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ABSTRACT
In this paper we propose a set of Electromyogram (EMG)
based features such as muscles total pressure, flexors
pressure, tensors pressure, and gesture stiffness, for the
purpose of identifying differences in performing the same
gesture across three pottery constructions namely bowl,
cylindrical vase, and spherical vase. In identifying these
EMG-based features we have developed a tool for vi-
sualizing in real-time the signals generated from a Myo
sensor along with the muscle activation level in 3D space.
In order to do this, we have introduced an algorithm for
estimating the activation level of each muscle based on
the weighted sum of the 8 EMG signals captured by Myo.
In particular, the weights are calculated as the distance
of the muscle cross-sectional volumes at Myo plane level
from each of the 8 Myo pods, multiplied by the muscle
cross-section volume. Statistics estimated on an experi-
mental dataset for the proposed features such as mean,
variance, and percentiles, indicate that gestures such as
“Raise clay” and “Form down cyclic clay” exhibit dif-
ferences across the three vase types (i.e. bowl, cylinder,
and sphere), although perceived as identical.
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INTRODUCTION
The digitization of cultural heritage is an interesting
field which, most of the times, involves the 3D scan-
ning of museum artifacts. However, the Intangible Cul-
tural Heritage (ICH), a term introduced by UNESCO,
includes traditions or living expressions such as oral tra-
ditions, performing arts, social practices, rituals and fes-
tive events that is also important to preserve [12]. Our
work targets at capturing the intangible characteristics
of pottery art performances, but it can be also used for
other kinds of arts with hands. In particular, our goal is

to identify differences between the pottery gestures that
may be perceived as apparently identical and are difficult
to isolate and transmit when safeguarding ICH. Towards
this direction, for the purpose of capturing arts involv-
ing hand movements, a gesture recognition technique is
needed that will be able to cope with the problem of
fingers occlusion and non physical availability of sensors
(i.e. it is impossible to place accelerometers at finger
tips).

Today, the hardware for gesture recognition is based on
infrared (IR) sensors, Electromyograms (EMGs), and In-
ertial Motion Sensors (IMS) or combinations of them.
Some IR sensors are based on projecting an infrared pat-
tern in the room and capturing the pattern with an IR
camera. A common pattern is a grid of dots. If the dots
captured on a surface are dense, the surface is near the
camera, and vice versa. Such devices are LEAP motion
sensor [7] and MS Kinect (Version 1) [5]. The meth-
ods based on EMGs classify movement according to the
electricity on the surface of the skin, which reflects the
activity of the muscles. Myo sensor is such a device [13].
Methods based on IMS(es) are exploiting several wear-
able sensors worn by the user in several places in his
body. The device we have employed is Myo that com-
bines EMG and IMS sensors in the forearm, and there-
fore, it can be used non-intrusively for pottery sessions.

Most of the bibliography in EMG gesture recognition
techniques involves a sensor made by a certain lab that
it is not available for the community and therefore ex-
periments can not be reproduced accurately. Myo sensor
is a relatively new device as it was released to the pub-
lic at 2013 and offers a benchmark device at low cost
($200). It is a wireless device connected to desktops or
mobiles offering a good user experience. Myo is ideal
for art performances such as pottery, since the other
options of IR and IMS based sensors can not be used
due to physical limitations. In this work, we focus on
gesture recognition at the level of fingers from EMG(s).
In particular, we wish to extract information about the
finger-gestures, which is a particularly valuable piece of
information for the learner in order to improve his per-
formance in pottery arts. In the literature, the gesture
recognition methods that rely on EMG typically refer
to hand-gestures. Although we do not treat the same
task, we have reviewed some of these methods so as to
highlight the most interesting components.



