context

20

SSMS 2010, Amsterdam CERTH - Informatics and Telematics Institute ion, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

PDF compress

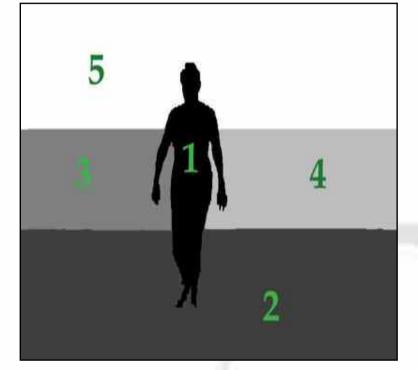
Use of Context: Spatial Relations

- Objects tend to be present in a scene within a particular spatial context
- Spatial information can assist in discriminating between objects exhibiting similar visual characteristics
- <u>Directional relations</u>: denote the order of objects in space
- Eight relations supported: Above, Above-Right, Above-Left, Right, Left, Below, Below-Right, Below-Left

SSMS 2010, Amsterdam CERTH - Informatics and Telematics Institute

21

Spatial Context Demonstration

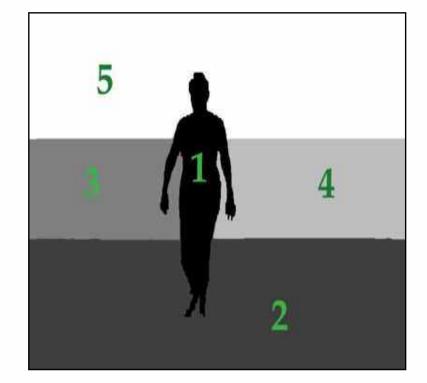


Initial image

Segmentation Mask

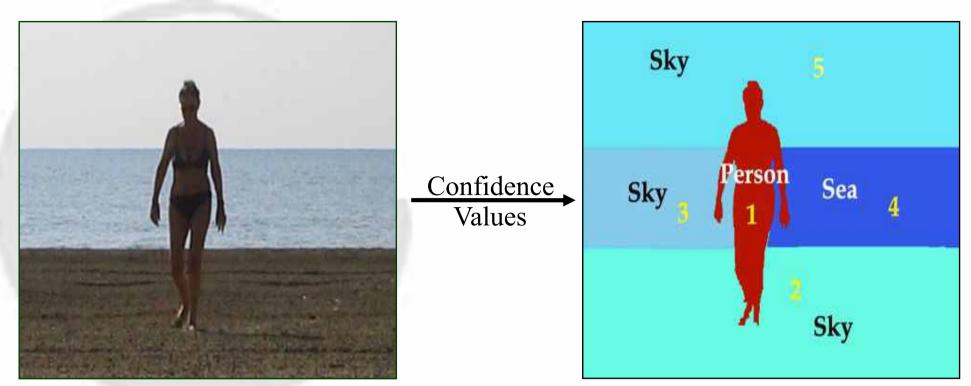
22

SSMS 2010, Amsterdam CERTH - Informatics and Telematics Institute PDF compress



	Sea	Sky	Sand	Person
Region 1	0.05	0.03	0.07	1.00
Region 2	0.28	0.42	0.30	0.00
Region 3	0.54	0.74	0.32	0.00
Region 4	0.79	0.54	0.43	0.08
Region 5	0.00	0.80	0.03	0.09

SSMS 2010, Amsterdam

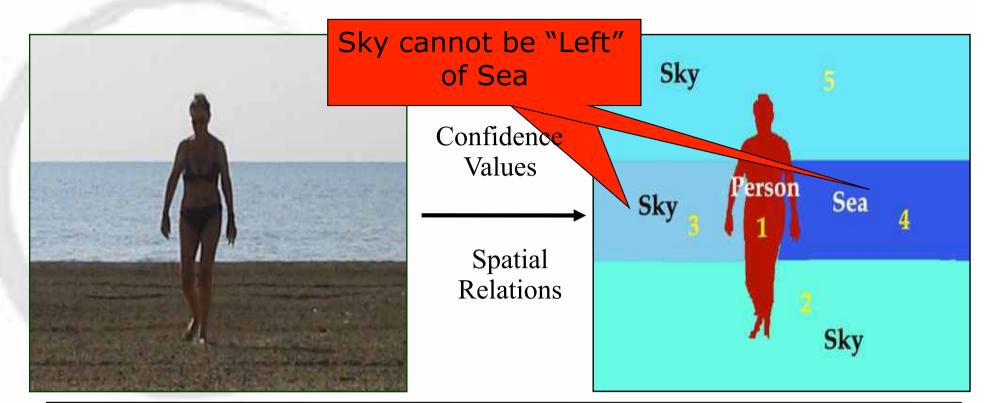


	Sea	Sky	Sand	Person
Region 1	0.05	0.03	0.07	1.00
Region 2	0.28	0.42	0.30	0.00
Region 3	0.54	0.74	0.32	0.00
Region 4	0.79	0.54	0.43	0.08
Region 5	0.00	0.80	0.03	0.09

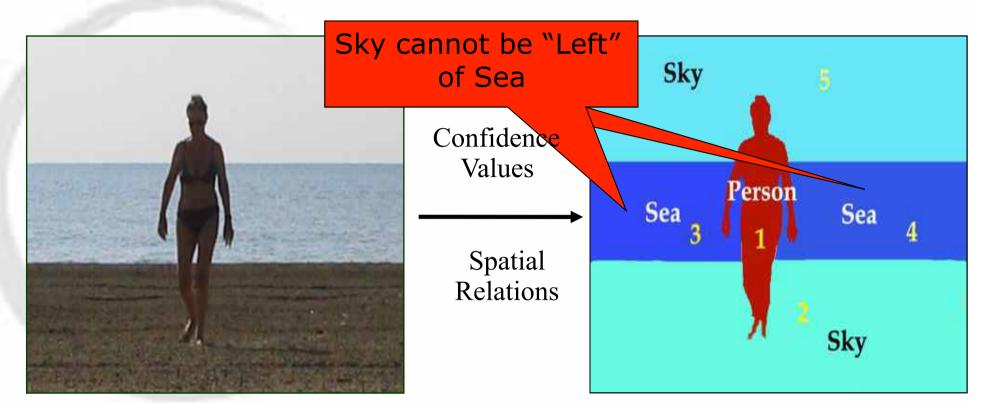
SSMS 2010, Amsterdam

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

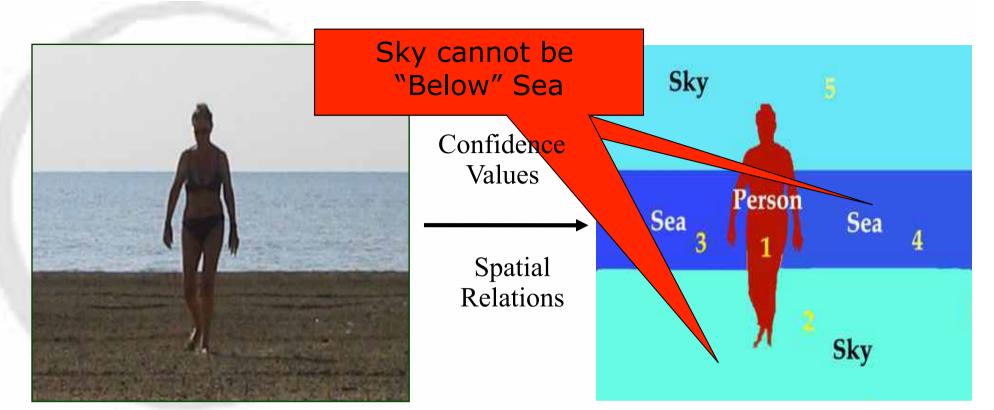
24



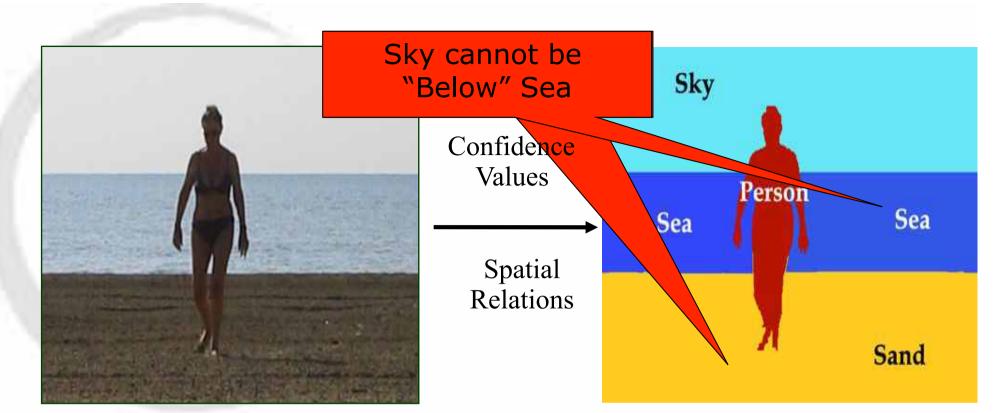
	Sea	Sky	Sand	Person
Region 1	0.05	0.03	0.07	1.00
Region 2	0.28	0.42	0.30	0.00
Region 3	0.54	0.74	0.32	0.00
Region 4	0.79	0.54	0.43	0.08
Region 5	0.00	0.80	0.03	0.09
CERTH - Informatics and Telematics Institute 25				



