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Abstract—Analyzing the traces left by a meme of information
propagating through a social network or by a user browsing a
website can help to unveil the structure and dynamics of such
complex networks. This may in turn open the door to concrete
applications, such as finding influential users for a topic in a social
network, or detecting the typical structure of a web browsing
session that leads to a product purchase.

In this paper we define the problem of mining summaries
of propagations as a constrained pattern-mining problem. A
propagation is a DAG where an entity (e.g., information exchanged
in a social network, or a user browsing a website) flows following
the underlying hierarchical structure of the nodes. A summary
is a set of propagations that (i) involve a similar population of
nodes, and (ii) exhibit a coherent hierarchical structure when
merged altogether to form a single graph. The first constraint is
defined based on the Jaccard coefficient, while the definition of
the second one relies on the graph-theoretic concept of “agony” of
a graph. It turns out that both constraints satisfy the downward-
closure property, thus enabling Apriori-like algorithms. However,
motivated by the fact that computing agony is much more
expensive than computing Jaccard, we devise two algorithms that
explore the search space differently. The first algorithm is an
Apriori-like, bottom-up method that checks both the constraints
level-by-level. The second algorithm consists of a first phase
where the search space is pruned as much as possible by
exploiting the Jaccard constraint only, while involving the second
constraint only afterwards, in a subsequent phase.

We test our algorithms on four real-world datasets. Quantita-
tive results reveal that the choice of the most efficient algorithm
depends on the selectivity of the two constraints. Qualitative
results show the relevance of the extracted summaries in a
number of real-world scenarios.

I. INTRODUCTION

We study the novel data-mining problem of extracting
informative summaries from a database recording activity
sequences on a graph. As better explained next, ours is a gen-
eral framework that can be instantiated in different contexts,
ranging from information propagation in social networks to
user browsing activity over the Web.

In our problem, we are given a database D of propagations,
where each propagation represents the trace left by a specific
entity φ that “flows” over an underlying graph G = (V,E).
More precisely, a trace of an entity φ is a sequence of
observations 〈v, φ, t〉 representing the fact that the entity φ
is observed at node v at time t. The trace of φ can naturally
be represented as a directed acyclic graph (DAG) Dφ, whose
arcs (u, v) express the fact that the same arc exists in the
underlying graph G and both u and v activate on φ, with u
activating strictly before v. In this case, we can think that φ
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Fig. 1: An example of summary extracted from a database of brows-
ing sessions in Wikipedia (application scenario #2). The numbers
inside the nodes identify one optimal ranking. Links that violate the
ranking are depicted in red.

flowed from u to v. An example of our input is provided later,
in Section II (and Figure 2).

Our goal is to extract summaries of propagation traces from
D. A summary consists of two parts: (i) a directed graph G(S)
(subgraph of G), and (ii) a ranking r of the nodes in G(S).
The graph G(S) results from merging the DAGs corresponding
to the propagations in the summary, while the ranking r is
the expression of the hierarchical structure underlying G(S).
A major requirement that propagations in the same summary
should satisfy is to be structurally similar. More precisely, we
want for the propagations within a summary to involve (more
or less) the same population of nodes.

This is however not enough: we also require for the prop-
agations to exhibit a well-defined hierarchical structure when
merged together. By hierarchical structure, we mean that one
can identify a ranking, such that there exist nodes that usually
participate early in the propagations inside the summary, and
nodes that instead activate later. The ranking of nodes makes
our summaries informative and useful in a wide and diverse
range of applications, like the ones discussed next.

Application scenario #1. In a social network like Twitter
the underlying graph G represents the social connections:
the nodes of the graph are the users of the social network
and an arc (u, v) exists if u and v are related in some
way (e.g., v is a follower of u). Here the entity φ is a
piece of information (e.g., the URL of an interesting blog,
multimedia content, such as photos/videos, etc.) propagating



in the social networks by means of re-tweets. Given a database
of propagations D, finding summaries corresponds to finding
groups of entities that propagate in the social network in a
similar way. Nodes of these groups may represent different
communities of users interested in different topics: politics-
related entities flow trough a different set of nodes than entities
related to electronic music. Moreover, a summary also comes
with a ranking of nodes which reflects, to some extent, the
directionality of the information flow in all the propagations
in the summary. This is crucial to distinguish users that are
“early adopters” (or “opinion leaders”, or “trend setters”, or
“influencers”) from users that are instead simple followers.
Application scenario #2. In another context, the graph G
could be a (large) website (e.g., Amazon or Wikipedia),
whose nodes and arcs correspond to web pages and hyperlinks
between pages, respectively. In this case, the entity φ moving
in the directed graph corresponds to (a browsing session of)
a specific user visiting the website, and multiple users clearly
leave different traces. The browsing behavior of a user within
the website can be represented as a DAG, where the user
moves from the homepage down in the hierarchical structure
of the pages of the website. Cycles might arise because of
user backtracking or because they are allowed by the website
structure. However, as what really matters is the sequence of
the pages visited, one can safely ignore cycles and simply
consider only the first visit to each page.

Finding summaries, i.e., groups of users (sessions) that nav-
igate the website in a similar fashion is essential for website-
usage analysis and re-organization [1]. In fact, a summary
indicates how a specific group of users access the website,
which are the pages accessed first, and which access page is
a good entry point to discover many other pages. The typical
browsing activity of a group of users is thus described by its
corresponding summary, and different groups of users can be
detected and discerned based on their summaries. Moreover,
the typical behavior of successful sessions (e.g., the ones
ending in a product purchase) can easily be detected and
studied in order to improve the website organization.