The process of gesture recognition is split into two parts,
namely feature extraction and classification. A feature
proposed in [6] is the entropy of splines fitted on the
EMG signal and the entropy of splines fit on the resid-
uals of every fit. This process leads to a dimensionality
reduction of the original signal where entropy can be es-
timated to characterize the low frequencies of the signal.
The classifier employed was based on linear discriminant
analysis (LDA) using the Mahalanobis distance in order
to classify signs for the deaf people with an industrial re-
search EMG sensor. In [19], the Hidden Markov Models
(HMMs) and decision trees were used to separate signs
language from EMG and acceleration values by using as
features the duration of the sign, the autoregressive co-
efficients of fourth order applied to short-term frames of
250ms, and the mean values of the signals in the short-
term frames. For this purpose a custom EMG sensor was
used. In [17], the mean value, the variance, the fourth
order coefficient, and the sample entropy on short-term
frames of 250ms were used to classify gestures to seven
primitive classes, e.g. grasp, point, tip, rest and so on by
using two industrial EMG sensors. LDA was used as a
classifier to achieve more than 97% correct classification
rate. The resulting decision was graphically depicted by
using a VRML model of the palm, where each finger
was represented by the concatenation of cylinders. Mo-
tivated from this work, we have foreseen the necessity of
visualizing the arm in 3D space, so that experiments are
performed in emulated conditions. However compared
to [17], instead of using VRML and Matlab we have pre-
ferred WebGL and javascript which are more accessible
to the community and they can lead to a ready to use
solution.

In [20], a custom armband sensor is presented that com-
prises of 8 transmitters and 8 receivers of electrical sig-
nals at 40Hz, which is able to measure the electrical
impedance of a forearm cross-section area. A tomog-
raphy of the forearm is achieved that is able to predict
the inner muscles activation level. The combination of
the 8 sensors to 2 pairs achieves a feature vector of 28
impedance coefficients that are updated every 100ms.
These 28 coefficients are the electrical impedances from
each of the 8 emitters to each of the 8 receivers around
the forearm. Electrical impedance changes with respect
to the tension of the inner muscles because tensed mus-
cles have different impedance than the relaxed muscles.
Thus, by the cartography of impedance coefficients in a
2D map, the tension of the inner and outer muscles can
be found. The Support Vector Machine (SVM) based
classifier achieved about 95% correct classification rate
for 11 gestures. Following a similar approach, our work
was also based on the notion of cross-sections of the fore-
arm, and was further augmented by projecting the vir-
tual models of the muscles. Other recent achievements in
myoelectric interfaces can be found in the review paper
by Hakonen [4].

Finally, it is important to mention that most of the afore-
mentioned research is performed with a toolkit for ex-

periments, i.e. Matlab, SPSS, WEKA, LabView, etc. In
this work, we have relied on HTML-5, Javascript and
WebGL so as to develop a cross-platform and ready to
use eco-system for myoelectric analysis, that can be eas-
ily used for every application. An additional advantage
of the employed architecture is that the computational
burden of handling 3D graphics lie on the client side,
where WebGL is taking advantage of the available GPU.
Similarly, most of the Myo signal recording processes are
performed by webworkers that run on a parallel thread
to avoid overloading the GUI thread [15].

The outline of this paper is as follows. The Database
and Annotation tool section presents the data recordings
and the procedure that has been employed to annotate
them. In the Methodology section, the proposed 3D vi-
sualization tool and the type of features that have been
introduced for our analysis are described. Details of the
implementation are provided in Implementation Context
for Myoelectric analysis section. The experimental re-
sults are shown next, where the proposed features indi-
cate differences across the three types of vases for the
same gesture. Finally, conclusions are drawn in the last
section.

DATABASE AND ANNOTATION TOOL
For the purposes of our experimental study, we have as-
sembled a dataset of Myo recordings during 9 pottery art
performances from a master performer, namely 3 bowls,
3 cylindrical vases, and 3 spherical vases where each one
lasts about 100 secs. Each vase type is shown in Figure 1.

(a) (b) (c)
Figure 1. Data consists of Myo recordings of the right
hand during three vase classes, namely (a) bowl, (b) cylin-
drical, and (c) spherical vases.

The video of each performance was captured to help an-
notating the signals. The video frames were recorded
with a custom C++ program synchronized to start with
the Myo recorder. Each video frame is named according
to the current unix timestamp, and each Myo sample is
also associated with its unix timestamp. The sampling
rate for EMG is 200Hz and for IMU is 50Hz.

