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Abstract

This paper provides an overview of the tasks submitted to TRECVID 2013 by ITI-CERTH. ITI-
CERTH participated in the Semantic Indexing (SIN), the Event Detection in Internet Multimedia
(MED), the Multimedia Event Recounting (MER) and the Instance Search (INS) tasks. In the SIN
task, techniques are developed, which combine new video representations (video tomographs) with
existing well-performing descriptors such as SIFT, Bag-of-Words for shot representation, ensemble
construction techniques and a multi-label learning method for score refinement. In the MED task, an
efficient method that uses only static visual features as well as limited audio information is evaluated.
In the MER sub-task of MED a discriminant analysis-based feature selection method is combined
with a model vector approach for selecting the key semantic entities depicted in the video that best
describe the detected event. Finally, the INS task is performed by employing VERGE, which is an in-
teractive retrieval application combining retrieval functionalities in various modalities, used previously
for supporting the Known Item Search (KIS) task.

1 Introduction

This paper describes the recent work of ITI-CERTH1 in the domain of video analysis and retrieval.
Being one of the major evaluation activities in the area, TRECVID [1] has always been a target
initiative for ITI-CERTH. In the past, ITI-CERTH participated in the search task under the research
network COST292 (TRECVID 2006, 2007 and 2008) and in the semantic indexing (SIN) task (which
is the similar to the old high-level feature extraction task) under the MESH2 (2008) and K-SPACE
(2007 and 2008) EU projects. In 2009 ITI-CERTH participated as a stand alone organization in the
HLFE and Search tasks [2], in 2010 and 2011 in the KIS, INS, SIN and MED tasks [3], [4] and in
2012 in the KIS, SIN, MED and MER tasks [5] of TRECVID respectively. Based on the acquired
experience from previous submissions to TRECVID, our aim is to evaluate our algorithms and systems
in order to improve and enhance them. This year, ITI-CERTH participated in four tasks: semantic
indexing, event detection in internet multimedia, multimedia event recounting and instance search.
In the following sections we will present in detail the applied algorithms and the evaluation for the
runs we performed in the aforementioned tasks.

1Information Technologies Institute - Centre for Research & Technology Hellas
2Multimedia sEmantic Syndication for enHanced news services, http://www.mesh-ip.eu/?Page=project



2 Semantic Indexing

2.1 Objective of the submission

In 2013, the ITI-CERTH participation in the SIN task [6] was based on an extension of our 2012 SIN
system. The goal of this task is to use the concept detectors in order to retrieve for each concept
a ranked list of 2000 test shots that are mostly related with it. The main idea of our submission
is to optimally combine the output of Linear Support Vector Machine (LSVM) classifiers, based on
multiple shot representations, descriptors, interest point detectors and assignment techniques, in order
to achieve enhanced performance, both in terms of accuracy and computational cost. This year we
continued this effort by enhancing our SIN 2012 system with more techniques as described in the
following. For learning the 346 concepts we use the TRECVID annotated dataset to build concept
detectors by adopting two different strategies:

• Training example manipulation [7]; we train many LSVMs, for the same concept, each time with
a different subset of the training examples in order to create different hypotheses.

• Multiple feature extraction alternatives; we describe each video shot with several different fea-
tures by combining different descriptors, detectors, assignment methods etc.

In addition to this, we accelerate our system using an approximation method for data scaling in SVM-
based concept detection. Finally, we develop a stacking-based approach for score refinement. The
objective of our submission in SIN task is to evaluate these techniques.

2.2 Concept Detection System Overview

We developed a concept detection scheme based on a two-layer stacking architecture. The first layer
consists of multiple LSVM concept detectors. More specifically, similarly with the last year’s system,
for each shot a keyframe or a shot tomograph [8] is extracted. Tomographs are 2-dimensional slices
with one dimension in time and one dimension in space. A set of 25 different feature extraction
procedures are employed, following the methodology of [5], in order to generate 25 Bag-of-Words
(BoW) feature vectors for each selected image of a shot (by image we mean here either a keyframe or
a tomograph). A sampling strategy is utilized in order to partition the training set into five subsets.
Five LSVMs, called a Bag of Models (BoMs) in the sequel, using a different subset of the same training
set are trained separately for each feature extraction procedure and each concept. Therefore, in total
25 BoMs are created for each concept. A late-fusion strategy is applied in order to combine the LSVM
models.