An example of summary extracted from a database of
browsing sessions in Wikipedia is provided in Figure 1 (more
details are given in Section IV) . The numbers inside the nodes
correspond to one optimal ranking, while red links denote
ranking violations. In the next section we will formalize the
concept of violating the ranking, and based on that, we will
define the constraint to be satisfied in order to guarantee good
hierarchical structures.
Paper contributions. Our contributions are as follows:
• We formulate the novel problem of extracting

structurally-similar summaries from a set of propagations.
We translate the requirement about structural similarity
into two constraints that the extracted summaries are
required to satisfy. One constraint aims to force all the
propagations in a summary to involve more or less the
same set of nodes, while the second constraint requires
for the nodes in the union graph of a summary to have
a well-defined hierarchy.

• We show that both the constraints satisfy the downward-
closure property, thus allowing the definition of Apriori-
like methods.

• We devise two algorithms to solve our problem, which
differ from each other by the way how they visit the
lattice of all possible sets of propagations. The first
algorithm, called BOTTOM-UP, relies on a bottom-up
lattice-traversing strategy, which directly exploits the
aforementioned closure properties. Motivated by the
fact that checking the hierarchy constraint is more
time-consuming, we develop a second algorithm, called
UP&DOWN, which consists of two separate phases: a
bottom-up phase where the hierarchy constraint is dis-
carded, followed by a top-down phase that partially
re-visits the lattice starting from those summaries that
violate the hierarchy constraint.

• We extensively evaluate our algorithms on four real-world
datasets coming from the application scenarios discussed
above, i.e., information propagation on social networks
and web browsing. Quantitative results show that the
UP&DOWN algorithm generally achieves better efficiency,
even though BOTTOM-UP can be faster in some settings.
Qualitative results provide evidence about the significance
of the summaries extracted and how they can be exploited
for practical purposes.

Roadmap. The rest of the paper is organized as follows. In
Section II we define our problem, while in Section III we
describe the proposed algorithms to solve it. Section IV shows
experiments. In Section V we briefly review related research,
and, finally, Section VI concludes the paper.

II. PROBLEM DEFINITION

The input to our problem is (i) a directed graph G = (V,A)
representing a network of interconnected objects, (ii) a set E
of entities, and (iii) a set O of observations involving the
objects of the network and the entities in E . As mentioned in
the Introduction, objects can be, e.g., users in a social network
or pages of a website, while entities can be, e.g., pieces of
information (such as multimedia content) shared by users or
web-page visits. Each observation in O is a triple 〈v, φ, t〉,
where v ∈ V , φ ∈ E , and t ∈ N+, denoting that the entity
φ is observed at node v at time t. We assume that the same
entity cannot be observed multiple times at the same node;
should this happen, we consider only the first one (in order of
time) of such observations.

The set O of observations can alternatively be viewed as
a database D of propagation traces (or simply propagations),
i.e., traces left by entities that “flow” over G. Formally, a
propagation trace of an entity φ corresponds to the subset of
all observations in O involving that entity, i.e., {〈v, φ′, t〉 ∈
O | φ′ = φ}. Considering the graph G, the database of
propagation traces corresponds to a set of directed acyclic
graphs (DAGs) D = {Dφ | φ ∈ E}, where, for each
φ ∈ E , Dφ = (Vφ, Aφ), Vφ = {v ∈ V | 〈v, φ, t〉 ∈ O},
Aφ = {(u, v) ∈ A | 〈u, φ, tu〉 ∈ O, 〈v, φ, tv〉 ∈ O, tu < tv}.
Note that each Dφ ∈ D is guaranteed to contain no cycles



D
v φ t
Ω φ1 0
v2 φ1 2
v3 φ1 4
v4 φ1 5
v5 φ1 7
Ω φ2 0
v2 φ2 1
v1 φ2 3
v5 φ2 6
v7 φ2 7
v6 φ2 8
v3 φ2 9
Ω φ3 0
v1 φ3 1
v2 φ3 3
v6 φ3 5
v7 φ3 7
v4 φ3 8
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Fig. 2: An example of the input of our problem: a graph G, and a
database of propagation traces D defined over a set of entities E =
{φ1, φ2, φ3}. The graph is here represented undirected: each edge
corresponds to the two directed arcs. Each propagation is started at
time 0 by a dummy node Ω /∈ V . Given the graph G, the propagation
database D is equivalent to the set of dags {Dφ1 , Dφ2 , Dφ3}.

due to time irreversibility. Without any loss of generality, we
hereinafter refer to D as a set of DAGs. Moreover, we assume
that each propagation is started at time 0 by a dummy node
Ω /∈ V , representing a source of information external to the
network that is implicitly connected to all nodes in V . Thus,
each DAG in D is assumed to contain such a dummy node Ω
connected to all its “real” nodes. An example of our input is
provided in Figure 2.

A summary S ⊆ D is a set of DAGs. Given a summary S,
we denote by G(S) the union graph of all the DAGs in S.
The union of two graphs G1 = (V1, A1) and G2 = (V2, A2)
is defined as G1 ∪ G2 = (V1 ∪ V2, A1 ∪ A2). An example
of graph resulting by the union of two DAGs is given in
Figure 3. Note that, even though S is a set of DAGs, G(S)
is not necessarily a DAG itself, as the union of multiple DAGs
can clearly correspond to a cyclic graph.

As informally anticipated in the previous section, our goal
is to extract summaries that (i) are homogeneous in terms
of the population of nodes involved, and (ii) exhibit a good
hierarchical structure, i.e., they are close as much as possible to
a DAG structure when merged together to form a single graph.
We next formalize these two concepts in two constraints that
we require for our summaries to satisfy.

Homogenous population of nodes. To force our summaries
to involve an homogeneous population of nodes, a natural
choice is to quantify the amount of nodes common to all
DAGs in a summary and require that it is no less than a
certain threshold. In this work, we measure the fraction of
nodes shared by a set of DAGs by means of the popular
Jaccard similarity coefficient, which is one of the most used
measures of similarity among sets of objects. Moreover, it has
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Fig. 3: The union graph Dφ1 ∪ Dφ2 of the DAGs Dφ1 and Dφ2

depicted in Figure 2.

the desirable property of having a fixed-range codomain, [0, 1],
which makes the threshold-setting task easier. Formally, given
a summary S, we define

j(S) =
|
⋂
Dφ∈S Vφ|

|
⋃
Dφ∈S Vφ|

.