	Sea	Sky	Sand	Person
Region 1	0.05	0.03	0.07	1.00
Region 2	0.28	0.42	0.30	0.00
Region 3	0,54	U./T	0.32	0.00
Region 4	0.79	0.54	0.43	0.08
Region 5	0.00	0.80	0.03	0.09
SSMS 2010, Amsterdam CERTH - Informatics and Telematics Institute 26				



	Sea	Sky	Sand	Person
Region 1	0.05	0.03	0.07	1.00
Region 2	0.28	0.42	0.30	0.00
Region 3	0.54	0.74	0.32	0.00
Region 4	0.79	0.54	0.43	0.08
Region 5	0.00	0.80	0.03	0.09
SSMS 2010, Amsterdam CERTH - Informatics and Telematics Institute 27				



		Sea	Sky	Sand	Person
	Region 1	0.05	0.03	0.07	1.00
	Region 2	0.28		0,30	0.00
	Region 3	0.54	0.74	0.32	0.00
	Region 4	0.79	0.54	0.43	0.08
	Region 5	0.00	0.80	0.03	0.09
28 CERTH - Informatics and Telematics Institute DF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompresso					

Spatial context comparative evaluation

• Aim:

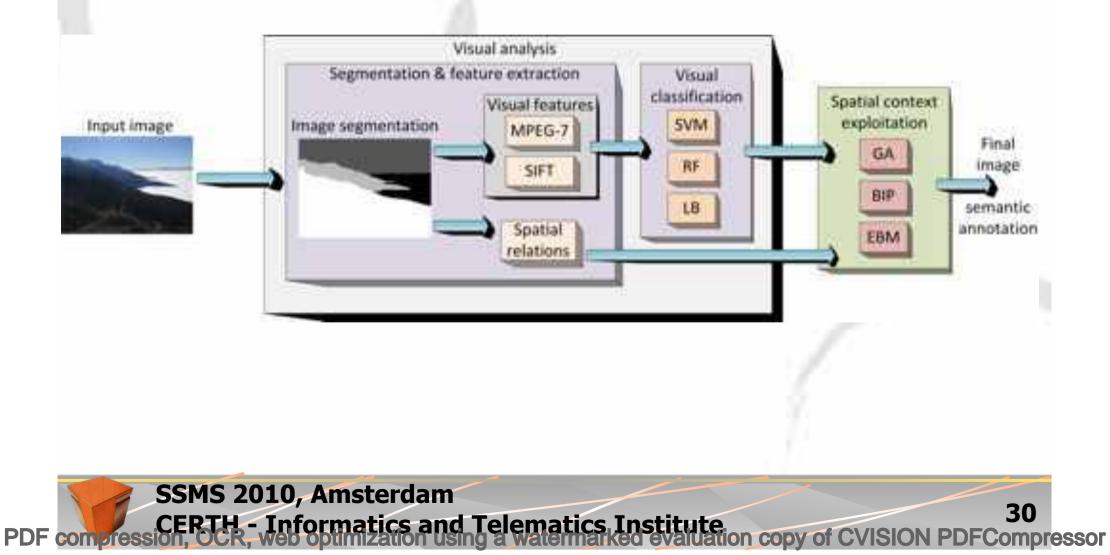
- In-depth investigation of the advantages of different spatial context techniques
 - The selected techniques cover the main categories of the approaches proposed in the literature
- Gain of a better insight on the use of spatial context
- Developed framework:
 - Techniques: Genetic Algorithm, Energy-based Model, Binary Integer Programming
 - Datasets: Coastal scenes (D1) 7 concepts, SCEF¹ (D2) 10 concepts, Personal collection (D3) 17 concepts, MSRC (D4) 21 concepts
 - Features: MPEG-7, SIFT
 - Classifiers: Support Vector Machines, Random Forest, Logitboost
 - Spatial relations: Fuzzy directional relations
 - Above, Above-right, Above-left, Below, Below-right, Below-left, Right, Left

29

¹ http://mklab.iti.gr/project/scef

SSMS 2010, Amsterdam CERTH - Informatics and Telematics Institute

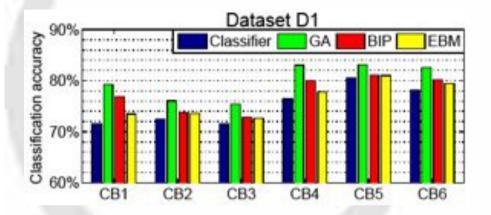
Developed evaluation framework

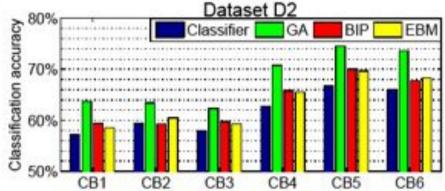


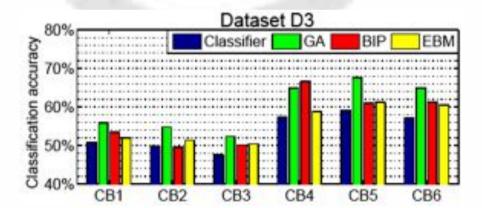
Spatial context techniques

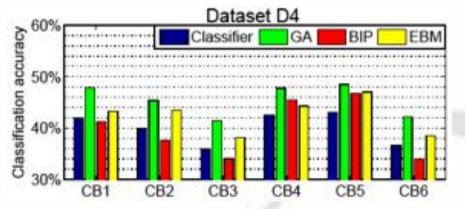
- Genetic Algorithm
 - Realizes image analysis as a global optimization problem
 - Makes use of complex fuzzy spatial constraints
 - Uses a set of Bayesian Networks for combining the spatial, visual and concept co-occurrence information
- Binary Integer Programming
 - Formalizes the spatial constraints enforcement as a binary integer problem
 - Uses binary constraints
 - Utilization of product operator for information fusion
- Energy-based Model
 - Reduces the region labeling problem to that of minimizing an energy function of a graphical model
 - Uses fuzzy constraints
 - Assigns a global weight factor to each information source

Overall spatial context results





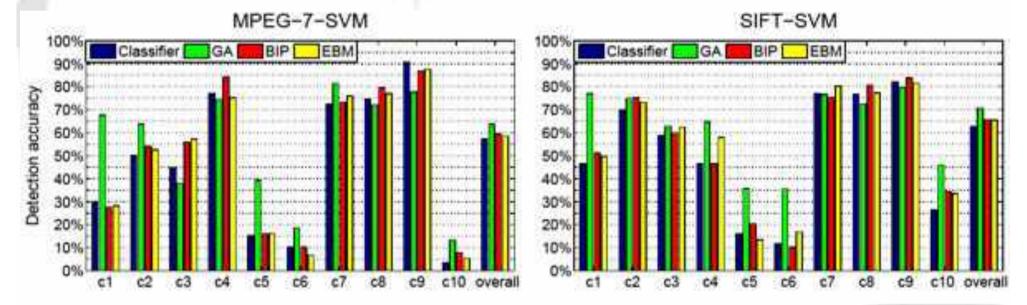




Combinations: CB1: MPEG-7-SVM, CB2: MPEG-7-RF, CB3: MPEG-7-LB, CB4: SIFT-SVM, CB5: SIFT-RF, CB6: SIFT-LB

Indicative concept-level results

D2 dataset



Supported concepts: c1: Building, c2: Foliage, c3: Mountain, c4: Person, c5: Road, c6: Sailing-boat, c7: Sand, c8: Sea, c9: Sky, c10: Snow