Subsequently, the Myo recordings were annotated into
basic pottery gestures using a custom made annotation
tool with a graphic user interface. The tool was written
in Python 3 using tkinter as a GUI constructor. The tool
as shown in Figure 2, visualizes, in synchronization with
the video frames, the 8 EMG signals from each Myo pod
and the 9 IMU signals, namely acceleration, gyroscope,
orientation for each of the x, y, z axis. The playline in the
timeline can be dragged with the mouse and the video
frame is updated on-the-fly. Each of the three types of



vases requires about 15 gestures and the total number
of gesture classes is 33. The gestures for making a bowl
and a cylindrical vase as annotated with our tool, are
shown in Table 1.

Bowl Cylindrical
2.2, Take clay 0.9, Take clay
4.4, Throw clay 2.7, Throw clay
5.2, Wash hands 3.5, Take water
8.1, Centering clay 4.8, Centering clay
10.5, Regulate speed 6.5, Raise clay
12.3, Raise clay 9.8, Form down cyclic
15.6, Form down cyclic 20.5, Take water
26.3,Take water 22.0, Form palms facing
27.8, Form palms facing 25.7, Form palms open
34.8, Form palms open 27.5, Take water
36.7, Take water 29.1, Sidewalls cyl1
39.3, Sidewalls 1 32.2, Take water
50.7, Sidewalls 2 34.1, Sidewalls cyl2
54.2, Pointer fix 51.3, Pointer finger
56.3, Take instrument 55.2, Sidewalls cyl2
59.3, Form with instrument 57.3, Pointer finger
74.4, Tiny finger 58.0, Take instrument
82.5, Leave instrument 60.4, Form with instrument
84.5, Take rope 77.0, Tiny finger
86.2, Pass rope under 78.5, Pointer finger
89.7, Remove vase 81.4, Form with instrument
96.7, End 89.0, Leave instrument
- 90.9, Take rope
- 92.7, Pass rope under
- 96.2, Remove vase
- 103.1, End

Table 1. Gestures required to make a bowl and a cylin-
drical vase with timestamps in seconds for two annotated
sessions

METHODOLOGY
In order to analyze the correspondence between the
EMG-based muscle activation and the pottery gestures,
we need to visualize the forearm in 3D space and inter-
actively observe if the proposed theory is reflecting the
actual muscle-driven process.

Virtual forearm model resources
The muscles that are located at the level of Myo pods
are investigated by the use of an anatomy atlas that
also provides for free the 3D models of the bones and
the muscles in Wavefront OBJ format [8]. The involved
anatomical objects are 2 bones (radius and ulna) and
15 muscles that are enlisted in Table 2. Some muscles
have two heads that are connected to different bones,
e.g. humerus and ulnar heads. The functionality of each
muscle is found in [11]. The cross-sectional volume is the
volume of the mesh formed by intersecting a 0.5 cm thick
plane with each muscle at Myo cross-sectional level. The
result is the forearm scene that is depicted in Figure 3.

More specifically, the muscles at Myo level as indicated
by the gray plane intersecting the forearm are the electri-
cal sources contributing to the EMG signals. The inter-
section of the plane with each muscle produces a muscle
tomography which we will call slice. The slice is found
with a known algorithm in 3D graphics called binary
space partitioning [14]. The volume and the center of

mass of the slice are also calculated. Volume is calcu-
lated with summing the signed volume of tetrahedrons
formed by the triangles (faces) topped at the origin [18].
Let us name mi the slice of the ith muscle. The center
of mass of the slice, cmi

= [xmi
, ymi

, zmi
], is calculated

by dividing the centers of all of its faces, cf , multiplied
by their face area, af , and afterwards divide each vector
with the total area of its surfaces, .e.g.

cmi
=

∑
∀f∈mi

afcf∑
∀f∈mi

af
. (1)

The center of mass is a weighted sum of the faces’ ori-
gin depending on their area and it is not affected if the
mesh has a high number of vertices in certain spots. For
example, in Figure 4, a comparison of the weighted av-
erage of faces’ vertices (center of mass) versus the plain
average of faces’ vertices (center of geometry) is shown.
It is seen that the center of geometry is biased to the
left because vertices are densely populated, whereas the
center of mass is an unbiased estimator of the center of
the mesh because it takes into consideration the area of
the faces formed by the vertices.