Hierarchical structure. Here we borrow the concept of
“agony” introduced by Gupte et al. [2] to define a measure
of the hierarchy existing in a directed graph. Given a directed
graph G = (V,A), consider a ranking function r : V → N for
the nodes in G, such that r(u) < r(v) expresses the fact that
u is “higher” in the hierarchy than v, i.e., the smaller r(u) is,
the more u is an “early-adopter”. If r(u) < r(v), then the arc
u → v is expected and does not cause any “agony”. Instead,
if r(u) ≥ r(v) the arc u → v would cause agony because
it would mean that u has a follower v (in the social graph
terminology) that is higher-ranked than u itself. Therefore,
given a graph G and a ranking r, the agony of each arc (u, v)
is defined as max{r(u)− r(v) + 1, 0}, and the agony a(G, r)
of the whole graph given the ranking r is just the sum over
all arcs:

a(G, r) =
∑

(u,v)∈A

max{r(u)− r(v) + 1, 0}.

In most cases (as in our problem), the ranking r is not
explicitly provided. The objective therefore becomes finding
a ranking (they might be multiple) that minimizes the total
agony of the graph. This way, one can compute the agony of
any graph G as

a(G) = min
r
a(G, r).

As a DAG implicitly induces a partial order over its nodes, it
has always zero agony: the nodes of a DAG form a perfect hi-
erarchy. For instance, in the DAGs Dφ1

, Dφ2
, Dφ3

in Figure 2,
it is sufficient to take the temporal ordering as ranking, i.e.,
r(u) = tu where 〈u, φi, tu〉 ∈ Dφi , in order to obtain agony
equal to zero.

However, as already mentioned above, merging several
DAGs to form a summary S leads to a union graph G(S) that
is not necessarily a DAG, therefore agony can appear. Consider
for instance the union graph Dφ1

∪Dφ2
reported in Figure 3.

It is easy to see that the graph Dφ1
∪ Dφ2

is not a DAG as
it contains the cycle v3 → v4 → v5 → v7 → v6 → v3. Due



to this cycle, it is impossible to find a ranking r that provides
zero agony. In fact, any directed cycle containing k arcs (and
not sharing arcs with any other cycle) always incurs agony
equal to k [2]. One ranking r providing the minimum agony
for Dφ1

∪Dφ2
is:

(Ω : 0)(v2 : 1)(v1 : 2)(v4 : 2)(v5 : 3)(v7 : 4)(v6 : 5)(v3 : 6).
This ranking yields no agony on all the arcs, except on the
arc v3 → v4 that incurs agony 6-2+1 = 5, which is indeed the
length of that directed cycle.

Although the number of possible rankings of a directed
graph is exponential, Gupte et al. provide a polynomial-time
algorithm for finding a ranking of minimum agony. They
provide a linear-programming formulation and show that (i)
the dual problem has an optimal integral solution, and (ii)
the optimal value obtained by maximizing the dual problem
coincides with the minimum value of the primal. This finding
allows to define an algorithm that decomposes the input graph
G into a DAG D and a graph H that corresponds to the
maximum (in terms of number of arcs) Eulerian subgraph of
G (an Eulerian graph is a graph in which the indegree of
each node is equal to its outdegree). Let m be the number of
arcs and n the number of nodes of G, then the algorithm to
compute such a decomposition takes O(m2n) time: it requires
at each iteration to find a negative-weight cycle, which can be
done by the Bellman-Ford algorithm in O(mn), while, in the
worst case, the number of iterations is m.
Mining maximal summaries under constraints. We have
now all the ingredients to define the problem we study in this
paper. Informally, given a database of DAGs D, we want to
extract sets S ⊆ D of DAGs that have high Jaccard of nodes
(no less than a threshold β), and small agony of the graph
G(S) obtained by merging the DAGs in S (no more than a
threshold α). Moreover, we want S to be maximal and have
non-trivial size (i.e., |S| ≥ 2). The formal statement of the
problem we tackle in this work is reported next.

Problem 1 (Mining summaries of propagations): Given a
set of dags D, and two thresholds, α ∈ N and β ∈ [0, 1],
we want to extract

S = {S ⊆ D | |S| ≥ 2, a(G(S)) ≤ α, j(S) ≥ β, @T ∈ S : S ⊂ T}.

For each summary S ∈ S we output the pair 〈G(S), r∗〉 where
r∗ is one ranking providing minimal agony for G(S), that is
r∗ = arg minr a(G(S), r).

III. ALGORITHMS

The search space of Problem 1 corresponds to the whole
lattice 2D of all subsets of D. The two constraints that are part
of our problem definition hold the downward-closure property,
which enables effective pruning of such a large search space,
as explained next.

The Jaccard value is monotonically non-increasing as the
number of sets to be compared increases. More precisely,
given any two sets (of sets) S and T , with T ⊃ S , it holds
that j(S) ≥ j(T ). For our purposes, this result can easily
be translated into the following pruning rule to be exploited
during any (bottom-up) traversal of the lattice 2D.

Fact 1: Given a set of DAGs D, a subset S ⊆ D, and a
threshold β ∈ [0, 1], if j(S) < β, then j(T ) < β for all
T ∈ 2D : T ⊃ S.

The second property we show is that the agony is mono-
tonically non-decreasing with the increasing of the size of
the graph. We formally state such a result in the following
theorem.

Theorem 1 (Agony is monotone): Given a directed graph
G = (V,A) and an arc (u, v) /∈ A, let Guv = (V ∪{u, v}, A∪
{(u, v)}) denote the graph deriving from adding the arc (u, v)
to G. It holds that a(G) ≤ a(Guv).