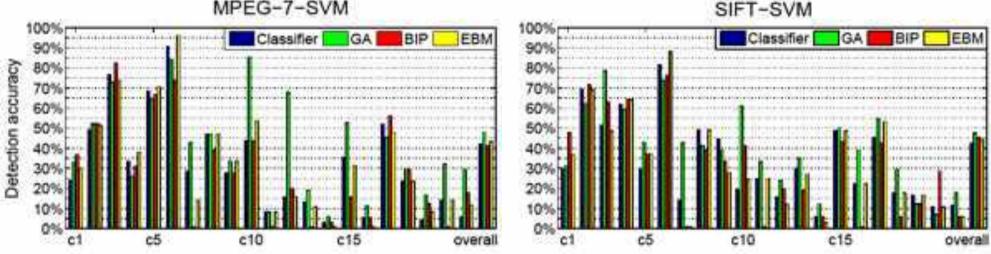
33

PDFCompressor

PDF

Indicative concept-level results (cont'd) D4 dataset

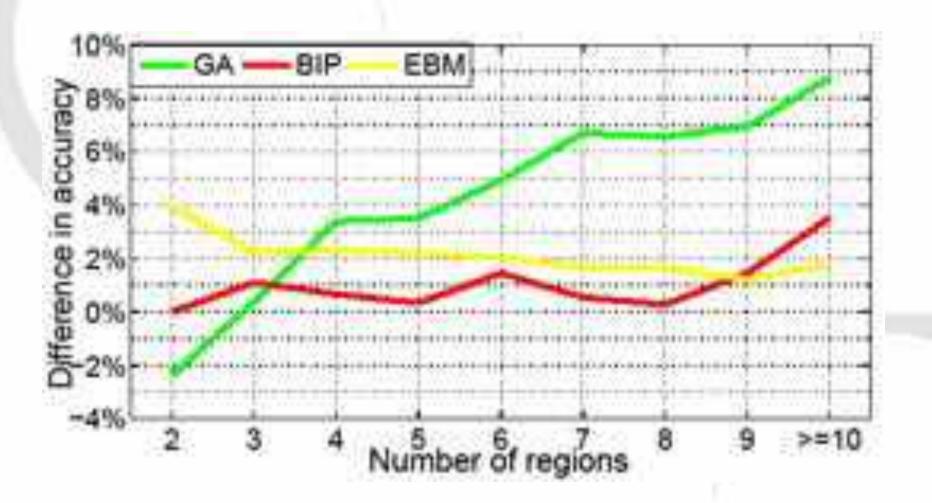
MPEG-7-SVM



Supported concepts: c1: Building, c2: Grass, c3: Tree, c4: Cow, c5: Sheep, c6: Sky, c7: Aeroplane, c8: Water, c9: Face, c10: Car, c11: Bicycle, c12: Flower, c13: Sign, c14: Bird, c15: Book, c16: Chair, c17: Road, c18: Cat, c19: Dog, c20: Body, c21: Boat

SSMS 2010, Amsterdam **CERTH - Informatics and Telematics Institute**

Effect of the number of image regions



SSMS 2010, Amsterdam - Informatics and Telematics Institute

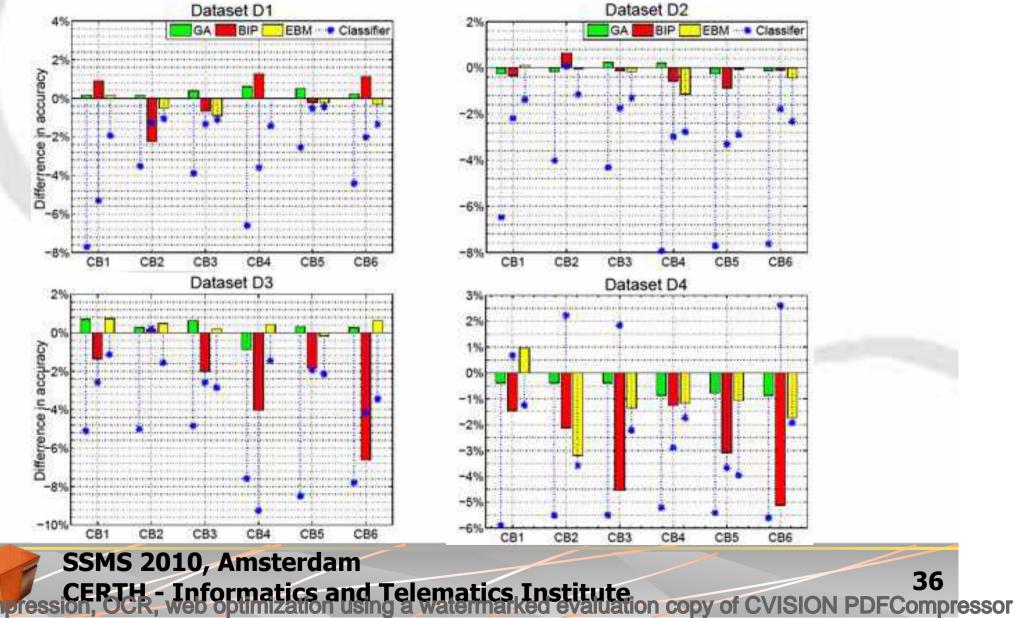
CERT

PDF

35

CVISION PDFCompressor

Effect of the amount of data used for context acquisition



PDF con

Dataset D2 GA BIP EBM --- Classife CB1 CB2 CB3 CB4 CB5 CB6 Dataset D4 CB1 CB2 CB3 **CB4** CB5 CB6

36

Conclusions on the use of spatial context

- Spatial context is efficient in improving the initial (i.e. based solely on visual features) region-concept association results
- The highest performance is achieved when complex spatial constraints are acquired and their weight against the visual and co-occurrence information is efficiently adjusted
- The improvement over the initial classification results tends to decrease when the number of supported concepts increases
- For a given dataset, the highest initial classification performance leads also to the highest spatial context performance
- Fuzzy spatial constraints are less likely to result in performance decreases when the amount of training data is reduced, compared to binary constraints

Comparison among techniques

Factors	Sp	oatial context techniques	
considered	deredGAGaGAConcepts with more well- defined spatial context and concepts with low initial classification rateConcepts with low initial classification rateContinuous increase in performance improvement, when the number of regions increases $(N \ge 4)$ Inction hount ount in performance	BIP	EBM
Concepts favored	defined spatial context and concepts with low initial	Concepts with less well-defined spatial context	Concepts with more well-defined spatial context
Number of image regions	performance improvement, when the number of regions increases	Significant performance improvement only when the number of regions is significantly high $(N \ge 10)$	Highest performance when very few image regions are present (N = 2)
Reduction in amount of training data	-	Significant performance reduction in datasets with many concepts (up to -6,62%)	Performance reduction in datasets with many concepts (up to -3,19%)

38

copy of CVISION PDFCompressor

SSMS 2010, Amsterdam

PDF com

CERTH - Informatics and Telematics Institute

Fuzzy DL reasoning

SSMS 2010, Amsterdam CERTH - Informatics and Telematics Institute ion, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

PDF compress

Reasoning in multimedia content analysis

- Imprecision
 - Uncertainty (degrees of probability)/Vagueness (degrees of truth), Incompleteness (missing input, background knowledge)
- Formal approaches
 - Fuzzy/probabilistic/possibilistic logic (DLs, rules), abductive reasoning, inductive reasoning...
- Statistical approaches
 - Bayesian inference, HMMs...
- Used for:
 - Fusion / Integration
 - Consistency checking
 - Higher-level abstraction results

SSMS 2010, Amsterdam

CERTH - Informatics and Telematics Institute

Why Reasoning in MM Annotation?

Problem Definition

- Machine learning provides now generic methodologies for supporting more than 100 concepts
 - captures conveniently complex associations between perceptual features and semantics
 - successful application examples, yet highly variable general performance
- Semantics goes beyond perceptual manifestations
 - possibly contradictory (Mountain, Sand and Indoor)
 - possibly overlapping / complementary (Beach and Sea)
 - of restricted abstraction w.r.t. semantic expressiveness (Person inside Sea vs Swimmer)
- Learning-based extracted annotations need to be *semantically interpreted* into a *consistent*, meaningful final description

SSMS 2010, Amsterdam CERTH - Informatics and Telematics Institute

41

Semantics goes beyond perceptual manifestations

 $(image : Countryside buildings) \ge 0.65$ $(image : Roadside) \ge 0.57$ $(image: Rockyside) \ge 0.44$ $(image : Forest) \ge 0.45$ $(image : Seaside) \ge 0.47$ $(image : \exists contains.Sand) \ge 0.66$ $(image : \exists contains.Sky) \ge 0.95$ $(image : \exists contains.Person) \ge 0.62$ (image : $\exists contains.Foliage$) ≥ 0.70

PDF

 $(image : Rockyside) \ge 0.42$ $(image: Countryside_buildings) \ge 0.52$ $(image : Seaside) \ge 0.51$ $(image : Forest) \ge 0.52$ $(image : Roadside) \ge 0.71$ $(image : \exists contains.Sky) \ge 0.98$ $(image : \exists contains.Sea) \ge 0.73$ $(image: \exists contains.Person) \ge 0.60$ $(image: \exists contains.Sand) \ge 0.75$

Our Approach: Fuzzy DLs based Reasoning in Multimedia Annotation

- **Goal:** enhance the robustness and completeness of learning-based extracted annotations
 - annotations at object and scene level
 - different implementations

How: semantics utilisation

- to integrate initial annotations
- to detect and resolve inconsistencies
- to enrich by means of logical entailment