In the second layer of our stacking architecture the fused scores are further refined by two differ-
ent approaches. The first approach uses a multi-label learning algorithm that incorporates concept
correlations [9]. The second approach is a temporal re-ranking method that re-evaluates the detection
scores based on video segments as proposed in [10]. The block diagram of a first-layer concept detector
corresponding to one concept is given in Fig. 1. A detailed description of our system is presented in
the following sub-sections.

Figure 1: Block diagram of the concept detection approach utilizing 25 BoMs.



2.2.1 Training phase

During the training phase a sampling strategy is applied to partition the training set into 5 subclasses
and for each subset a LSVM is trained to create a BoMs. The sampling strategy and consequently the
training of BoMs are performed separately for each feature extraction procedure and each concept.
The following major decisions were made in order to develop BoMs that show diversity and accuracy.

Regarding diversity we use a different subset of the training set to train each LSVM inside a
bag. The negative annotated training examples are randomly divided into five non overlapping sets.
For the positive annotated training examples, which are significantly fewer, we construct overlapping
subsets. We follow a process similar to the cross validated committees method [11] in order to equally
reuse the same positive samples. Particularly, the positive annotated training examples are randomly
divided into 5 disjoint subsets. Then 5 overlapping training sets are constructed by dropping out
different ones of these 5 subsets. Note here that depending on the number of available annotated
positive samples for each concept, the proportion of the samples that have been reused changes. For
instance we may use the 4/5, 3/5 etc. By applying this method we are able to use the majority
of available training examples for constructing one aggregated predictor from many weak classifiers
trained in different feature spaces. From our early experimentation, we concluded that exploitation
of diversity during classifier design (i.e. avoiding to create almost identical models) can improve the
generalization performance. Another decision is regarding the positive and negative ratio of training
examples. As in our past participations, a variable proportion of positive to negative samples is used.
This proportion ranges from 1:5 to 1:1. The maximum limit of 25000 positive and negative training
examples for each concept is adopted due to limitations in computational resources.

With respect to accuracy we select LSVM base classifiers, which have shown promising classification
accuracy in the concept detection domain. In order to exploit the correlations among concepts, in a
second layer we construct model vectors by concatenating the responses of the LSVMs and train a
ML-kNN model [12] using a separate validation set [9].

Finally, in terms of computational time, we use a new scaling method to accelerate the training
and classification module. SVM models perform better if the input data is scaled within a specific
region. However, a major issue in on-line classification of large-scale datasets with a large bag of
classifiers is the high computational cost that may be required for scaling the test observations. To
this end, we apply a new scaling strategy, where during the training phase the k-means algorithm is
employed in order to learn 10 common ranges among concepts (instead of 346) and during testing the
most suitable range for the specific concept is applied.

2.2.2 Classification phase

During the classification phase, a new unlabeled video shot is fetched by the 125 first-layer LSVMs
(25 feature extraction procedures * 5 LSVMs per BoMs). Each LSVM returns one prediction score, in
the range [0,1], expressing the degree of confidence (DoC) that the concept is depicted in the image.
A late fusion strategy is then applied to combine these scores, and this process is repeated for all of
the tested concepts.

In the second layer of our stacking architecture a post-processing step is performed in order to
refine these initial DoCs. More specifically, we construct a model vector by concatenating the fused
responses from the 125 LSVMs and the model vector is further refined by the ML-kNN model. The
final step is to re-rank the scores per concept following the approach in [10].

The above process is finally iterated for 17 (11 applied on keyframes and 6 applied on tomographs)
out of the 25 feature extraction procedures, as 8 of them have been removed due to their low perfor-
mance on a separate validation set (a subset of the TRECVID 2013 development set [13]). The final
results were sorted according to the resulted DoCs in descending order and the ranking list containing
the top 2000 shots per concept was submitted to NIST.

2.3 Datasets and evaluation

We tested our framework on the TRECVID 2013 Semantic Indexing (SIN) dataset [13]. This set
consists of an annotated development set [14] and a test set for blind evaluation. The above sets are
approximately 800 and 200 hours of internet archive videos for training and testing, respectively. We



further used a part of the original development set in order to gather meta-learning information to
train the ML-kNN algorithm.

2.4 Description of runs

Four SIN runs were submitted in order to evaluate the potential of the aforementioned approaches.
All 4 runs were based on generating SIFT-based (SIFT and their color variants) features, and build-
ing ensembles of LSVM models. We opted to investigate the following issues: a) whether the BoMs,
constructed by training set manipulation, perform better than a single LSVM model and b) if score
refinement using the proposed multi-label algorithm can increase system’s performance. The 4 sub-
mitted runs for the main task of the 2013 TRECVID SIN competition are briefly described in the
following:

• ITI-CERTH-Run4: “Baseline”; Combination of 17 LSVM classifiers per concept.