Proof: As shown in [2], the problem of minimizing the
agony of a graph G can be formulated as a linear program
whose dual problem corresponds to finding an Eulerian sub-
graph of G having the maximum number of arcs. Let E(G)
denote the maximum Eulerian subgraph of G and let |E(G)|
denote the number of arcs in E(G). Another result reported in
[2] is that |E(G)| = a(G). Now, it is easy to see that, although
not necessarily optimal, the subgraph E(G) represents at least
an admissible solution (thus a lower bound) of the maximum-
Eulerian-subgraph problem when the graph in input is Guv .
Thus, combining all such results:

a(G) = |E(G)| ≤ |E(Guv)| = a(Guv),

which proves the theorem.

An immediate corollary of the above theorem we exploit in
our context is the following: if for any subset of DAGs S ⊆ D
it holds that the agony a(G(S)) of the corresponding union
graph exceeds a certain threshold α, then the agony a(G(T ))
of (the union graph of) every superset T ⊃ S is guaranteed to
be greater than α as well. An opposite result clearly holds for
the subsets of a summary S whose agony is no less than α.

Corollary 1: Given a set of DAGs D, a subset S ⊆ D, and
a threshold α ∈ N, it holds that:

1) if a(G(S)) > α, then a(G(T )) > α for all T ∈ 2D :
T ⊃ S;

2) if a(G(S)) ≤ α, then a(G(T )) ≤ α for all T ∈ 2D :
T ⊂ S.

Based on these properties we devise two algorithms, namely
BOTTOM-UP and UP&DOWN, which explore the lattice 2D

of all subsets of D in two different ways: the BOTTOM-UP
algorithm performs a bottom-up, breadth-first visit, while the
UP&DOWN algorithm consists of two phases: a first phase
roughly similar to the BOTTOM-UP algorithm where only the
Jaccard constraint is considered, followed by a top-down phase
where the lattice is partially re-visited to check the agony
constraint.

In the remainder of the section, we provide the details
of the two algorithms, while also discussing the advantages
and disadvantages of both, especially in terms of time/space
requirements.



Algorithm 1 BOTTOM-UP

Input: set of DAGs D, thresholds α ∈ N, β ∈ [0, 1]
Output: set S of all maximal subsets of D such that |S| ≥ 2,

a(G(S)) ≤ α, and j(S) ≥ β, for all S ∈ S
1: S← ∅, C← {{D} | D ∈ D}
2: while C 6= ∅ do
3: C′ ← generateCandidates(C)
4: C← ∅
5: for all C ∈ C′ do
6: if j(C) ≥ β then
7: if a(G(C)) ≤ α then
8: C← C ∪ {C}
9: S← S \ {S ∈ S | S ⊂ C} ∪ {C}

10: end if
11: end if
12: end for
13: end while

A. The BOTTOM-UP algorithm

We describe here the first algorithm we devise to solve
Problem 1. The pseudocode of the proposed algorithm, called
BOTTOM-UP, is summarized in Algorithm 1.

BOTTOM-UP resembles the classic Apriori algorithm for
frequent-itemset mining [3]. Given a set of DAGs D and two
thresholds α, β, the proposed algorithm visits the lattice of
all possible subsets of D in a bottom-up fashion (this moti-
vates the name of the algorithm). Particularly, the algorithm
performs a breadth-first visit, starting from the subsets of D
of size 2 (level 2), and increasing the level one-by-one until
no summaries satisfying the requirements can be extracted.
This way, the pruning rules stated in Fact 1 and (the first
statement of) Corollary 1 can easily be exploited at each
level: whenever a candidate C (i.e., a subset of D) does not
satisfy the constraints about either the Jaccard threshold β
or the agony threshold α, it is removed from the candidate
set so to skip the visit of all its supersets. Particularly, as
computing the agony of a candidate C is much more time-
consuming than computing Jaccard (i.e., O(m2n) vs. O(n),
where n and m are the number of nodes and arcs in the union
graph G(C), respectively), the first constraint checked by the
algorithm is the one concerning Jaccard (Line 6). Only if this
constraint is not violated, then the algorithm proceeds with
computing the agony and checking whether its value is within
the corresponding threshold (Line 7).

The generateCandidates procedure invoked in Line 3
aims to derive the set of candidates to be processed in the
next level i + 1 from the set of potential candidates C′ that
have passed the tests about the threshold α and β at level i.
The procedure essentially performs a classic Apriori-like join
step. Each pair of potential candidates C1, C2 in C′ sharing a
common prefix of length i−1 (i.e., for which |C1∩C2| = i−1)
is merged to form the set C12 = C1 ∪ C2 of size i+ 1; such
a set C12 will be then included in the being formed candidate
set C′ only if all its subsets of size i are present in C.

In order to further speed-up the execution, the
generateCandidates procedure exploits the following
simple result about Jaccard: given any two sets S1, S2,

with |S1| ≤ |S2|, the Jaccard value j({S1, S2}) between
such sets is upper-bounded by the size of the smaller-
sized set divided by the size of the larger-sized one, i.e.,
j({S1, S2}) ≤ |S1|

|S2| . Hence, a further test is performed on a
candidate C12 = C1∪C2 that has passed all the tests required
by the Apriori-like join phase: C12 is actually included in the
final set C′ only if the above constant-time-computable upper
bound on Jaccard is no less than the threshold β.