• Methodology: fuzzy DLs reasoning framework

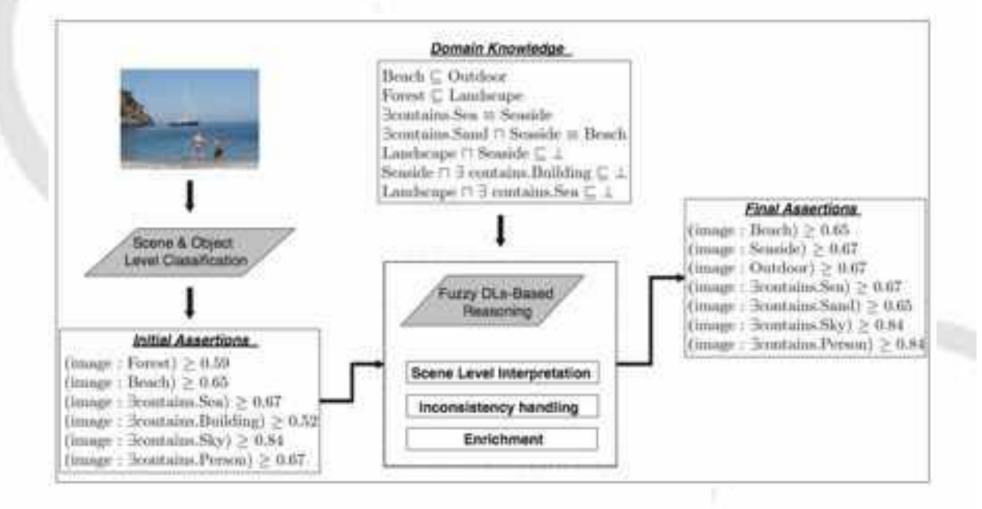
- Crisp TBox to conceptualise the domain semantics
- Fuzzy assertions to capture the imprecision of initial annotations

DLs in brief

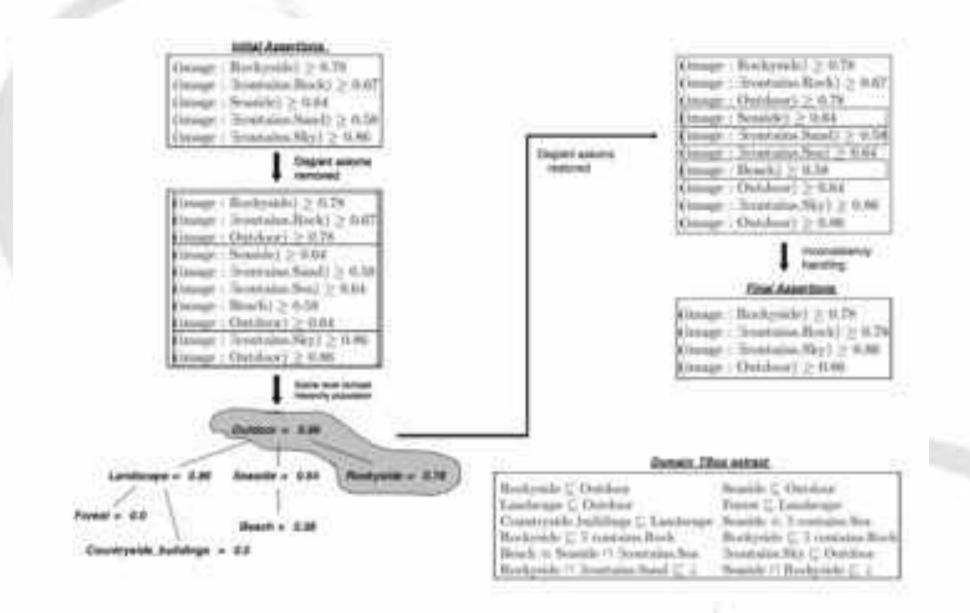
- Family of knowledge representation languages characterised by **formal** semantics and **sound & complete** inference algorithms
- **Terminological Box** (TBox): vocabulary (concepts & roles) and interrelations describing the application domain
 - Mother \equiv Woman $\square \exists$ hasChild.Person • equivalence
 - Tree $\sqsubseteq \exists$ hasPart.Leaf $\sqcap \exists$ hasPart.Trunk subsumption
 - complex descriptions inductively build with constructors
- **Assertional ABox** (ABox): facts describing a specific state of the application domain
 - concept assertions Athlete(John), Woman(Myriam)
 - role assertions

hasChild(Myriam,John)

Three Reasoning Tasks



SSMS 2010, Amsterdam CERTH - Informatics and Telematics Institute PDF compression, OCR, web optimization using a Watermarked evaluation copy of CVISION PDFCompressor



SSMS 2010, Amsterdam PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

46

Three Reasoning Tasks (cont'd)

- T1 scene level interpretation: find plausible (logically admitted) interpretations
- T2 consistency handling: track and resolve inconsistencies
- T3 Enrichment: augment final interpretation making entailments explicit

Three Reasoning Tasks - I

• T1 – Scene level interpretation

- involves both asserted and inferred assertions of scene level concepts
- removes disjointness axioms from TBox to consider all related assertions (disjointness semantics maintained separately)
- computes scene level concept hierarchy
- starting from the leaf concepts maintains between conflicting assertions the one with highest degree
- propagates degrees according to fuzzy subsumption semantics to the next level
- repeats procedure, if current prevalent assertions contradict the previous level (i.e. have higher plausibility) remove and update accordingly the previous level
- procedure ends when reaching the top level concepts

SSMS 2010, Amsterdam

CERTH - Informatics and Telematics Institute sion, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCor

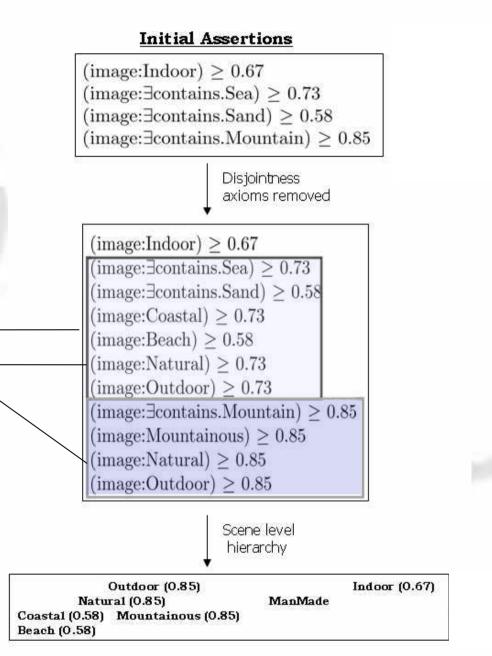
Scene level interpretation demonstration

Domain TBox

Natural \equiv Outdoors $\sqcup \neg$ ManMade Mountainous \equiv Natural $\sqcup \neg$ Coastal $Beach \equiv Coastal \sqcap \exists contains.Sand$ $\exists \text{contains.Mountain} \sqsubset \text{Mountainous}$ \exists contains.Sea \Box Coastal \exists contains.Sand \sqcap Mountainous $\sqsubseteq \perp$ Outdoor \sqcap Indoor $\sqsubseteq \bot$

PDF

COM



SSMS 2010, Amsterdam CERTH - Informatics and Telematics Institute ion, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

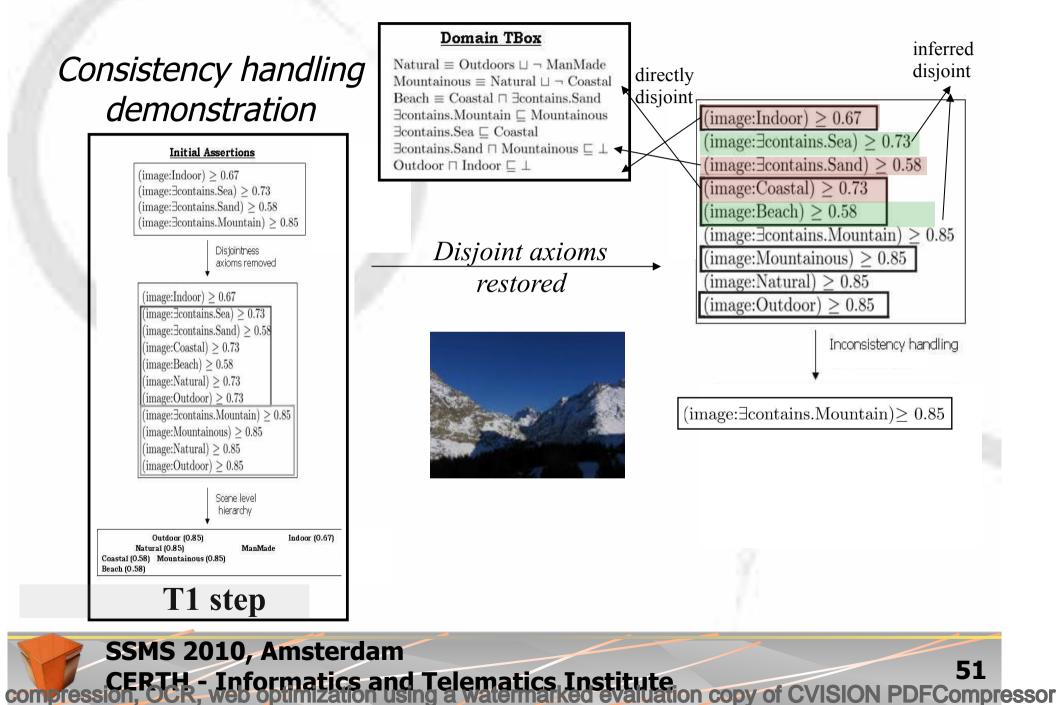
49

Three Reasoning Tasks - II

• T2 – Consistency handling

- performs over the initial set of annotations
- removes all assertions (asserted & inferred) pertaining to object level concepts disjoint to T1 interpretation
- removes all assertions pertaining to scene level concepts disjoint to T1 interpretation
- removal of assertions is performed w.r.t. to the type of inclusion axioms they appear in
- in case of more than one consistent descriptions we chose the one that requires the removal of assertions with the lowest average degree