Muscle activation level
The negative values of the EMG signals were clipped as
muscle activation is denoted by the positive spike values,
i.e. the discharges of the muscles. Negatives are the
charges of the muscles that occur as a physical re-action
to the discharge. Next, an average mean filter of the past
25 values was used to remove high frequency artifacts.
Each signal of the 8 Myo sensors is a weighted sum of
the electrical signals of the 15 muscles, where the weights
depend on the distance of the muscle from the sensor and
the volume of the muscle. It is assumed that the weight is
proportional to the volume of the muscle, i.e. the bigger
the muscle is, the more electricity it produces. However,
the weight is inversely proportional to the distance, that
is the further the muscle is from the sensor, the lowest
is its contribution to the sensor’s signal. Let emi(t) be
the electrical activity signal of the muscle mi, where i =
1, 2, . . . , 15, then

emi(t) = Vmi

8∑
j=1

sj(t)

dij
, (2)

where Vmi
is the volume of the muscle mi, sj(t) is the

signal of the jth Myo pod and dij is the distance of each
pod to each muscle, i.e.

dij =
√

(xsj − xmi
)2 + (ysj − ymi

)2 + (zsj − zmi
)2.

(3)

The numbering Myo Pods starts from -45 degrees as
shown in Figure 5 and continues counter-clockwise until
270 degrees.

Features extraction



Figure 2. Annotation tool for Myo signals synced with video signal.

# Name Main functionality cs vol.
cm3

1 Brachioradialis Flex elbow joint 2.26
2 Extensor carpi radialis brevis Extends and radial deviates hand at wrist 0.89
3 Extensor carpi radialis longus � 0.84
4 Extensor carpi ulnaris Extends and ulnar deviates hand at wrist 0.53
5 Extensor digiti minimi Extends the little finger 0.17
6 Extensor digitorum Extends wrist and 4 fingers 0.91
7 Flexor digitorum profundus Flexes wrist and 4 fingers (connected at tips) 1.83
8 Flexor digitorum superficialis Flexes wrist and 4 fingers (connected at 2nd phalanx) 1.77
9 Flexor carpi radialis Flexes and radial deviates hand at wrist 0.80
10 Flexor carpi ulnaris (Ulnar head) Flexes and ulnar deviates hand at wrist 0.88
11 Flexor carpi ulnaris (Humeral head) � 1.01
12 Palmaris longus Flexes hand at wrist and tenses palmar aponeurosis (like grasping a ball) 0.53
13 Pronator teres (Ulnar head) Pronates (turn door key to your body) and flexes forearm at elbow 0.40
14 Pronator teres (Humeral head) � 0.40
15 Supinator Rotates radius to turn palm anteriorly (turn door key away from your body) 0.44

Table 2. Muscles contributing to Myo signals. Abbreviation: “cs. vol.” is the cross-sectional volume found by the
intersection of a 0.5cm thick plane with the muscle at Myo level.

The features proposed in this work are based on the mus-
cle activation in certain muscle groups, which in the gen-
eral case are found by:

f =
1

N

N∑
t=1

∑
M

emi
(t), (4)

whereM is the muscle group. Depending on the muscle
group M we define the following features.

The ftotal found whenM is the set of all muscles of Ta-
ble 2 denotes the total muscle pressure of the gesture.

The fflex is the flexion tension of the gesture which is
found by the flex muscles M={“brachioradialis”, “pal-
maris longus”, “fle. car. rad.”, “Uln. hea. lef. fle. car.
uln.”, “Hum. hea. lef. fle. car. uln.”, “fle. dig. sup.”,
“fle. dig. pro.”} denoting the force put towards the
anterior of the forearm. In the same manner extension
tension fext of the gesture is found by the 5 extensors,
i.e. M={“ext. dig.”, “ext. car. uln.”, “ext. car. rad.
lon.”, “ext. dig. min.”, “ext. car. rad. bre.”} denot-
ing the force put towards the posterior of the forearm.
The suspination feature fsusp is defined by using only
the suspinator muscle, and the pronation feature fpron



Figure 3. Intersecting the muscles with a 0.5cm thick
plane in WebGL environment.

(a) (b)
Figure 4. Comparison between (a) the center of geometry,
and (b) center of mass.

is defined by using the {“Uln. hea. lef. pro. ter.”,
“Hum. hea. lef. pro. ter.”} set of pronation muscles.

Finally, we denote as stiffness fstif the steadiness of the
palm towards forearm that is caused by balanced force
of the extensors/flexors and suspinators/pronators, i.e.
the opposite muscle groups that put opposed forces to
make the hand stiff to be defined as

fstif = fflexfext + fsuspfpron. (5)

IMPLEMENTATION CONTEXT FOR MYOELECTIC ANALY-
SIS
A 3D engine was necessary to render the muscles for vi-
sualizing the whole forearm. The reason for favoring a
solution based on web-browsers was due to the follow-
ing: a) they are accessible from everywhere without any
posing any software requirements; b) they offer a rich
development environment as they include a console that
can be used to interactively experiment with the loaded
web page; and c) they support the WebGL of HTML5
that renders 3D graphics with the client’s Graphic Pro-
cessing Unit (GPU). However, in order to cope with the
problem that WebGL has low level commands that are
not easy to use for experiments, we have employed the
Three.js framework [2] which is a javascript framework

for WebGL 3D graphics that has high level commands
for rendering scenes.

On top of the aforementioned infrastructure, several
javascript libraries were used in order to transform the
web page into a full Myo observation console. In order
to port Myo signals to a web page the Myo.js library was
used [15]. The library ports values from the Myo desktop
drivers to the web page through websocket technology.
The Myo signals were plotted into the web page through
a jquery library named as flot [10]. The signal values
were also shown in an interactive user interface with the
help of dat.gui library [3].

In this way, using the web browser the muscles electrical
activity can be observed in real-time as shown in Fig-
ure 5. A video demonstrating the functionality of the
tool can be found in [16]. In this video, the muscles elec-
trical activity and the Myo pods signal values are rep-
resented with a yellow overlay on the respective objects.

EXPERIMENTAL RESULTS
Pottery gestures such as “Raise clay”, “Form down
cyclic”, “Form with little finger”, “Form with palms
open”, “Form with palms closed” are in common among
the 3 types of vases, and therefore, constitute an inter-
esting case to be analyzed using the proposed features.
Other gestures in common such as “Take water”, “Take
instrument”, “Leave instrument”, “Take rope”, “Pass
rope under” do not exhibit style differences as they are
very simple to perform. The features used in our exper-
iments are the pressure, stiffness, flexors pressure (flex-
ion), and extensors pressure (extension). Statistics such
as the mean, median, the variance, and the 25/75 per-
centiles were estimated on these features across all in-
stances per class (whereas by class we refer to the type
vase being constructed, i.e. bowl, cylinder, sphere). The
results are plotted in box plots [1].

In Figure 6, “Raise clay”, i.e. the gesture to pull clay
upwards while it is rotating on the table, is compared
across the 3 vase types with respect to the total muscle
pressure feature. In the bowl vases the user seems to put
high pressure across all of his attempts. In cylinder vases
the pressure is much less, whereas in spherical vases the
pressure varies across the attempts with a tendency to
the high values. Based on these results, we can infer that
cylindrical vases do not need much pressure when raising
up the clay.

In Figure 7, the stiffness of the forearm when performing
the “Tiny finger” gesture, i.e. the formulation of the
upper rim of the pot with the little finger, is depicted. It
is seen that when making a spherical vase the stiffness of
the little finger should be high, which might be explained
by the sensitivity of the narrow rim of the vase which
requires more precise formulation with a stiff tool.

In Figure 8, the flexion of the forearm when performing
the “Centering clay” gesture, i.e. the transformation of
the raw clay into a rounded mass on the spinning table,



Figure 5. Live view of Myo signals and muscle electrical activity in the cross-section model of the muscles.
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Figure 6. Total muscle pressure during “Raise clay” ges-
tures across three types of vases.
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Figure 7. Stiffness during “Tiny finger” gestures across
three types of vases.

is depicted. The flexion of the forearm is an indication
of press down and centering force put on the clay which
is higher in the cylindrical and the spherical vases. This
might be due to the higher height of cylinder and sphere
that require a more condensed clay that can stay still
when it is pulled up.
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Figure 8. Flexion feature during “Centering clay” gesture
across three types of vases.