B. The UP&DOWN algorithm

A key advantage of the BOTTOM-UP algorithm is the
capability of profitably exploiting the pruning rules stated in
Fact 1 and Corollary 1, which allow a smart yet efficient visit
of the lattice. Moreover, due to its closeness to the classic
frequent-itemset-mining Apriori algorithm, it is rather simple
and easy-to-implement. Nevertheless, BOTTOM-UP still suffers
from a couple of major limitations:

1) The efficiency bottleneck of the algorithm is the com-
putation of the agony, which, as said above, takes
O(m2n) time. Even though the BOTTOM-UP algorithm
tries to minimize the number of agony computations
by first checking the less expensive Jaccard constraint,
unneeded agony computations may still arise. Indeed,
each maximal summary S satisfies the property that all
its subsets do not exceed the agony threshold (Corollary
1, Statement 2)); this means that, for each of such
maximal summaries S, all subsets of S have necessarily
been involved into an agony computation in previous
iterations that resulted in no pruning. For a bottom-up
visit there is no way to avoid that. An idea could be to
compute agony incrementally: however this is not even
a viable solution, as even adding a single new arc might
force the algorithm for agony computation to perform a
number of operations comparable to re-doing the whole
computation from scratch [2].

2) The space complexity of BOTTOM-UP can be high, as
the algorithm needs to keep in memory the union graph
of all candidates of the current level to allow agony
computations. On the other hand, the solution of loading
at runtime the union graph of the various candidates
would slow down the algorithm too much.

Within this view, we devise here a second algorithm to
overcome the above issues. We call it UP&DOWN, as it
performs a two-step traversal of the lattice 2D in which a
bottom-up phase is followed by a top-down phase. The outline
of UP&DOWN is reported as Algorithm 2.

The first step of UP&DOWN (Lines 2-11) is a bottom-up
visit similar to the BOTTOM-UP algorithm, but here performed
considering only the Jaccard constraint (thus completely dis-
carding agony). The aim of this step is to find the set Sj
of all maximal summaries that satisfy Jaccard. Among these
summaries, there will clearly be some that do not satisfy
agony; such summaries are collected into the set S¬a (Line
12). The second step of the algorithm (Lines 15-24) restarts
from these summaries that violate the agony constraint and
performs a top-down visit of the lattice aimed at discovering



Algorithm 2 UP&DOWN

Input: set of DAGs D, thresholds α ∈ N, β ∈ [0, 1]
Output: set S of all maximal subsets of D such that |S| ≥ 2,

a(G(S)) ≤ α, and j(S) ≥ β, for all S ∈ S
1: Sj ← ∅, C← {{D} | D ∈ D}
2: while C 6= ∅ do
3: C′ ← generateCandidates(C)
4: C← ∅
5: for all C ∈ C′ do
6: if j(C) ≥ β then
7: C← C ∪ {C}
8: Sj ← Sj \ {S ∈ Sj | S ⊂ C} ∪ {C}
9: end if

10: end for
11: end while
12: S¬a ← {S ∈ Sj | a(G(S)) > α}
13: S← Sj \ S¬a
14: M ← maxS∈S¬a |S|
15: for i = M,M − 1, . . . , 2 do
16: S(i)

¬a ← {C ∈ S¬a | |C| = i}
17: for all C ∈ S(i)

¬a do
18: if a(G(C)) ≤ α then
19: S← S ∪ {C}
20: else
21: S¬a← S¬a ∪ {C′ ∈ Sj | C′⊂C, |C′|= i− 1, @S ∈ S :

S ⊃ C′}
22: end if
23: end for
24: end for

the summaries whose agony is instead within the threshold
α. The top-down visit is performed in a breadth-first fashion
(like the bottom-up counterpart), starting from level i = M ,
where M denotes the maximum size of a summary in S¬a
(in general S¬a may in fact contain summaries of different
size). For each level i, the algorithm computes the agony of
all candidate summaries in S(i)¬a, which denotes the set of all
summaries in S¬a of size i (Line 18). Each candidate C ∈ S(i)¬a
satisfying the agony constraint is added to the solution set
S (Line 19): indeed, according to (the second statement of)
Corollary 1, all subsets of C are guaranteed to satisfy agony
as well, then no backtracking is further needed from C. If
the agony constraint is violated, the candidate C in S(i)¬a is
processed so to add to the candidate set to be considered in
the next iteration all (i−1)-sized subsets of C that do not have
any superset in the current solution set S (Line 21).

C. Comparing BOTTOM-UP and UP&DOWN

The main advantage of the two-step lattice traversal of
the UP&DOWN algorithm is that, in most cases, it signifi-
cantly reduces both the total number of agony computations
and the space complexity, thus offering a valid solution to
the issues of the BOTTOM-UP algorithm discussed at the
beginning of Section III-B. Indeed, the bottom-up phase of
UP&DOWN completely ignores the agony constraint, whose
computation, as said, constitutes a bottleneck in terms of both
time and space. The agony constraint is considered only in
the subsequent top-down phase, where, however, the number
of agony computations is expected to be less than the agony

computations performed by a purely bottom-up strategy. For
a better explanation, let us consider the following example.

Example 1: Let D={A,B,C,D,E, F,G,H, I, J,K,L}
and assume that the bottom-up phase of the UP&DOWN
algorithm produces the set Sj = {ABCD,EFGH, IJKL}
(where ABCD is a shorthand for {A,B,C,D}). Assume
also that, among the summaries in Sj , IJKL violates the
agony constraint, while ABCD and EFGH do not, i.e.,
assume that S¬a = {IJKL}.

For the summaries in Sj \ S¬a (i.e., ABCD and EFGH),
the speed-up achieved by the UP&DOWN algorithm with
respect to BOTTOM-UP is guaranteed and quite evident: for
each of such summaries, UP&DOWN computes agony only
once, while BOTTOM-UP would perform a number of agony
computations proportional to the number of subsets of that
summary (i.e., 11 agony computations for a 4-sized summary
like the ones in our Sj \ S¬a). Also the space requirements of
UP&DOWN are significantly less, as, for the bottom-up phase,
UP&DOWN needs to keep in memory only the set of nodes of
each candidate summary (because only the node set is needed
to compute Jaccard), unlike the BOTTOM-UP algorithm that
requires in memory the entire graph G(C) for each candidate
summary C (needed for computing agony).