50



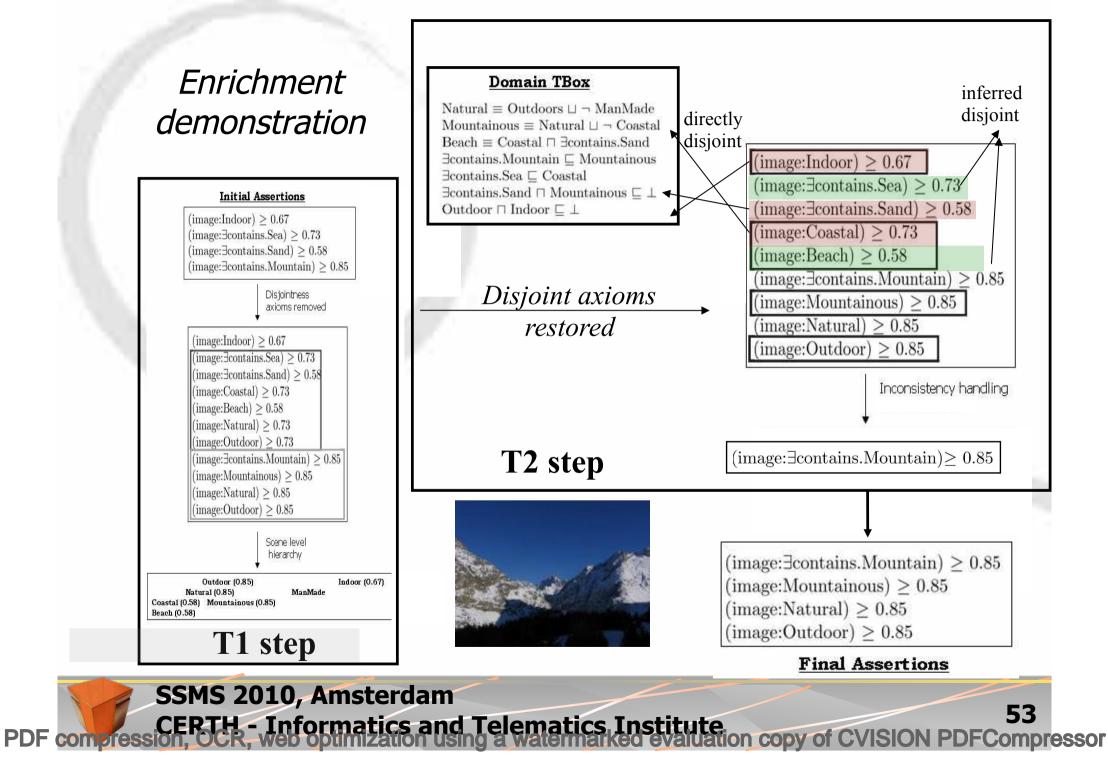
PDF

51

Three Reasoning Tasks - III

• T3 – Enrichment

- performs on the set of assertions maintained after step T2
- through typical DLs reasoning inferred assertions are obtained, leading to enriched descriptions



Experimental Results

- Domain of outdoor images (~360 images)
- Use of fuzzyDL^(*) as inference engine for core fuzzy DLs reasoning services
- Experiment I
 - three implementations for scene level classifiers, two implementations for object level
- Experiment II
 - one implementation for scene level classifiers
 - one implementation for object level classifiers

(*) http://faure.isti.cnr.it/~straccia/software/fuzzyDL/fuzzyDL.html

Outdoor images TBox extract

Countryside_buildings \Box \exists contains.Buildings \Box \exists contains.Foliage Countryside_buildings \sqsubseteq Landscape \exists contains.Forest $\sqcup \exists$ contains.Grass $\sqcup \exists$ contains.Tree $\sqsubseteq \exists$ contains.Foliage Rockyside $\sqsubseteq \exists contains.Cliff$ Rockyside $\sqsubseteq \exists$ contains. Mountainous Roadside $\sqsubseteq \exists contains.Road$ Roadside \sqsubseteq Landscape $\exists \text{contains.Sea} \equiv \text{Coastal}$ $Coastal \sqsubseteq Natural$ $\exists contains.Forest \sqsubseteq Landscape$ Beach \equiv Coastal \square \exists contains.Sand $Beach \sqsubseteq Natural$ $Cityscape \sqsubseteq ManMade$ $\exists \text{contains.Sky} \sqsubseteq \text{Outdoor}$ $\exists \text{contains.Trunk} \sqsubseteq \exists \text{contains.Tree}$ Mountainous \sqcap Coastal $\sqsubseteq \perp$ Natural \sqcap ManMade $\sqsubseteq \perp$

SSMS 2010, Amsterdam CERTH - Informatics and Telematics Institute

on copy of CVISION PDFCompressor

Experiment I – Scene level concepts

		Analysis				
Concept	Recall	Precision	F-M	Recall	Precision	F-M
Indoor	0.00	NaN	NaN	1.00	0.75	0.85
Outdoor	0.99	0.99	0.99	0.99	0.99	0.99
Natural	0.97	0.96	0.97	0.98	0.96	0.97
ManMade	0.18	0.40	0.25	0.18	0.40	0.25
Cityscape	0.18	0.40	0.25	0.18	0.40	0.25
Landscape	0.75	0.63	0.68	0.76	0.68	0.71
Mountainous	0.64	0.28	0.39	0.48	0.30	0.37
Coastal	0.00	NaN	NaN	0.86	0.49	0.63
Beach	0.89	0.30	0.45	0.90	0.31	0.47

Analysis extracted descriptions are 'semantically treated', i.e. detection of Beach is considered as positive detection of Outdoor also. Not much impact because of low semantic association between object level and scene level concepts.

56

n copy of CVISION PDFCompressor

PDF

Experiment I – Object level concepts

		Analysis			Reasoning	
Concept	Recall	Precision	F-M	Recall	Precision	F-M
Building	1.00	0.17	0.29	0.09	0.83	0.17
Grass	0.06	0.40	0.10	0.01	1.00	0.03
Foliage	0.99	0.70	0.82	0.90	0.80	0.85
Sky	0.93	0.87	0.89	0.93	0.87	0.89
Cliff	0.98	0.21	0.35	0.54	0.42	0.47
Tree	0.22	0.65	0.33	0.18	0.58	0.27
Trunk	0.38	0.65	0.48	0.38	0.65	0.48
Sand	0.49	0.37	0.42	0.92	0.41	0.56
Sea	0.72	0.46	0.56	0.88	0.49	0.63
Conifers	1.00	0.01	0.02	0.50	0.02	0.03
Mountain	0.14	0.01	0.01	0.43	0.04	0.06
Boat	0.10	0.40	0.16	0.10	0.50	0.17
Road	0.15	0.50	0.23	0.02	0.25	0.03
Ground	0.06	0.57	0.19	0.11	0.57	0.19
Person	0.49	0.54	0.52	0.49	0.54	0.52

Concepts semantically related to scene level concepts are affected the most, e.g. the Sand concept. In general, precision is improved due to the utilisation of disjoint semantics.

PDF

GO

Experiment II – Scene level concepts

		Analysis		Reasoning					
Concept	Recall	Precision	F-M	Recall	Precision	F-M			
$Countryside_buildings$	0.30	1.0	0.46	0.60	0.86	0.71			
Rockyside	0.68	0.70	0.69	0.68	0.79	0.74			
Roadside	0.68	0.69	0.69	0.68	0.72	0.70			
Forest	0.75	0.63	0.69	0.74	0.68	0.71			
Coastal	0.85	0.67	0.75	0.86	0.72	0.78			
Outdoor	-	-	-	0.00	1.00	0.99			
Indoor	-	-	-	NaN	NaN	NaN			
Natural	-	_	-	0.97	1.00	0.98			
ManMade	-	_	-	NaN	NaN	NaN			
Cityscape	-	-	-	NaN	NaN	NaN			
Mountainous	-	-	-	0.67	0.80	0.74			
Beach	-	-	-	0.45	0.76	0.57			

Higher impact as the analysis supported concepts are characterised are more strongly related to each other.

SSMS 2010, Amsterdam CERTH - Informatics and Telematics Institute

PDF com

Experiment II – Object level concepts

		Analysis		Reasoning						
Concept	Recall	Precision	F-M	Recall	Precision	F-M				
Building	0.54	0.69	0.60	0.62	0.86	0.72				
Roof	0.33	0.54	0.41	0.33	0.75	0.46				
Grass	0.49	0.42	0.45	0.30	0.52	0.38				
Foliage	0.48	0.84	0.61	0.86	0.86	0.86				
Dried-Plant	0.07	0.11	0.08	0.07	0.13	0.10				
Ground	0.26	0.33	0.29	0.26	0.33	0.29				
Person	0.75	0.51	0.61	0.75	0.51	0.61				
Sky	0.95	0.93	0.94	0.95	0.93	0.94				
Cliff	0.65	0.45	0.53	0.69	0.70	0.69				
Tree	0.49	0.52	0.51	0.56	0.47	0.51				
Trunk	0.26	0.28	0.27	0.26	0.28	0.27				
Sand	0.02	0.10	0.03	0.57	0.45	0.50				
Sea	0.69	0.60	0.64	0.85	0.69	0.76				
Wave	0.25	0.5	0.33	0.25	0.5	0.33				
Boat	0.41	0.71	0.52	0.33	0.66	0.44				
Road	0.50	0.69	0.58	0.69	0.71	0.70				

SSMS 2010, Amsterdam

Again, higher impact as the analysis supported concepts bear stronger semantic relatedness.