In Table 3, we present the mean value of 4 features for 4
gestures across all attempts per each of the 3 vase types.
It is seen that significant differences exist across vase
types within each gesture. For example, for “Raise clay”
the stiffness and the total muscle pressure are higher in
bowl than in the other vases. Over-viewing the values
across gestures, it is validated that “Tiny finger” ges-
ture has smaller muscle activation level than the “Raise



Total Muscle
Pressure
(cm2mV)

Stiffness
(cm4mV2)

Flexion
(cm2mV)

Extension
(cm2mV)

Type “Raise clay” gesture
Bowl 164 5675 67 65
Cylinder 154 5022 67 58
Sphere 157 5201 70 58

“Form down cyclic clay” gesture
Bowl 165 5756 67 64
Cylinder 130 4054 55 50
Sphere 154 5031 65 58

“Tiny finger” gesture
Bowl 52 628 21 22
Cylinder 45 475 18 18
Sphere 65 913 30 24

“Centering clay” gesture
Bowl 145 4505 57 58
Cylinder 181 6802 75 68
Sphere 176 6448 73 67

Table 3. Mean value of features per vase type for gestures
“Raise clay”, “Form down cyclic clay”, and “Tiny finger”.

clay”, “Form down cyclic clay”, and “Centering clay”
as it requires a smaller group of muscles to activate the
little finger.

This preliminary experimental results verify the validity
of the proposed methodology in identifying differences
across the pottery gestures that may look identical, con-
stituting a powerful framework for capturing and com-
municating the intangible aspects of a pottery perfor-
mance that makes it unique.

CONCLUSION AND FUTURE WORK
In this work, we have proposed a methodology and a set
of features for identifying fine-grained differences across
pottery gestures that may look identical. Our work was
largely driven by the implementation of a framework
that allowed us to visualize in real-time the signals gen-
erated from a Myo sensor along with the muscle activa-
tion level in 3D space. Using this framework we were
able to perform a number of emulation experiments, for
estimating the cross-sections of the arm and identifying
the most suitable set of features for our study.

In the future, we plan to improve the equation for esti-
mating the muscle activation, i.e. Eq. (2) as it is heuris-
tically found after some tests. The squared distance for
representing electricity decaying (1/d2) was tested as a
denominator instead of the linear decaying (1/d). How-
ever, the activation values for the inner muscles were
almost zero, and therefore, the linear decaying was pre-
ferred. In future research, where finger movements will
be visualized in 3D, it will be tested how accurate is to
use the selected equation by comparing the real finger
movements with the estimated movements of the virtu-
ally reality fingers.

Furthermore, there are strong indications that the actual
system is a linear system since all muscles are contribut-
ing to the EMG sensors depending on their volume and
their distances from the sensors. We have attempted
with two methods to solve a linear system s(t) = Me(t)

towards activation levels e(t), where M is the matrix
containing the coefficients represented by muscles vol-
umes divided by muscles to EMG distances. First, we
have used the generalized inverse matrix with the Moore-
Penrose estimation method for calculating the general-
ized inverse matrix of the linear system since the sys-
tem has more unknown variables (activation levels for
15 muscles) than known variables (8 EMG sensors) [9].
The solution leads to negative e(t) values that can not
be interpreted. We have used also the inverse matrix ap-
proach by interpolating the 8 EMG values to a total of 15
EMG values, so that the system can be simply solved.
The problem is the same as in the generalized inverse
matrix approach, i.e. e(t) = M−1s(t) does not produce
always positive values for e(t). Since there are no nega-
tive activation levels, we have abandoned this approach.
In the future, we will investigate on finding a matrix of a
linear system whose inverse can be used to find positive
activation levels.

The developed framework, is not just limited to forearm
but it can be extended to any part of the body and it
could be potentially connected to any EMG device that
has the proper middle-ware (websocket interface). In the
future, the accelerometer and the gyroscope of Myo will
be connected to our framework, so that the 3D forearm
can move in the virtual environment and offer a more
insightful visualization. In addition, the muscles will be
animated so that the electrical activity will drive the
visualization of the finger movements and the forearm.
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