• ITI-CERTH-Run3: “Bagging”; Combination of 85 LSVM classifiers (17 BoMs) per concept.

• ITI-CERTH-Run2: “Meta346”; Optimized combination of 85 LSVM classifiers per concept,
score refinement for 60 concepts using ML-kNN algorithm trained on a meta-learning feature
space constructed using detection scores for an extended set of 346 concepts.

• ITI-CERTH-Run1: “Meta60”; Optimized combination of 85 LSVM classifiers per concept, score
refinement for 60 concepts using ML-kNN algorithm trained on a meta-learning feature space
constructed using detection scores for the same 60 concepts.

The scores in Runs 3 and 4 were fused using the harmonic mean. On the other hand, the scores in
Runs 1 and 2 were fused using the arithmetic mean because the ML-kNN algorithm during the post-
processing step cannot work properly with the very small values that the harmonic mean generates.
Finally, the temporal re-ranking method was included in all four runs (as the last processing step) as
we observed that it improves the detection performance.

2.5 Results

Table 1: Mean Extended Inferred Average Precision (MXinfAP) for all single concepts and runs.

Run IDs MXinfAP

Run4 0.144
Run3 0.15
Run2 0.158
Run1 0.155

Run3 using just keyframes 0.115
Run3 using just tomographs 0.06

Table 2: Number of improved concepts per run.

from/to Run3 Run2 Run1
Run4 25 21 24
Run3 - 20 19
Run2 - - 18

Table 1 summarizes the evaluation results of the aforementioned runs in terms of the Mean Ex-
tended Inferred Average Precision (MXinfAP). Moreover, in Table 2 we count the number of improved
concepts between pairs of runs. For instance, when we go from Run4 (our Baseline) to Run3 we see
that detection rates (XinfAP) are improved for 25 concepts. From the obtained results the following
conclusions can be drawn:



• The “Baseline” run (ITI-CERTH-Run-4) combines 17 LSVM-based models per concept, and
utilizes temporal re-ranking for score refinement. That is, one model has been trained for each
feature extraction procedure without performing any training set manipulation. We observe
that all the following runs perform better than this baseline run.

• The “Bagging” run (ITI-CERTH-Run-3) exploiting the use of BoMs. In this run we train 5
models using training-set manipulation for each of the 17 feature extraction procedures. There-
fore 17 BoMs (or 85 LSVM models) per concept are retrieved. Again only temporal re-ranking
is used for score refinement. This technique shows a performance gain improvement of 4.2%
over the baseline run.

• The ITI-CERTH-Run-2 and ITI-CERTH-Run-1 exploiting correlations of 346 and 60 concepts,
respectively, provides the best performance among all our runs.

Overall, taking into account our best run (0.158 MXinfAP), ITI-CERTH ranks in 12th place among
26 participants in the full run evaluation. Considering also that our system almost always performs
better than the median of all SIN runs (in 36 out of 38 evaluated concepts as shown in Fig. 2), and
taking into account that we made design choices that favor speed of execution over accuracy (use of
LSVMs, range scaling reduction), this performance is judged satisfactory.

After submitting the above runs a post-analysis of our results was performed. In particular we
investigated in what extend tomographs can improve the performance of our system. The last two
lines of Table 1 correspond to ITI-CERTH-Run3 and show the results of our system when only
tomograph-based or keyframe-based classifiers are fused. Although keyframe-based classifiers (Table
1:Run3 using just keyframes) present significantly better performance than tomograph-based classifiers
(Table 1:Run3 using just tomographs), the combination of both (Table 1:Run3) leads to improved
performance. Moreover, we investigated the effect of tomographs at the individual concept level. Fig.
2 shows the MXinfAP for each of the evaluated concepts. In the horizontal axis of this figure, the
motion related concepts are presented first followed by the static one, and we report results from the
fusion of tomograph-based classifiers, keyframe-based classifiers and the combination of these two.
Based on this diagram we can see that our system performs very well for the motion related concepts
achieving performance better than the median of all SIN runs for each concept. At the same time we
observe the importance of the tomograph-based classifiers for three specific motion-related concepts
(concepts 15, 80 and 120).