Interesting to note the lower performance for Boat, which is due to analysis mistaken degrees estimation of the scene level concepts (Cityscape appears prevalent, which is disjoint with Boat).

CODV of CVISION

59

Cliff detector has better performance than the corresponding Rockyside scene level one; replacing though Rockyside u Econtains. Cliff with Econtains. Cliff u Rockyside would be a customisation of domain knowledge, not generally applicable.

Conclusions

- The proposed fuzzy DLs reasoning enables
 - formal handling of the imprecision inherent in the input classifications
 - utilisation of domain semantics
 - consistent interpretations / image descriptions
- The use of explicit semantics and logic-based reasoning is crucial in multimedia semantics extraction
 - yet not the only necessary component
- Largely miscalculated classification degrees can mislead the interpretation
 - combined usage of additional (probabilistic) knowledge could be a possible solution, along with logic-based reasoning to account for possible worlds/interpretations

60

Probabilistic inference

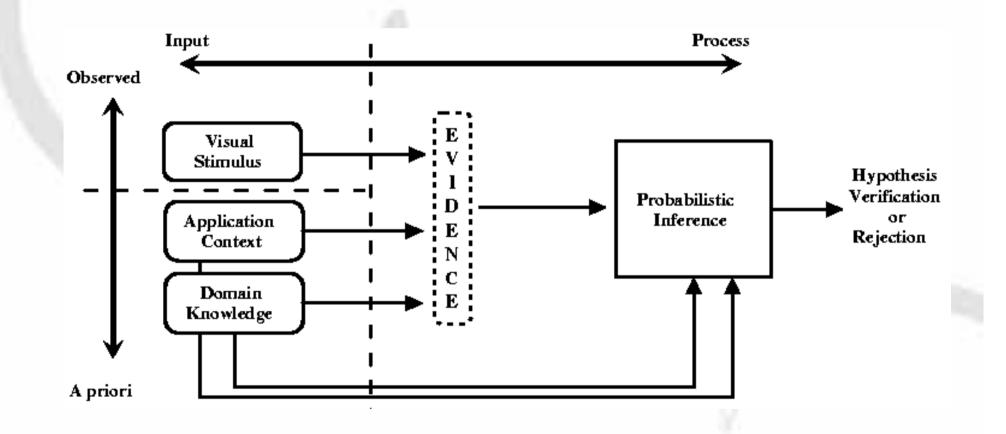
SSMS 2010, Amsterdam CERTH - Informatics and Telematics Institute CERTH - University of CVISION PDFCompressor

PDF com

61

Our approach

Goal: Combine explicit (provided by humans) and implicit (extracted from training data) knowledge for enhancing image analysis

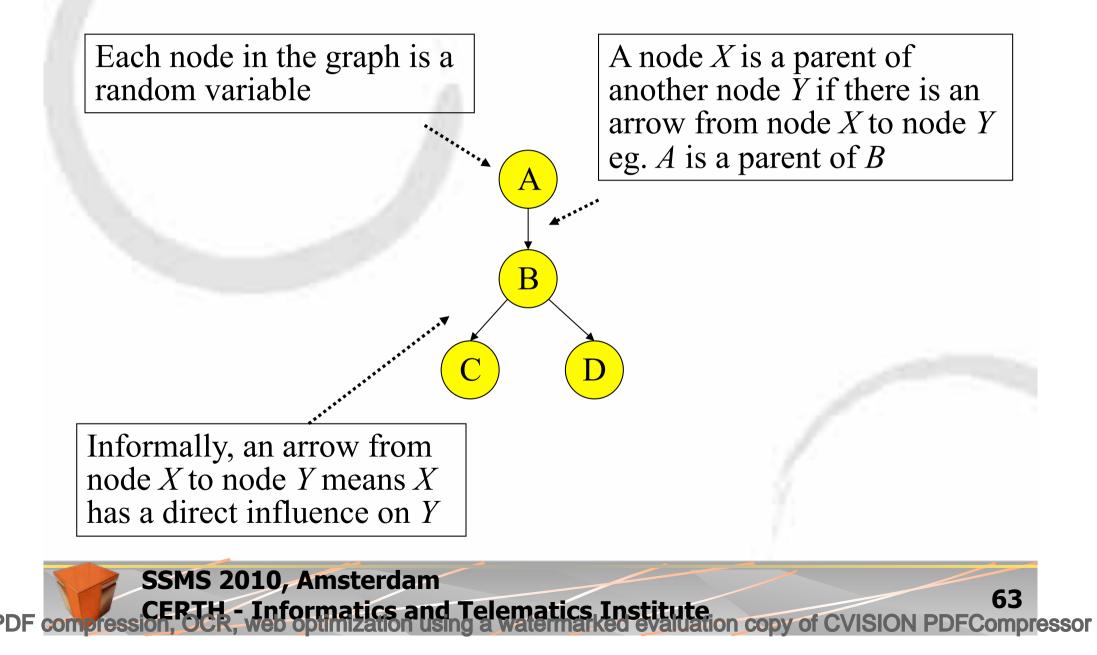


62

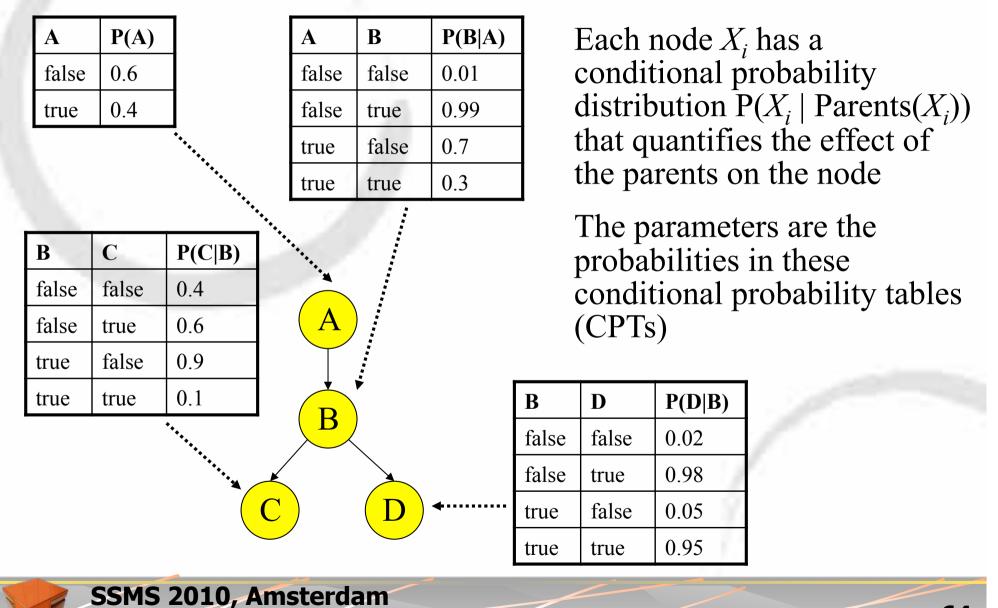
SSMS 2010, Amsterdam CERTH - Informatics and Telematics Institute compress

PDF

BN: A Directed Acyclic Graph



A Set of Tables for Each Node



CERTH - Informatics and Telematics Institute

PDF

64

Bayesian Networks

Two important properties:

- Encodes the conditional independence relationships between the variables in the graph structure
- 2. Is a compact representation of the joint probability distribution over the variables

Inference

- Using a Bayesian network to compute probabilities is called inference
- In general, inference involves queries of the form:

66

of CVISION PDFCo

```
P(X | E)

E = \text{The evidence variable(s)}

X = \text{The query variable(s)}
```

Designing, training and performing inference on the BN

BN	Our approach
Network Structure • nodes • arcs	Ontologyconceptsontology relations
Network Parameters Conditional Probability Tables Prior Probabilities 	 Annotated data (context) frequency of co-occurrence between concepts frequency of concepts' appearance
Evidence • Probabilities for the evidence variables	Visual stimulus Probabilistic output of the SVM-based classifiers

SSMS 2010, Amsterdam

PDF compres

CERTH - Informatics and Telematics Institute

Framework Components

- Visual stimulus
 - Segmentation using a Recursive Shortest Spanning Tree algorithm [Adamek & O'Connor, 2005]
 - MPEG-7 visual descriptors (region and global level)
 - SVM-based concept classifiers producing probability estimates by fitting the decision values by a sigmoid function