Concerning the summaries in S¬a, instead, the speed-
up and the memory saving achieved by UP&DOWN depend
on how further the top-down phase needs to go. For in-
stance, assume that the actual summaries that satisfy agony
are {JKL, IKL, IJK}. This way, the top-down phase of
UP&DOWN would last only one level, thus still guaranteeing a
speed-up and memory saving with respect to BOTTOM-UP. But
if, as another example, the actual set of summaries satisfying
agony is instead the singleton {IJ}, the UP&DOWN algorithm
would need to visit a large portion of the lattice under IJKL
before encountering the set IJ , whereas BOTTOM-UP would
have processed IJ quite soon.

According to the above reasoning, the main conclusion
that may be drawn here is that UP&DOWN guarantees better
efficiency and smaller space complexity than BOTTOM-UP in
most of the cases. Nevertheless, the BOTTOM-UP algorithm
still remains preferable in cases where the time (and space)
spent by UP&DOWN in the top-down phase is predominant.
This may happen, e.g., when small agony thresholds α and/or
large Jaccard thresholds β are involved. As we will show in
Section IV, this conclusion is also confirmed by experimental
evidence.

IV. EXPERIMENTAL EVALUATION

We provide here experimental evidence of the performance
of our BOTTOM-UP and UP&DOWN algorithms. We experi-
ment with four real-world datasets, whose main characteristics
are summarized in Table I. Three datasets (i.e., Twitter,
Last.fm, and Flixster) come from the domain of information
propagation in a social network (application scenario #1 in
the Introduction), while the remaining one (i.e., Wikipedia)
concerns the web-browsing domain (application scenario #2
in the Introduction).



TABLE I: Characteristics of the datasets used in the experiments: number of observations (|O|); number of propagations/ DAGs (|D|); nodes
(|V |) and arcs (|A|) in the input graph G; min, max, and avg number of nodes in a DAG in D (nmin, nmax, navg); min, max, and avg
number of arcs in a DAG in D (mmin, mmax, mavg).

|O| |D| |V | |A| nmin nmax navg mmin mmax mavg
Twitter 580 141 8 888 28 185 1 636 451 12 13 547 66 11 240 153 347
Last.fm 1 208 640 51 495 1 372 14 708 6 472 24 5 2 704 39
Flixster 6 529 012 11 659 29 357 425 228 14 16 129 561 13 85 165 1 561

Wikipedia 50 092 5 477 39 756 46 610 4 125 9 4 131 9

Twitter (twitter.com). We obtained the dataset by crawling
the public timeline of the popular online microblogging ser-
vice. The nodes of the graph G are the Twitter users, while
each arc (u, v) expresses the fact that v is a follower of u.
The entities in E correspond to URLs, while an observation
〈u, φ, t〉 ∈ O means that the user u (re-)tweets (for the first
time) the URL φ at time t.

Last.fm (www.last.fm). Last.fm is a music website, where
users listen to their favorite tracks and communicate with each
other. The dataset was created starting from the HetRec 2011
Workshop dataset available at www.grouplens.org/node/462,
and enriching it by crawling. The graph G corresponds to
the friendship network of the service. The entities in E are
the songs listened by the users. An observation 〈u, φ, t〉 ∈ O
means that the first time that the user u listens to the song φ
happens at time t.

Flixster (www.flixster.com). Flixster is a social movie site
where people can meet each other based on tastes in movies.
The graph G corresponds to the social network underlying the
site. The entities in E are movies, and an observation 〈u, φ, t〉
is included in O when the user u rates for the first time the
movie φ with the rating happening at time t.

Wikipedia (www.wikipedia.com). We created this dataset
by looking at the browsing sessions of the popular online
encyclopedia. Any node of the graph G corresponds to a
Wikipedia page, while an arc (u, v) is present in G if there
exists a browsing session where the page v has been reached
from the page u, even making use of intermediate pages
external to the website. An entity φ ∈ E corresponds to a
browsing session. An observation 〈u, φ, t〉 ∈ O means that
the page u is visited during the session φ at time t. For each
page, we consider only the first visit among the multiple ones
possibly performed within the same session.

In the following we discuss the results achieved by the
proposed algorithms from both a quantitative (Section IV-A)
and a qualitative (Section IV-B) viewpoint. We use Twitter and
Last.fm mainly for quantitative evaluation, while we resort to
Wikipedia and Flixster for qualitative evaluation.

All algorithms are implemented in JAVA, and all experiments
are performed on a single machine with Intel Xeon CPU at
2.20GHz and 48GB RAM.

A. Quantitative evaluation

We report here quantitative results achieved by our
BOTTOM-UP and UP&DOWN algorithms on Twitter and
Last.fm. We test our algorithms with Jaccard thresholds

TABLE II: Number of maximal summaries extracted from Twitter
(left) and Last.fm (right).

α α
β 10 20 30 40 50 60 3 5 7 10
0.7 515 646 537 416 410 411 12 208 12 292 12 306 12 293
0.8 121 128 128 120 116 116 5 126 5 136 5 128 5 132
0.9 44 51 51 47 45 45 1 895 1 903 1 900 1 902

TABLE III: Max and avg size (i.e., number of DAGs) of the maximal
summaries extracted from Twitter (top) and Last.fm (bottom).

α
β 10 20 30 40 50 60
0.7 8 (3.3) 9 (4.4) 11 (4.6) 12 (3.9) 14 (4.1) 14 (4.1)
0.8 5 (2.4) 9 (2.7) 10 (2.8) 12 (2.9) 13 (2.7) 13 (2.7)
0.9 5 (2.4) 8 (2.7) 8 (2.8) 10 (2.7) 11 (2.7) 11 (2.7)

α
β 3 5 7 10
0.7 13 (3.3) 13 (3.3) 13 (3.3) 13 (3.3)
0.8 13 (2.9) 13 (2.9) 13 (3.4) 13 (2.9)
0.9 11 (2.5) 11 (2.5) 11 (2.5) 11 (2.5)

β ∈ [0.7, 0.9] and agony thresholds α ∈ [10, 60] (Twitter)
or α ∈ [3, 10] (Last.fm).

General characterization. Tables II–IV show general statis-
tics about the summaries extracted. In particular, Table II
reports on the number of maximal summaries, while the re-
maining tables show statistics about the size of the summaries:
maximum and average number of DAGs in a summary (Table
III) and maximum and average number of nodes and arcs in
the union graph of a summary (Table IV).

As expected, the size of the summaries increases as the
agony threshold α increases and/or the Jaccard threshold β
decreases (Tables III–IV), because this corresponds to less
selective constraints. As far as the number of summaries (Table
II), this is not necessarily true, because it may happen that, for
a less restrictive constraint, the number of maximal summaries
is less but the summaries include a larger number of DAGs.

Efficiency evaluation. The running times of our algorithms
are shown in Figures 4 and 5. Particularly, in Figure 4 we
show the results with varying the Jaccard threshold β while
keeping fixed the agony threshold α; in Figure 5, instead, we
keep β fixed and show the times with varying α.

Figure 4 clearly shows that the running times of both
BOTTOM-UP and UP&DOWN are decreasing as the Jaccard
threshold β increases: this is expected as the larger β, the
smaller the number of candidates to be processed (larger β
denotes a more restrictive constraint). The two algorithms in-
stead differ from each other when looking at the behavior with



TABLE IV: Max/avg number of nodes/arcs of the union graph of the maximal summaries extracted from Twitter (top) and Last.fm (bottom).

nodes arcs
α = 10 α = 20 α = 30 α = 40 α = 50 α = 60 α = 10 α = 20 α = 30 α = 40 α = 50 α = 60

β = 0.7 2 252(34) 2 252(33) 2 252(35) 2 252(37) 2 252(37) 2 252(37) 13 003(129) 13 003(137) 13 003(141) 13 003(142) 13 003(142) 13 003(142)
β = 0.8 2 252(55) 2 252(52) 2 252(53) 2 252(55) 2 252(57) 2 252(57) 13 003(221) 13 003(220) 13 003(224) 13 003(233) 13 003(237) 13 003(237)
β = 0.9 2 185(73) 2 185(65) 2 185(65) 2 185(70) 2 185(72) 2 185(72) 6 771(214) 6 771(201) 6 771(199) 6 771(208) 6 771(212) 6 771(212)

nodes arcs
α = 3 α = 5 α = 7 α = 10 α = 3 α = 5 α = 7 α = 10

β = 0.7 483 (22) 493 (22) 493 (22) 496 (22) 2 904 (35) 2 960 (36) 2 990 (37) 3 019 (38)
β = 0.8 376 (20) 376 (20) 394 (19) 407 (19) 1 998 (32) 1 998 (32) 2 126 (31) 2 221 (30)
β = 0.9 333 (17) 333 (17) 333 (17) 333 (17) 1 621 (22) 1 621 (22) 1 621 (22) 1 621 (22)

Fig. 4: Running times (secs) of the proposed BOTTOM-UP (BU) and
UP&DOWN (U&D) algorithms on Twitter (left) and Last.fm (right)
with varying the Jaccard threshold: β ∈ [0.7, 0.9].

varying the agony threshold α (while keeping β fixed). Indeed,
as Figure 5 shows, the BOTTOM-UP times are increasing as α
increases, while the opposite happens for UP&DOWN (there
are some fluctuations, but mainly due to bookkeeping). This
is again expected, because larger values of α imply more
candidates to be processed at each level of the BOTTOM-UP
algorithm. On the other hand, the larger α is, the more likely
is that the summaries found at the end of the first phase of
the UP&DOWN algorithm satisfy the agony constraint, thus
leading to a more lightweight (and faster) top-down phase.

As far as the comparison of the two algorithms with each
other, the results confirm what discussed in Section III-C.
Indeed, we can observe here that the UP&DOWN algorithm is
more efficient than BOTTOM-UP in most settings, with gains
up to 65% (Twitter) and 35% (Last.fm). Nevertheless, in some
cases BOTTOM-UP outperforms UP&DOWN. This happens, for
instance, for small agony thresholds α and/or large Jaccard

Fig. 5: Running times (secs) of the proposed BOTTOM-UP (BU) and
UP&DOWN (U&D) algorithms on Twitter (left) and Last.fm (right)
with varying the agony threshold: α ∈ [10, 60] (Twitter) and α ∈
[3, 10] (Last.fm).

thresholds β (indeed, the gain achieved by UP&DOWN over
BOTTOM-UP is overall decreasing as α decreases and/or β
increases). The reason is that smaller α and/or larger β imply a
smaller number of candidates to be processed in the bottom-up
lattice-traversing phase, which is an advantage for BOTTOM-
UP (it reduces the number of agony computations), but a
disadvantage for UP&DOWN, as it increases the time spent
in the top-down phase.

In conclusion, hence, although in most cases the fastest
algorithm is UP&DOWN, the efficiency of the two algorithms
depends on the selectivity of the constraints used, thus leading
to cases where BOTTOM-UP is instead preferable.

B. Qualitative evaluation

We analyze here the summaries extracted by our algorithms
from a qualitative viewpoint.

Wikipedia. Figure 6 shows examples of summaries from
Wikipedia. Summary (a) consists of two main parts: the first
part is a loop going through Socialism and Proletariat; the sec-
ond is a branch that ends up in Liberalism. One could imagine
that the first part is due to users who would like to explore
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(a) (b) (c)

Fig. 6: Three example summaries extracted from Wikipedia. The numbers inside the nodes correspond to one optimal ranking. Links that
violate the ranking are represented in red.

the topic of socialism, while the second one is browsing to
a different one. Summary (b) is a chronological sequence of
the sultans from the Ottoman Empire. This summary has no
agony. The nodes of Summary (c) are pharaohs of Ancient
Egypt. The ranking in the summary is almost the same as
the chronological order. The exceptions are Mentuhotep II,
who reigned before Amenemhat I, and Khafra, who reigned
between Khufu and Menkaure.

We can observe that each summary is related to a train of
thought. The hierarchy of the summaries defines a temporal
sequence of concepts that are presented one after another. For
example, Summary (a) consists in the description of the social-
ism, passing through Karl Marx, and the connections to other
political philosophies, while Summary (b) goes through the
history of the Ottoman Empire. Applications might exploit this
to organize knowledge and present it to people. A summary
could also inspire a lecture since it condenses the way how
many people move through concepts. Moreover, as we can
see in the examples, nodes in a summary are topically similar
to each other. Summaries could hence help categorizing the
knowledge space. Finally, summaries can be used for online
contextual recommendation of sequences of pages. Given the
current user session, one can fit a summary and predict not
only the next page the user will visit but the whole future
browsing path. This recommendation is contextualized since
it leverages the browsing history of the user.

Flixster. In Table V we report two examples of summaries
extracted from Flixster. For each of such summaries, we show
some information (i.e., title, genre, and director) of the movies
corresponding to the DAGs in that summary. We can observe
that movies in the same summary exhibit some homogeneity
of genre and type of audience. In this context, one might
exploit summaries to discover early adopters for a topic (group
of movies), by looking at the ranking that is coupled with
each summary. Applications may leverage this information to
target recommendations of new movies sharing similar topics
with the summary, so to guarantee the desired spread over the
network.

TABLE V: Two summaries extracted from Flixster: title, genre, and
director of the movies corresponding to the DAGs of each of the two
summaries.

Title Genre Director
Man of the Year comedy/drama/romance B. Levinson
Conversations With Other Women comedy/drama/romance H. Canosa
Step Up 2 the Streets drama/music/romance J. M. Chu
Brubaker drama S. Rosenberg

Title Classification Director
Prick Up Your Ears biography/drama S. Frears
Crooklyn comedy/drama S. Lee
Boy Culture drama/comedy Q. A. Brocka
One Eyed Jacks western/drama/action adventure M. Brando
Cop and a Half family/comedy H. Winkler
Operation Pacific drama/war/action adventure/comedy G. Waggner

V. RELATED WORK

The problem addressed in this paper represents an original
type of structured pattern-mining problem, for which not much
related prior research exists. We however briefly discuss the
work in some neighborhood areas.

Graph pattern mining. The problem of graph pattern mining
is to extract graph patterns (e.g., trees or subgraphs) that appear
frequently in a graph database, i.e., a database composed by
a large set of graphs. This research area has been quite active
in the last decade and a lot of algorithms have been defined,
such as AGM [4], FSG [5], gSpan [6], FFSM [7], SPIN [8],
and Gaston [9]. Moreover, Yan et al. [10] propose a general
framework to mine different graph patterns with possibly non-
monotonic objective functions. The problem we study in this
paper departs from graph pattern mining, as we do not mine
frequent sub-structures from a set of graphs, rather we look for
sets of graphs (DAGs) that satisfy certain requirements when
merged together.

Graph summarization. The problem of graph summarization
is to create a coarser-grained version of a graph such that
the most important features of the graph are retained. The
typical approach is based on identifying and aggregating sets
of similar nodes so that the error deriving from the aggregation
is minimized. Navlakha et al. [11] exploit the MDL principle



to summarize a graph with accuracy guarantees. Tian et al. [12]
define a graph-summarization method which allows the user to
specify the granularity level of the summarization in real time.
Our problem is evidently different from graph summarization:
the output of graph summarization is a reduced version of a
single graph, whereas our summaries are sets of graphs (DAGs)
structurally similar.

Applications. The study of the spread of information and
influence through a social network has a long history in
the social sciences. The first investigations focused on the
adoption of medical [13] and agricultural innovations [14].
Later marketing researchers have investigated the “word-of-
mouth” diffusion process for viral marketing applications [15],
[16], which has then attracted most of the attention of the data-
mining community, fueled by the seminal work by Domingos
and Richardson [17] and Kempe et al. [18]. The main compu-
tational problems in this area are: (i) distinguishing genuine
social influence from “homophily” and other factors of cor-
relation [19], [20], [21]; (ii) measuring the strength of social
influence over each social link [22], [23]; (iii) discovering a
set of influential users [17], [18], [24]. Finally, a wide literature
exists on the analysis of social influence in specific domains:
for instance, studying person-to-person recommendation for
purchasing books and videos [25], telecommunication ser-
vices [26], or studying information cascades driven by social
influence in Twitter [27], [28].

Our framework can also find applications in the field of web-
site usage analysis and re-organization [1]. Typical browsing
patterns can be exploited for reorganizing a website, creating
quicklinks [29], and in general, making the navigation in the
website more efficient for the users.

VI. CONCLUSIONS

In this paper we studied for the first time the problem of
extracting informative summaries from a database of prop-
agations. We defined the summaries of interest using two
constraints: the first constraint is defined based on the Jaccard
coefficient, while the definition of the second one relies
on the graph-theoretic concept of “agony” of a graph. We
showed that both constraints satisfy the downward-closure
property, thus enabling Apriori-like algorithms. We developed
two algorithms that visit the search space in different ways
and apply to various real-world datasets.

Our work can be extended from various perspectives. First,
taking inspiration from the wide literature on pattern mining,
more efficient algorithms can be devised: for instance by
depth-first visit of the search space or by taking advantage of
the fact that we only look for the maximal patterns. Second,
we can devise methods that adaptively decide which constraint
to check first as the computation progresses [30]. Finally, we
can study how to avoid setting rigid thresholds and make the
constraints soft [31].
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