Figure 2: Mean Extended Inferred Average Precision (MXinfAP) per concept for different classifier
combinations. For each concept the best results across runs is reported. Motion-related concepts are
presented first followed by static ones.



Adult, Airplane, Airplane Flying, Anchorperson, Animal, Apartments, Baby, Basketball, Beach, Bicycling, Boat Ship, Boy,
Bridges, Bus, Car, Car Racing, Chair, Charts, Cheering, Civilian Person, Classroom, Clearing, Computers, Dancing, Demon-
stration Or Protest, Door Opening, Doorway, Event, Explosion Fire, Face, Female-Human-Face-Closeup, Female Human Face,
Female Person, Fields, Flags, Flowers, Forest, George Bush, Girl, Glasses, Government Leader, Greeting, Hand, Head And
Shoulder, Highway, Hill, Indoor, Instrumental Musician, Kitchen, Lakes, Landscape, Male Human Face, Male Person, Man
Wearing A Suit, Meeting, Military Airplane, Motorcycle, Mountain, News, News Studio, Nighttime, Oceans, Office, Old Peo-
ple, Overlaid Text, People Marching, Press Conference, Quadruped, Reporters, Roadway Junction, Running, Scene Text,
Singing, Sitting Down, Skating, Skier, Sky, Soldiers, Speaking, Speaking To Camera, Sports, Stadium, Streets, Studio With
Anchorperson, Swimming, Table, Teenagers, Telephones, Text, Throwing, Traffic, Two People, Urban Scenes, Walking, Walking
Running.

Table 3: The 95 concepts of the SIN 2013 task used by the event detection systems.

3 Multimedia Event Detection and Recounting

3.1 Objective of the submission

High level event detection in video is a challenging task that has practical applications in several
domains such as news analysis, video surveillance, and multimedia organization and retrieval. Ap-
plications in these domains are often time-critical and the use of systems that provide low-latency
responses is highly desired. The objective of our submission is the evaluation of a number of effi-
cient algorithms that exploit only sparsely sampled keyframes, static visual features and limited audio
information for the task of event detection and event recounting.

3.2 System Overview

The target of the event detection and recounting system is to learn a decision function f(X)→ Y, Y =
{1, 2} that assigns the test video X to the event class (labeled with the integer one) or to the “rest of
the world” class (labeled with the integer two). Additionally for each positive detection to produce
a MER document recounting the key semantic entities of the detected event depicted in the video.
This is typically achieved using a training set X = {Xp

i |p = 1, . . . , Li, i = 1, 2}, where, Xp
i denotes

the p-th video of the i-th class and Li is the number of videos belonging to the i-th class.

3.2.1 Subsystem exploiting visual information

Our method exploits only static visual information extracted from selected video frames following the
procedure described in Section 2. More specifically, a video signal is first decoded and one frame every
6 seconds is selected uniformly to represent the video with a sequence of keyframes. Then, dense and
Harris-Laplace sampling strategy is combined with a spatial pyramid approach to extract salient image
points at different pyramid levels, the SIFT, rgbSIFT and opponentSIFT descriptor is used to derive
384-dimensional (color descriptors) and 128-dimensional (SIFT descriptor) feature vectors at those
points, and a bag-of-words (BoW) method is applied to construct a visual codebook. Subsequently, a
video frame is described with a feature vector in R4000 using soft and hard assignment of visual words
to image features at each pyramid level. Therefore, in total 12 low-level feature vectors are derived for
each keyframe. The final feature vectors are used as input to a set G = {hκ()|κ = 1, . . . , F} of F fused
semantic concept detectors hκ() → [0, 1] for associating each keyframe with a model vector [15]. In
particular, we used 11 fused keyframe-based concept detectors derived from our participation in the
SIN task (i.e., the procedures described in Section 2, excluding the sift-harris-hard and opponentSIFT-
harris-hard procedures, and including a global-image feature (color histograms)) referring to the 95
concepts depicted in Table 3.

Following the above procedure, the p-th video of the i-th class, consisting of op keyframes, is

represented as Xp
i = [xp,1,1i , . . . ,x

p,op,1
i ], where xp,q,1i ∈ RF is the model vector of the q-th keyframe

of the video. Note that the κ-th element of the above model vector expresses the degree of confidence
(DoC) that the κ-th semantic concept is depicted in the keyframe. Furthermore, we represent each
video keyframe with two additional low-level features (BoW features) xp,q,ri , r = 2, 3 corresponding
to the opponentSIFT+dense+soft (r = 2), and rgbSIFT+dense+soft (r = 3) feature extraction
procedures, respectively. We retrieve the feature vector xp,ri for representing the whole video with



respect to the r-th feature by averaging the respective feature vectors along all video keyframes
xp,ri =

∑op
q=1 xp,q,ri .

For each feature and event one KSVM is learned, i.e., in total 3 KSVMs are trained for each event.
For KSVMs the LIBSVM implementation is employed [16]. During testing, the 3 DoCs of the event
detectors corresponding to the same event are fused using the Geometric Mean operator.

3.2.2 Subsystem exploiting audio information

In parallel to the visual features described in section 3.2.1, we additionally exploit low-level audio
information. In particular, short-time frequency analysis of audio is performed and linear frequency
cepstral coefficients (LFCC) are extracted following the method described in [17], as explained briefly
in the following.

For each audio frame we extract 20 static LFCCs and their first and second order derivative
coefficients (delta and double delta respectively), leading to a 60-element feature vector. The training
of event detectors is based on Gaussian Mixture Models (GMM) and consists of two phases [18]. First,
we train a so-called Universal Background Model GMM (UBM-GMM) using negative examples of the
event. We also represent the “rest of the world” category with an equal number of videos selected
from the negative videos regarding the target event. In the second step, the training set is used to
train an event GMM model via a Maximum a Posteriori (MAP) process from the UBM-GMM. For
all the test videos we extract the same features as the ones for training, apply normalization and
sampling with energy detection.

The test and train feature vectors are then used to derive a log-likelihood ratio (LLR) score using
the event GMMs [17]. The derived LLR score values are in the range (−∞,+∞). To this end, we floor
and ceil the values that are below −1 and above +1 respectively, and scale the resulting values to the
range [0, 1] to retrieve a DoC score for the test video. These DoCs are then concatenated in the visual
model vectors derived in the previous section to provide an extended model vector for each video in
the training and testing set. Subsequently, these model vectors are used to train one KSVM for each
event. During testing the DoCs derived from the event detectors corresponding to the visual model
vectors and the extended model vectors are averaged. The final DoC for each video is retrieved using
the geometric mean of the above DoC with the DoCs derived from the event detectors corresponding
to the two low-level features (rgbSIFT, opponentSIFT) and the visual model vectors.

3.2.3 Multimedia event recounting

Additionally to event detection, our system provides an event recounting of the detected event. To this
end, we exploited the MSDA-based feature selection method described in [19, 20], and the model vector
representations derived in Sections 3.2.1. Using the above technique for each event a transformation
matrix W = [w1,w2] ∈ RF×H−1 is derived, where we set H = 3. The derived transformation matrix
is then used for selecting the I = 15 most discriminant concepts concerning the target event. This is
done by firstly computing the weighted video model vector yτ = [yτ1 , . . . , y

τ
F ]T using

yτ = argmax(w1 ◦ xτ ,w2 ◦ xτ ) (1)

where yτf express the DoC concerning the f -th concept weighted with a significance value regarding
the target event, xτ is the video model vector, and the operator ◦ is used to denote element-wise
vector multiplication. The I most discriminant concepts are then selected according the following rule

{c1, . . . , cI} = argmaxI(y
τ
1 , . . . , y

τ
F ) . (2)

A MER output file is generated in the required format using a Python script. Specifically, this script
receives as input a text file containing the names, ids and DoCs of the detected concepts, and generates
as output an XML file according to the DTD schema provided by NIST.

3.3 Dataset description

The following 6 video collections of the TRECVID MED 2013 track are used for evaluating our system
for the Pre-Specified (PS) and AdHoc (AH) MED tasks and the MER task:



• PS EVENTS: This collection contains approximately 200 videos for each Pre-Specified event1.
It is the union of the MED11 Training event collection (10 event kits referring to events E06-15)
and the MED12 Pre-Specified events (10 event kits referring to events E21-E30).

• AH EVENTS: For the AdHoc event task a video collection consisting of approximately 150
videos for each of the 10 AdHoc events2 is provided.

• OTHER-EVENTS: The MED11 Training event collection containing approximately 820 videos
belonging to one of the 5 training events E01-05.

• DEV-T: The MED11 transparent data collection (DEV-T) contains 10273 videos (∼ 350 hours)
belonging to one of the events E01-05 or to the “rest of the world” category.

• MED11TEST: The MED11 Test collection contains 32061 videos (∼ 1000 hours) belonging to
one of the events E06-15 or to the “rest of the world” category.

• PROGSub: A subset of the MED13 PROGAll collection containing 32768 videos belonging to
one of the events E06-15, E21-E30 or to the “rest of the world” category.

The first 5 sets described above (PS EVENTS, AH EVENTS, OTHER-EVENTS, DEVT, MED11TEST)
are designated for training purposes, while the last set (PROGSub) is used for the blind evaluation of
the Pre-Secified and AdHoc event detectors.

3.4 Description of runs

We submitted 4 runs in the TRECVID MED 2013 evaluation track for each of the Pre-Specified
and AdHoc tasks, namely, VisualSys 100Ex, FullSys 100Ex, VisualSys 10Ex, FullSys 10Ex using the
PROGSub for blind evaluation. That is, in total 8 runs were submitted. In the 100Ex and 10Ex
conditions, 100 or 10 positive videos were used during training, respectively. With regard to the 10Ex
condition, the VisualSys and FullSys submissions are the same. For both the Pre-Specified and AdHoc
tasks we followed the same cross-validation strategy for identifying the optimal parameters for our
algorithms. A brief explanation of each run is provided below.

• VisualSys 100Ex (PS, AH): In this run only static visual features were used for training the
event detectors, as described in Section 3.2.1.

• FullSys 100Ex (PS, AH): In this run visual and audio features, as described in Sections 3.2.1
and 3.2.2, were used for training the event detectors. Moreover, the event detectors used 100
positive videos for training. Additionally, a MER document was provided by our system for
each video that was evaluated as belonging to a target event.

• VisualSys 10Ex (PS, AH): This run is similar to the VisualSys 100Ex run described above, but
only 10 positive videos for each event were used for training the event detectors.

• FullSys 10Ex (PS, AH): This run is exactly the same as VisualSys 10Ex, as no audio information
was exploited in the training of the event detectors in the conditions of the 10Ex subtask.

1The Pre-Specified events are: E06: Birthday party, E07: Changing a vehicle tire, E08: Flash mob gathering, E09:
Getting a vehicle unstuck, E10: Grooming an animal, E11: Making a sandwich, E12: Parade, E13: Parkour, E14:
Repairing an appliance, E15: Working on a sewing project, E21: Attempting a bike trick, E22: Cleaning an appliance,
E23: Dog show, E24: Giving directions to a location, E25: Marriage proposal, E26: Renovating a home, E27: Rock
climbing, E28: Town hall meeting, E29: Winning a race without a vehicle, E30: Working on a metal crafts project

2E31: Beekeeping, E32: Wedding shower, E33: Non-motorized vehicle repair, E34: Fixing musical instrument, E35:
Horse riding competition, E36: Felling a tree, E37: Parking a vehicle, E38: Playing fetch, E39: Tailgating, E40: Tuning
musical instrument



Run MAP
VisualSys FullSys

PS 100Ex 10.2 10.5
PS 10Ex 3.0 3.0
AH 100Ex 8.2 7.8
AH 10Ex 3.0 3.0

(a) MED.

Accuracy ObsTextScore PRRT

43.87 1.06 129.96

(b) MER.

Table 4: Evaluation results for MED (a) and MER (b) tasks.

3.5 Results

The evaluation results of our 8 runs in the TRECVID MED 2013 Pre-Specified and AdHoc event
tasks are shown in Table 4a, in terms of MAP along the 20 and 10 target events for the Pre-Specified
and AdHoc tasks, respectively. Moreover, our results for our MER evaluation along all events are
depicted in Table 4b. For this task the following metrics were defined in the MER evaluation plan:
a) Accuracy: percentage of MER outputs which the assessment by the judges agree with the MED
ground truth, b) ObsTextScore: the mean of the scores provided by the judges on the question “how
well does the text of the observation describe the video snippet”, c) PRRT: percentage of clip time
the judges took to evaluate it.

From the analysis of the detection results we can conclude the following:

• The overall performance of our PS and AH runs compared to the rest of the submissions is
rather average. However, taking into account that in comparison to the other submissions we
use only limited static visual features (opponentSIFT, rgbSIFT descriptors in sparsely sampled
keyframes) and LFCCs (short-term audio features), the performance of our detection algorithms
can be considered good.

• In particular, for the VisualSys-PROGSub-PS-100Ex task among the 14 runs that exploit only
visual information our respective run ranks 9th (Fig. 3). The systems ranking higher than
ours utilize among others motion features (e.g., MoSIFT, STIP, etc.), in contrast to our sub-
mission that exploits only static visual features. It is well known that motion features can offer
higher recognition rates, however, they are much more computationally expensive. Among the
submissions that use only static visual information, our system provides the best performance.

• The utilization of short-term audio information did not improve considerably our system’s per-
formance. This contrasts our previous year submission where the combination of short- and
long-term (periodogram) features provided a small performance gain [5]. Based on both sub-
missions, we can conclude that the combination of short- and long-term audio information may
contain significant information for the task of event detection.

Figure 3: MAP for all systems that use visual information.



• Concerning the MER task, from the attained results we conclude that the performance of our
run is average. This was rather expected because only a small set of semantic concepts are used,
which additionally exploit only limited static visual information.

• The event agent execution time of our algorithms for processing the whole PROGSub dataset for
one event is in the order of a few minutes. Therefore, our event detection system offers real-time
performance.

4 Instance Search

4.1 Objective of the submission

ITI-CERTH’s participation in the TRECVID 2013 instance search (INS) task aimed at studying and
drawing conclusions regarding the effectiveness of different retrieval modules, which are integrated
in VERGE4 interactive video search engine, in the retrieval procedure. According to the TRECVID
guidelines, the INS task represents the situation, in which the user is searching for video segments of a
specific person, object, or place contained in a video collection. It should be noted, that the searcher
is provided with visual examples of the specific query object in order to commence with the searching.
In this context, the representation mode that was used was the standard shot-based video retrieval.
Three runs are submitted, each combining several indexing and retrieval modules in a different way,
for evaluation purposes. Finally, it should be noted that the videos used in the INS task are provided
by BBC and they are part of the EastEnders tv series (Programme material BBC).

4.2 System Overview

The system employed for the Known-Item search task was VERGE, which is an interactive retrieval
application that combines basic retrieval functionalities in various modalities, accessible through a
friendly Graphical User Interface (GUI), as shown in Fig. 4. The following basic modules are inte-
grated in the developed search application:

• Scene Segmentation Module;

• Visual Similarity Search Module;

The search system is built on open source web technologies and more specifically Apache server,
PHP, JavaScript and mySQL database.

Besides the basic retrieval modules, VERGE integrates a set of complementary functionalities,
which aim at improving retrieved results. To begin with, the system supports basic temporal queries
such as the shot-segmented view of each video. The selected shots by a user could be stored in a
storage structure that mimics the functionality of the shopping cart found in electronic commerce
sites. Finally, a history bin is supported, in which all the user actions are recorded.

A detailed description of the aforementioned modules is presented in the following sections.

4.2.1 Scene Segmentation Module

The employed technique for scene segmentation is based on the algorithm introduced in [21]. In
general, scenes are temporal segments usually defined as Logical Story Units (LSU), which are higher-
level temporal segments, each covering either a single event or several related events taking place in
parallel. This method groups the shots of the video detected by performing shot segmentation5 into
sets that correspond to individual scenes of the video, based on the visual similarity and the temporal
consistency among them. Specifically, one representative key-frame is extracted from each shot of the
video and the visual similarity between pairs of key-frames is estimated via HSV histogram comparison.
The grouping of shots into scenes is then performed, by utilizing the two proposed extensions of the
well known Scene Transition Graph (STG) method [22], which clusters shots into scenes by examining
whether a link, between two shots, exists.

4VERGE: http://mklab.iti.gr/verge



Figure 4: User interface of the interactive search platform.

The first extension, called Fast STG, reduces the computational cost of shot grouping, by con-
sidering shot linking transitivity and the fact that scenes are by definition convex sets of shots, thus
limiting the number of shot pairs whose possible linking needs to be evaluated. The latter allows for
faster detection of the scene boundaries, while maintaining the same performance with the original
STG algorithm. The second extension, called Generalized STG, builds on the former in order to con-
struct a probabilistic framework, towards multiple STGs combination, alleviating the need for manual
STG parameter selection. As described in [21], this probabilistic framework can also be used for the
realization of a multi-modal approach for scene segmentation, allowing the fusion of STGs built by
considering different forms of information extracted from the video, such as low level audio or visual
features, visual concepts and audio events.

The scene segmentation module is applied in order to allow the system deal with the large amount
of data provided (∼470.000 shots). Therefore, the searching techniques were applied only to represen-
tative shots of each scene and thus the total number of shots was minimized down to 1/4 compared
to the original size. Thus, the application of scene segmentation aids at the indexing of the data and
improves the scalability of the search engine.

4.2.2 Visual Similarity Search Module

The visual similarity search module performs image content-based retrieval with a view to retrieving
visually similar results. Given that the input considered is video, these images are obtained by
representing each shot with its temporally middle frame, called the representative keyframe. Visual
similarity is realized using local information as formulated by vector quantizing the local descriptors
obtained by computing SURF descriptors around specific interest points within the scene [23].

Inspired from recent success that local patch descriptors has achieved when combined with Bag
of Visual Words (BoVW) schema [24] and other vector representations of an image, such as VLAD
descriptor proposed in [25], we choose to adopt a local based approach for computing visual similarities
among images. In this case, appearance histograms are computed around specific interest points

5In TRECVID 2013 INS the shot boundaries have been provided by the organizers



(either densely or sparsely) and then local information is aggregated into a single fixed-length vector
representation using a well-designed quantization technique (i.e. BoVW, VLAD).

In our work, we compute 128-bin SURF [23] descriptors around each detected interest point (i.e.
corner, edge, sampled grid point) for local patch description and then two holistic representation
techniques follow up for representing, comparing and retrieving similar image samples adequately. On
the first technique, we follow a hierarchical K-Means clustering for constructing a vocabulary tree for
partitioning the high dimensional space of our image features. Inspired from high accurate results
at low computational cost presented in [24], TF-IDF quantization and efficient indexing are adopted
for computing approximate distances among images. On the second adopted technique, we followed
K-Means clustering and VLAD encoding for representing images. PCA is applied on the resulting
feature vectors for fast and discriminative acquisition while for indexing ADC approach was followed
as in [25].

4.3 Instance Search Task Results

The system developed for the instance search task includes the aforementioned modules. We submitted
three runs to the INS task. These runs employed different combinations of the visual similarity modules
and are described in Table 5.

Table 5: Modules incorporated in each run.

Modules Run IDs
I A YES ITI-CERTH x
x=1 x=2 x=3

Scene Segmentation yes yes yes
Hierachical K-means Clustering (BoVW) yes no yes
K-Means clustering and VLAD encoding (VLAD) yes yes no

It should be mentioned that the complementary functionalities (i.e. shot-segmented view of each
video, storage structure and history bin) were available in all runs. According to the TRECVID
guidelines the time duration for each run was set to fifteen minutes. The number of topics and the
mean inverted rank for each run are illustrated in Table 6.

Table 6: Evaluation of search task results.

Run IDs Mean Average Precision Number of correctly recognized shots

I NO IT CERTH 1 0.007 140/12422
I NO ITI CERTH 2 0.010 150/12422
I NO ITI CERTH 3 0.006 108/12422

Before proceeding with the analysis of the results, it should be noted that the low MAP values are
due to an error that occurred during the extraction of keyframes from shots. Specifically, there was
a misalignment between shots and keyframes, which resulted in submitting wrong shots that in most
of the times are temporally adjacent with the correct ones.

However, despite this error and given the fact that temporally adjacent shots of the correct ones
were submitted, we can still compare the values of Table 6 and draw some first conclusions regarding
the effectiveness of the applied visual similarity search techniques and their relative performance.
First, by comparing runs 2 and 3, it is obvious that the VLAD technique achieves higher performance
compared to the BoVW technique. The same conclusion is drawn when comparing runs 1 and 2, since
it is clear that the involvement of BoVW technique doesn’t improve the results of run 2.



5 Conclusions

In this paper we reported the ITI-CERTH framework for the TRECVID 2013 evaluation. ITI-CERTH
participated in the SIN, INS, MED and MER tasks in order to evaluate existing techniques and
algorithms.

Regarding the SIN task, the fact that a large number of annotated training examples is available
gave us the opportunity to increase the number of the concept detectors by adopting a sampling
strategy in order to train models with different subsets of the whole training set. The large pool
of the concept detectors in combination with a stacking-based score refinement approach, using the
ML-kNN algorithm, resulted to an improvement of 9.7% over the baseline approach.

As far as INS task is concerned, the results reported weren’t satisfactory due to an error introduced
during the keyframe extraction procedure. Despite this error, some first conclusions are drawn. First,
the VLAD technique performed better than the BoVW and that a way to allow massive submission
of shots would improve the results.

Finally, concerning the MED and MER tasks a number of efficient algorithms were evaluated
providing satisfactory performance. In particular, for the former task a method exploiting limited
static visual and/or short-time audio information was employed, while for the latter a feature selection
method was applied combining discriminant analysis and a model vector video representation.
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