8,8 0.7 8,6 8,5 8,5

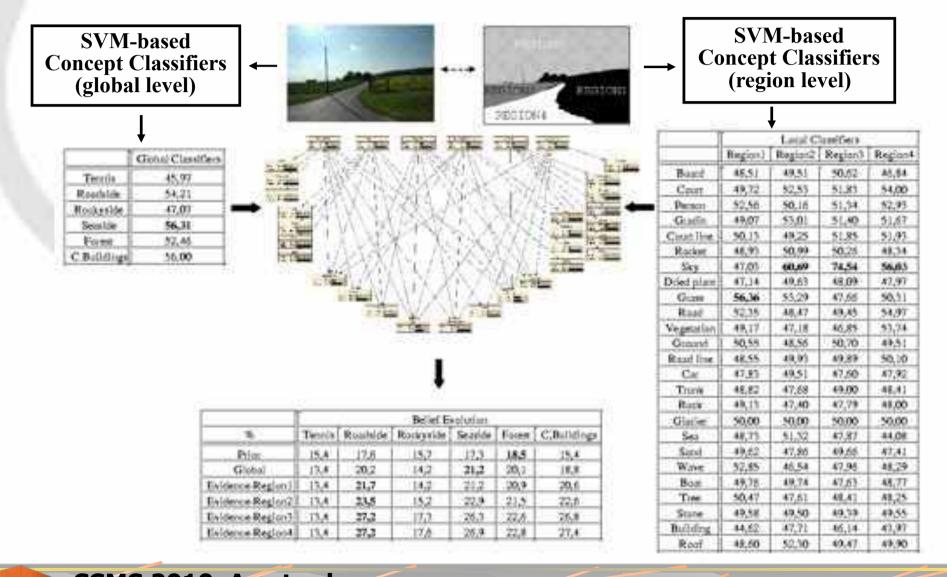
0.3

CODV of CVISION P

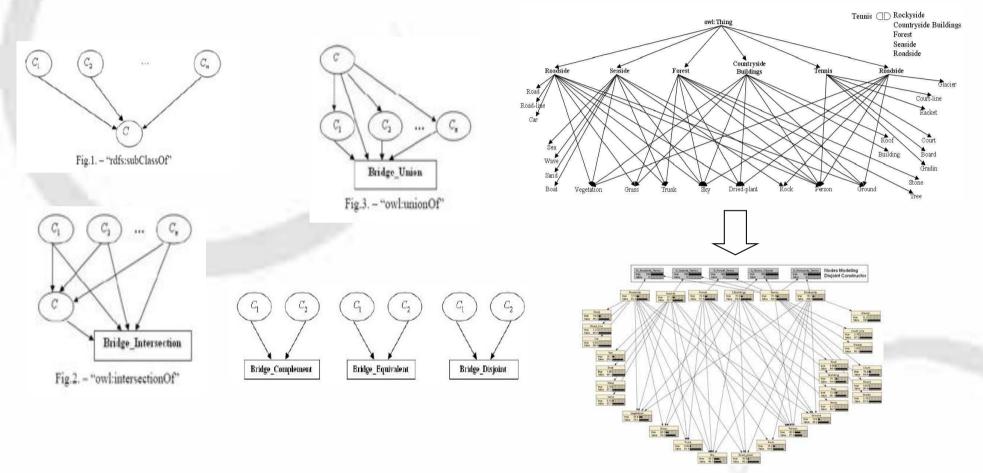
68

- Domain knowledge
 - Ontology (OWL-DL)
- Application context
 - Quantifies the effect/causality between concepts using co-occurrence information
- Probabilistic inference
 - Bayesian Networks and message passing belief propagation

Image Analysis - Running Example



Ontology-to-BN – Network Structure (Explicit Knowledge)



Z. Ding, Y. Peng, and R. Pan, "A bayesian approach to uncertainty modeling in owl ontology," in Proc. of the Int. Conf. on Advances in Intelligent Systems - Theory and Applications, Nov. 2004

Ontology-to-BN - Parameter Learning (Implicit Knowledge)

Concept labels

Dnum	Buildin	ng	Roof	Grass	Vegeta	ion	Dried p	plant	Ground	Person	Sky	Rock	Glacier	Tree	Trunk	Stone	Sand	Sea
	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSI
	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSI
0	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALS
1	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALS.
2	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALS
3	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALS.
4	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALS
5	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALS
6	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALS
7	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALS
3	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALS
Э	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALS
0	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALS

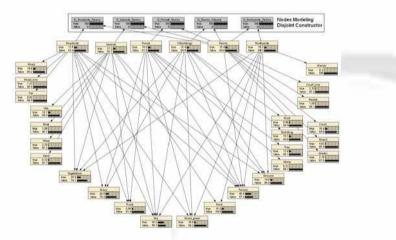
Expectation Maximization was applied on concept labels

PDF

CPTs were estimated between the connected nodes

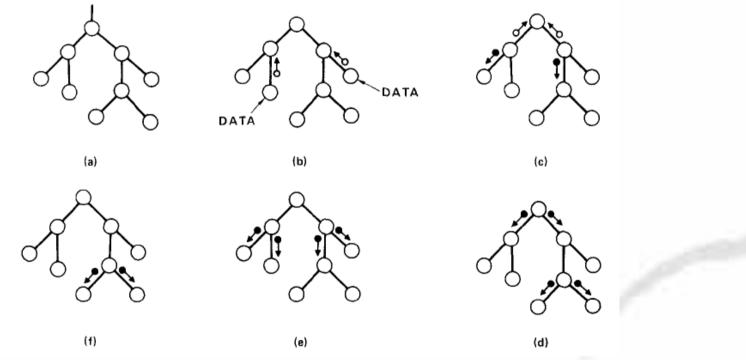
- Concept labels were obtained by manual annotation
- Concepts co-occurrence was used to estimate causality relations

BN with estimated CPTs



Belief Propagation with Message passing

- Pearl's message passing algorithm for belief propagation
 - Top-down and bottom-up message passing between parent and child nodes
- Junction tree variation for coping with complexity issues



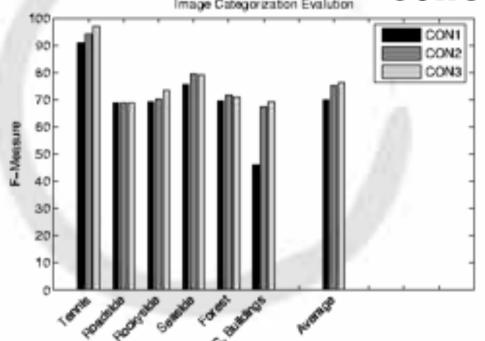
- Pearl, "Fusion, propagation, and structuring in belief networks," Artif. Intell., vol. 29, no. 3, pp. 241–288, 1986.

- F. V. Jensen and F. Jensen, "Optimal junction trees," in Proc. of the 10th Conf. on Uncertainty in Artif. Intel., C. M. Kaufmann, Ed., San Mateo, 1994

Experimental Study

- Image analysis Tasks
 - **Image categorization:** Select the category concept that best describes an image as a whole.
 - Localized region labeling: assign labels to pre-segmented image regions, with one of the available regional concepts
 - Weak annotation of video shot key-frames: associate multiple concepts to an image, but not with specific image regions
- Test-beds
 - Personal Collection, 648 images, 6 global concepts, 25 local concepts
 - **MSRC**, 591 images, 21 local concepts
 - TRECVID 2005, 61600 images, 374 global concepts

Image Categorization (Personal Collection)

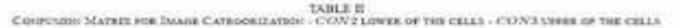


- CON1: Baseline configuration that is based solely on visual stimulus
- CON2: Concept hierarchy information is used but no semantic constraints are taken into account
- CON3: Semantic constraints are also taken into account

74

copy of CVISION PDFCompressor

74



- 10		damine d	and and	-	Ţ	C failing
Termin	H1.00	6.08	0.00	100	E.00	0.00
Rendtate	1.75	73.85	0.00	1.17	10.11	1.26
Rodenik	100	3.92	54.71 70.91	100	19.41	6.00
Secto	0.00	1.18	1.57	10.07	1:00	0.00
Forer	0.00	10.00	111 110	10:06	71.67 11.67	0.00
Distant C	200	24.00	8.00	12.00	100	54 (0)

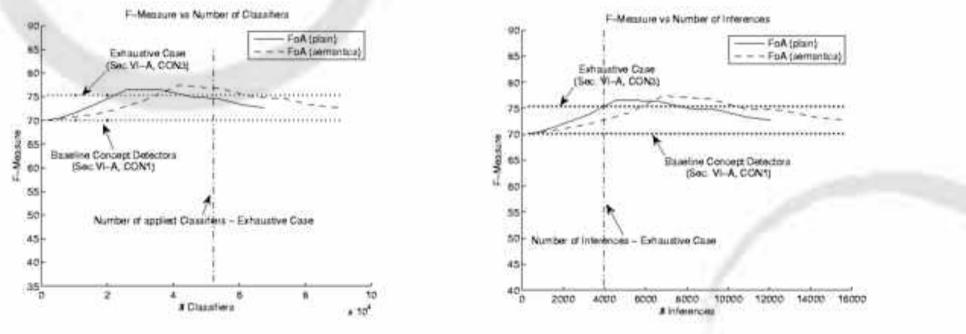
SSMS 2010, Amsterdam CERTH - Informatics and Telematics Institute

PDF

Image Categorization using a Focus of Attention (FoA) mechanism

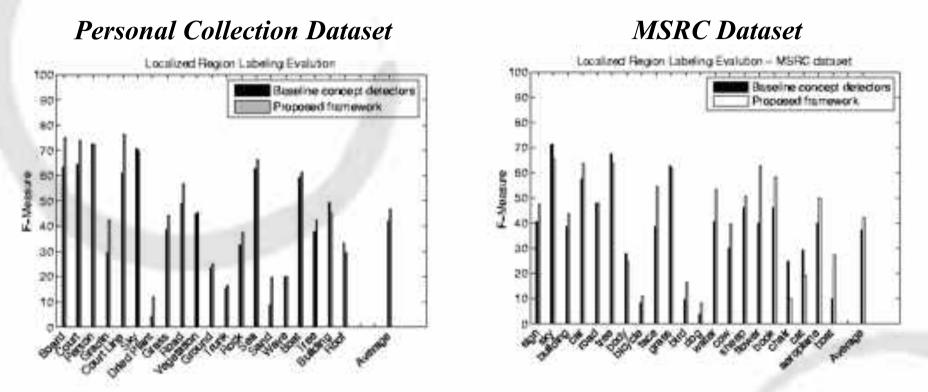
-Start from the most likely hypothesis and attempt to verify it by looking for evidence that would have normally been present if the hypothesis was true.

- Exploit the mutual information (learned from training data) between the hypothesis and evidence concepts.



3172 (sec) gain in time

Localized region labeling



When there is a conflict between the prediction of global and local classifiers we make two different hypothesis, we evaluate them into the BN and eventually select the one with highest probability.

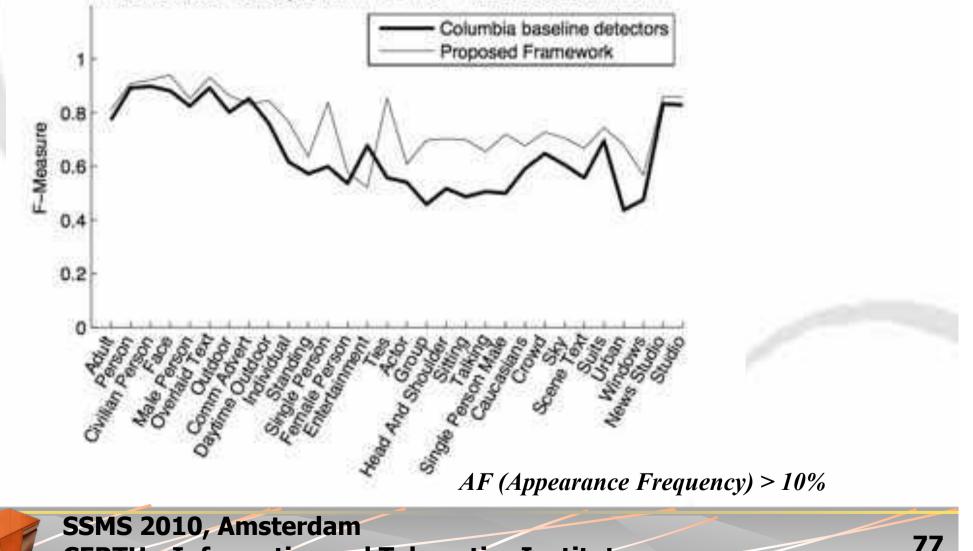
Weak annotation of video shot keyframes (1/2)

TRECVID 2005 - Concepts with AF >= 10% - Ranked based on their AF

- Informatics and Telematics Institute

CERTH

PDF



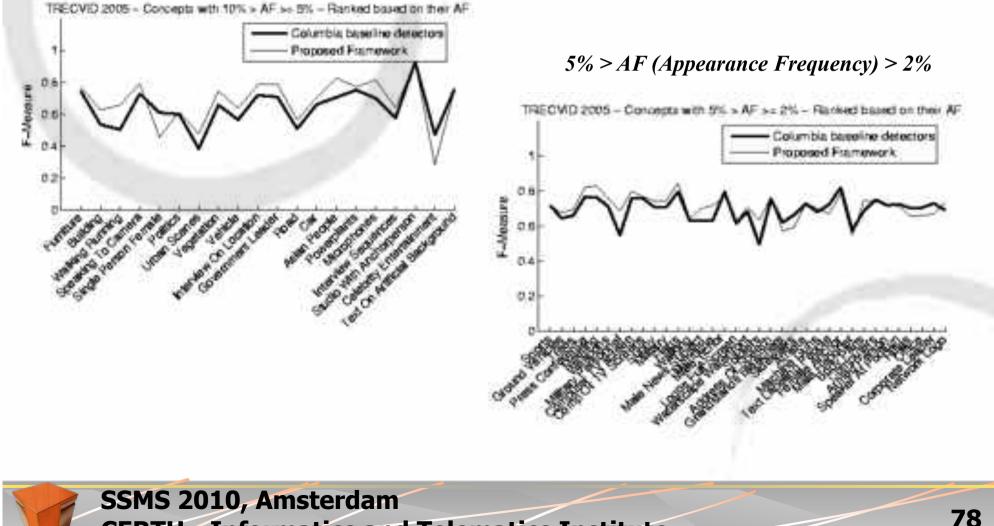
copy of CVISION PDFCompressor

Weak annotation of video shot keyframes (2/2)

10% > AF (Appearance Frequency) > 5%

PDF

GO



copy of CVISION PDFCompressor

CERTH - Informatics and Telematics Institute

Comparing with existing methods

				Сом	PARIN	G WIT	HEX	ISTIN	G MET	HODS	IN O	BJECT	RECO	OGNIT	ION					COMPARING WITH EXISTING METHODS IN OBJECT RECOGNITION													
	Buildings	Grass	Tree	Cow	Sheep	Sky	Acroplane	Water	Face	Car	Bicycle	Flower	Sign	Bird	Book	Chair	Road	Cat	Dog	Body	Boat												
Textonboost [18]	62	98	86	58	50	83	60	53	74	63	75	63	35	19	92	15	86	54	19	62	7												
PLSA-MRF/P [17]	52	87	68	73	84	94	88	73	70	68	74	89	33	19	78	34	89	46	49	54	31												
Prop. Framework	32	55	87	40	73	96	57	56	50	76	8	64	38	12	46	5	51	12	8	29	18												

- None of the three systems manages to outperform the others for a significant portion of the 21 classes
- Error rates are often quite different on individual classes showing that while there are some classes that can be modeled very efficiently using the visual features and the model proposed by one method, there are other classes that are best modeled using a different set of visual features and model
- Our work focus on using context and knowledge for improving the performance of a set of baseline concept classifiers, not to discover the optimal feature space

[17] J. J. Verbeek and B. Triggs, "Region classification with markov field aspect models," in CVPR, 2007

[18] J. Shotton, J. M. Winn, C. Rother, and A. Criminisi, "TextonBoost: Joint appearance, shape and context modeling for multi-class object recognition and segmentation," in ECCV (1), 2006, pp. 1–15.

Conclusions

- Combining explicit & implicit knowledge is beneficiary for enhancing image analysis ...
 - Hierarchy information and causality relations between domain concepts was found to be useful in most of the cases
- The value of semantic information depends largely on the special characteristics of the domain ...
 - Semantic constraints were only able to help image interpretation, when the imposed rules could be directly reflected into the visual space and when the domain is rich enough to impose meaningful interconnections
- A large amount of training data is required for approximating the prior and conditional probabilities using frequency information ...
 - No improvement was delivered for the rarely appearing concepts of TRECVID dataset

80

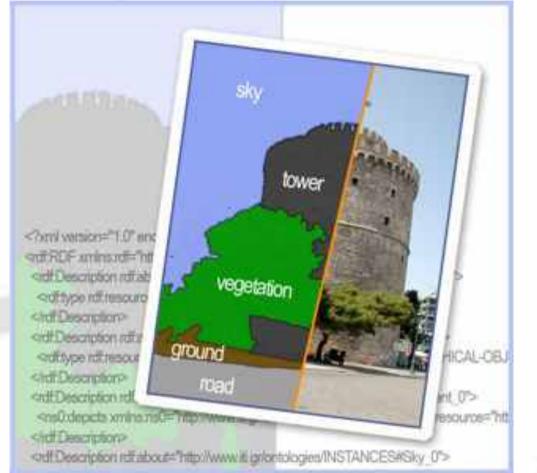
Common (Open) Issues

- Evaluation
- Annotated content
- Ontologies
- Fusion in analysis
- Uncertainty in reasoning
- Large-Scale
- Generic vs. Specific approaches
- Multiple domains support

Conclusions

- Semantic analysis of multimedia is already providing results
- Fundamental and applied research in
 - Logic-based + signal approaches
 - Implicit + explicit (knowledge) approaches
 - Logic + statistical/learning based
- Different applications and requirements
- Ongoing research in all areas

Thank you!



http://mklab.iti.gr

83

SSMS 2010, Amsterdam PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor