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Abstract. While direct social ties have been intensely studied in the
context of computer-mediated social networks, indirect ties (e.g., friends
of friends) have seen less attention. Yet in real life, we often rely on friends
of our friends for recommendations (of doctors, schools, or babysitters),
for introduction to a new job opportunity, and for many other occasional
needs. In this work we empirically study the predictive power of indirect
ties in two dynamic processes in social networks: new link formation and
information diffusion. We not only verify the predictive power of indirect
ties in new link formation but also show that this power is effective over
longer social distance. Moreover, we show that the strength of an indirect
tie positively correlates to the speed of forming a new link between the
two end users of the indirect tie. Finally, we show that the strength of
indirect ties can serve as a predictor for diffusion paths in social networks.

Keywords: indirect ties, social network dynamics, information diffusion

1 Introduction

Mining the huge corpus of social data now available in digital format has led
to significant advances of our understanding of social relationships and con-
firmed long standing results from sociology on large datasets. In addition, social
information (mainly relating people via declared relationships on online social
networks or via computer-mediated interactions) has been successfully used for
a variety of applications, from spam filtering [I] to recommendations [2] and
peer-to-peer backup systems [3].

All these efforts, however, focused mainly on direct ties. Direct social ties
(that is, who is directly connected to whom in the social graph) are natural to
observe and reasonably easy to classify as strong or weak [4/5]. However, indirect
social ties, defined as relationships between two individuals who have no direct
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relation but are connected through a third party, carry a significantly larger
potential [6].

This paper analyzes the quantifiable effects that indirect ties have on network
dynamics. Its contributions are summarized as follows:

e We quantitatively confirm on real datasets several well-established sociologi-
cal phenomena: triadic closure, the timing of tie formation, and the effect of
triadic closure on information diffusion.

e We extend the study of the indirect ties’ impact on network dynamics to a
distance longer than 2 hops.

e We show that indirect ties accurately predict information diffusion paths.

The rest of paper is organized as follows. Section [2] provides the context for
this work. Section [3] introduces the datasets used in this study. Section [4] shows
that the strength of indirect ties can be used to predict the formation of direct
links at longer social distance. Section [f] refines this quantification to classify an
indirect tie as weak or strong, showing that the classification meets theoretical
expectations of a positive correlation between the strength of a tie and the speed
at which a link forms. We also show in Section [f] that pairs with a strong indirect
tie end up having more interactions after link formation when compared to pairs
with a weaker indirect tie. In Section [7} we examine indirect tie strength as a
predictor for diffusion paths in a network. Finally, Section [8] concludes with a
discussion of lessons and future work.

2 Related Work

In sociology, two theories are closely related to the properties of indirect ties.
First, the theory of homophily [7] postulates that people tend to form ties with
others who have similar characteristics. Moreover, a stronger relationship implies
greater similarity [8]. Second, the principle of triadic closure [9] states that two
users with a common friend are likely to become friends in the near future. The
triadic closure has been demonstrated as a fundamental principle for social net-
work dynamics. For example, Kossinets and Watts [I0] showed how it amplifies
homophily patterns by studying the triadic closure in e-mail relations among
college student. Kleinbaum [II] found that persons with atypical careers in a
large firm tend to lack triadic closure in their email communication network and
so have their brokerage opportunities enhanced.

Lately, large online social networks provided unprecedented opportunities
to study dynamics of networks. Thus, many studies examined the evolution of
groups or analyzed membership and relationship dynamics in these networks.
For example, Backstrom et al. analyze how communities or groups evolve over
time and how a community dies or falls apart [12]. Patil et al. use models to
predict a group’s stability and shrinkage over a period of time [13]. Yang and
Counts examine the diffusion of information and innovations and the spread of
epidemics and behaviors [14].

Compared to previous studies, we quantitatively investigate the effects of
indirect ties on network dynamics, specifically on tie formation, the speed of tie
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formation, and information diffusion. More importantly, we study the impact of
longer indirect ties on network dynamics: while previous work focused on 2-hop
indirect ties, we also show the impact of 3-hop indirect ties.

3 Datasets

In this paper we use several datasets from different domains. Our datasets are
varied, from fast non-profound dynamics to slow professional networks and more
traditional social networks augmented with heavy interactions.

Team Fortress 2 (TF2) is an objective-oriented first person shooter game
released in 2007. We collected more than 10 months of gameplay interactions
(from April 1, 2011 to February 3, 2012) on a TF2 server [I5]. The dataset in-
cludes game-based interactions among players, timestamp information of each
interaction, declared relationship in the associated gaming OSN, Steam Commu-
nity [I6], and the time when the declared friendship was recorded. The resulting
TF2 network is thus composed of edges between players who had at least one in-
game interaction while playing together on this particular server, and also have
a declared friendship in Steam Community. This dataset has three advantages.
First, it provides the number of in-game interactions that can be used to quantify
the strength of a social tie. Second, each interaction and friendship formation
is annotated with a timestamp, which is helpful for examining the dynamics of
links under formation. Third, over a pure in-game interaction network, it has
the advantage of selecting the most representative social ties, as shown in [15].

Table 1: Characteristics of the social networks used in the following experiments.
APL: average path length, CC: clustering coefficient, A: assortativity, D: diam-
eter, EW: range of edge weights, OT: observation time.

l Networks [ Nodes [ Edges [ APL [ Density [ CC [ A [ D [ EW [ oT ‘
TF2 2,406 | 9,720 | 4.2 0.0034 | 0.21 | 0.028 | 12 | [1-21,767] | 300 days
1E 410 | 2,765 | 3.6 | 0.0330 | 0.45|0.225| 9| [1-19]] 90 days
CA-I 348 595 | 6.1 0.0098 |0.28 | 0.173 | 14 [1-52] N/A
CA-II 1,127 | 6,690 | 3.4 0.0100 |0.33 | 0.211 | 11 [1-127] N/A

Infectious Exhibition (IE) held at the Science Gallery in Dublin, Ireland,
from April 17*" to July 17" in 2009 was an event where participants explored
the mechanisms behind contagion and its containment. Data were collected via
Radio-Frequency Identification (RFID) devices that recorded face-to-face prox-
imity relations of individuals wearing badges [I7]. Each interaction was anno-
tated with a timestamp. We translated the number of interactions into edge
weights.

Co-authorship networks (CA-I and CA-II) are the two largest con-
nected components of the co-authorship graph of Computer Science researchers
extracted by Tang et al. [18] from ArnetMineIﬂ Nodes in these graphs represent
authors, edges are weighted with the number of papers co-authored. Because the

!'nttp://arnetminer.org/
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dataset does not include time publication information, the observation window
is unspecified in Table

Note that IE is a smaller but much denser network than TF2, while TF2’s
interactions frequency is higher than IE’s, as shown by the range of edge weights.
We use the TF2 and IE networks to study link formation and delay as they
contain timestamps of the links formed and interactions between users. We use
the TF2 and CA networks to study diffusion as they are larger, sparser and
based on longer lasting relationships compared to IE’s ad-hoc interactions.

4 Predicting Link Formation

According to Granovetter’s idea of the forbidden triad [8], a triad between users
u, v and w in which there are strong ties between u and v and between v and
w, but no tie between u and w is unlikely to exist. When it does, according to
the theory of triadic closure, it is typically quickly closed with the formation of
a tie between u and w.

In this section, we not only empirically verify the theory of triadic closure
by using multiple measures of the strength of indirect ties, but we also examine
this theory over paths of length 3.

4.1 Methodology

The link prediction problem asks whether two unconnected nodes will form a tie
in the near future [19]. Link prediction models that use an estimation of the tie
strength from graph structure [20] or interaction frequency and users’ declared
profiles similarities [2I] have been proposed in the past.

We use a group of tie strength metrics and classifiers to quantitatively demon-
strate how indirect ties can be used for inferring new links formation. Specifically,
given a snapshot of a social network, we use the strength of indirect ties to infer
which relationships or interactions among users are likely to occur in the near
future. Because people can be aware of others’ behaviors within 2 hops [22] and
be influenced by indirect ties up to 3 hops [23], we focus this task for pairs of
users at social distance 2 and 3.

To investigate how such indirect ties materialize into actual links between
users, we compare the performance of three different metrics of indirect tie
strength: 1) Jaccard Index (J) [19], 2) Adamic-Adar (AA) [24], and 3) Social
Strength (SS), a recently proposed metric [25)26] that quantifies the strength of
indirect ties. We note that Jaccard Index and Adamic-Adar consider only the
number of shared friends between users, while Social Strength also takes into
account interaction intensity.

Social Strength. For completeness, we briefly describe next the Social Strength
metric. For measuring the Social Strength of an indirect social tie between users
i and m, we consider relationships at n (n = 2 or n = 3) social hops, where n
is the shortest path between i and m. A weighted interaction graph model that
connects users with edges weighted based on the intensity of their direct social
interactions is assumed. Assuming that P/, is the set of different shortest paths
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of length n joining two indirectly connected users 7 and m and A (p) is the set
of nodes on the shortest path p,p € P/",,, we define the social strength between
1 and m from 4’s perspective over an n-hop shortest path as:

min NW(i,3),... NW(k,m
min[NW(i.j) (k,m)

SSu(i,m)=1— [] 1-

peEP

i,m

) (1)

n

This definition uses the normalized direct social weight NW (i,j) between
two directly connected users ¢ and j, defined as follows:
Zw\e/y w(i, §, A)
NW(i,j) = = . )
ZVkeN,i ZVAEA“C w(i, k, A)

Equation [2] calculates the strength of a direct relationship by considering all
types of interactions A € A between the users ¢ and j such as, phone calls, inter-
actions in online games, and number of co-authored papers. These interactions
are normalized to the total amount of interactions of type A that i has with other
individuals. This approach ensures the asymmetry of social strength in two ways:
first, it captures the cases where w(i,j, A\) # w(j,4,\) (such as in a phone call
graph). Second, by normalizing to the number of interactions within one’s own
social circle (e.g., node i’s neighborhood N;), even in undirected social graphs,
the relative weight of the mutual tie will be different from the perspective of
each user.

Prediction Task. The link prediction task decides whether the edge (u,v)
will form during the observation time. We studied this task on the TF2 and IE
datasets. The TF2 network has a timestamp of when a declared relationship was
created in Steam Community. However, since for the IE network we do not have
formally declared relationships, we use the timestamp of the first recorded face-
to-face interaction between two individuals as a proxy for relationship creation.

In TF2, there are 5,984 2-hop (2,475 3-hop) pairs that had a relationship
formed within the observation time (OT) and 161,561 2-hop (676,863 3-hop)
pairs who didn’t. In IE, there are 1,886 2-hop (484 3-hop) pairs that had a
relationship formed within OT, and 4, 111 2-hop (24, 631 3-hop) pairs who didn’t.
This means our datasets are imbalanced with respect to pairs who closed the 2-
hop or 3-hop distance or not. There are two common approaches for dealing with
unbalanced data classifications: under-sampling [27] and over-sampling [28]. We
chose to under-sample pairs of users with no relationships materializing within
OT, thus in our experiment they appear at the same empirical frequency as the
pairs who formed relationships within OT.

In this prediction task, we used two classic machine learning classifiers: Ran-
dom Forest (RF) and Decision Tree (J48). They are tested using tie strength
values calculated from the three metrics (Jaccard Index, Adamic-Adar and Social
Strength) as features. We used standard prediction evaluation metrics: Precision,
Recall, F-Measure and Area Under Curve (AUC) to evaluate the performance
of prediction of each classifier and tie strength metric.
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4.2 Experimental Results

Table [2] shows the link prediction results of nodes 2 and 3 hops away. Clearly, all
three indirect tie metrics demonstrate their power in predicting the formation
of links between pairs of non-connected 2-hop users. We note that the AUC
reaches 0.77 for the TF2 network using social strength as the metric and J48 as
the classifier, and reaches 0.88 for the IE network when using social strength as
the metric with random forests as the classifier, greatly outperforming the other
two tie strength predictor metrics.

Given that the Jaccard Index and Adamic-Adar metrics are restricted to
predictions within 2 hops, we test only the social strength metric for the 3-
hop distant link predictions. The results in Table [2| show that while the social
strength’s effectiveness to predict link formation is reduced, it still manages to
properly discriminate between links formed or not by up to about 70% of the
time in TF2 and 68% of the time in IE. Overall, while it is expected to see a
decrease in performance when we cross the horizon of observability of 2 hops [22],
our results show that indirect ties are able to predict the formation of links.

Table 2: Results of link prediction between pairs of n-hop distant users. Only SS
is applicable to n = 3.

[Network | n [ Classifier [ Metric| Precision | Recall | F-Measure |  AUC |
SS 0.71+0.005| 0.71£+0.005 | 0.71+0.006 |0.76+0.006

RF AA 0.68+0.003 0.67+0.003 0.67+0.003 0.70+0.005

TF2 9 J 0.67+0.004 | 0.66+0.003 0.66+0.003 | 0.704+0.003
SS 0.75+0.012| 0.74+0.008 | 0.74+0.006 |0.77+0.009

J48 AA 0.71£0.004 0.71£0.004 0.71+0.004 0.71+0.006

J 0.51+0.007 | 0.51£0.006 0.50+0.008 | 0.51£0.008

SS 0.81+0.005| 0.81+0.002 | 0.814+0.003 | 0.88+0.005

RF AA 0.67+£0.004 | 0.66+0.0114 0.66+0.011 0.71+0.002

IE J 0.67£0.001 | 0.66+0.0172 0.66+£0.005 | 0.7240.002
SS 0.84+0.013 | 0.844+0.002 | 0.844+0.002 |0.87+0.001

J48 AA 0.69+0.002 | 0.69+0.002 0.68+0.003 | 0.7040.003

J 0.69£0.007 | 0.68%+0.005 0.68+0.001 0.68+0.004

TF2 RF SS 0.653+0.01| 0.651+0.01 | 0.651+0.01 |0.709+0.02

J48 SS 0.630+0.02 | 0.627+0.01 0.624+0.01 0.644+0.03

IE RF SS 0.659+0.01|0.650+0.004 | 0.646+0.004 | 0.682+0.01

J48 SS 0.636+0.01 0.6331+0.01 0.631+0.01 0.664+0.01

5 Timing of Link Formation

Network dynamics can also be examined from the perspective of link delays [29].
If we consider that a link between two nodes is possible when all the enabling
conditions are met, then the link delay is the time lag between the conditions
being met and the link forming. In this section, we investigate if there is a
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connection between the strength of a tie of indirectly connected users and the
delay the link experiences before it is formed.

5.1 Methodology

Let us consider the toy networks in Figure[I} We define the link formation delay
for 2-hop indirect ties (Figure as:

A(b,c) = t(b,c) - max{t(a,b)» t(a,c)}a
where t(,) is the time when the direct link between two nodes is established.
This formulation can also be thought of as the triadic closure delay [29]. A thus
is a proxy of the “speed” at which two indirectly connected nodes become directly

connected: small A indicates that the triangle closes quickly, and vice versa.
Similarly, the link formation delay for 3-hop indirect ties (Figure is:

Aeay = te,a) = maz{t(a,p): ta,d) Lbe) -
Although no direct analogue for the 3-hop link formation delay was explored
in [29], an n-hop link delay can be considered a form of the general link delay
scenario with the restriction that an n-hop path must exist between the two
nodes under consideration.

t4

0 © ©®
> . S o ]
e t3 o ® t1 ®

(a) (b)

Fig.1: (a) B and C have a 2-hop relationship before t3, since ¢1,ts < 3, and a
1-hop relationship thereafter. (b) C and D have a 3-hop relationship before t4,
since t1,ta,t3 < t4, and a 1-hop relationship thereafter.

To measure the strength of indirect ties, we employ the social strength metric
to quantify the strength of a social connection between indirectly connected
nodes. We are primarily interested in whether the latent tie strength between
indirectly connected nodes corresponds to different delays in a direct connection
forming. Intuitively, if the strength of a user’s indirect tie is stronger than any of
the user’s strong direct ties, we consider it a strong indirect tie. Because we have
no information regarding the strength of a direct tie (other than the edge weight),
we consider an indirect tie of a’s as strong if its strength is larger than the
minimum /average/maximum weight of all of a’s direct edges. These alternative
criteria are formally presented below. (We note that the social strength metric
is asymmetric, i.e., SS(a,b) # SS(b,a)):

[C-min]: SS(a,b) > min [NW(a,i)] or SS(b,a) > min [NW(i,a)]

i€Neigh(a) aENeigh(i)
T VW) L W)
. i eigh(a a eigh(i
[C_mean]' SS(CL,b) > size(Neigh(a)) or SS(b’ CL) = size(Neigh(i))
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[C-max]: SS(a,b) > max [NW(a,i)] or SS(b,a) > max [NW(i,a)]
i€Neigh(a) a€Neigh(i)

In each criterion, NW(a,b) is the normalized weight of the edge between
nodes a and b, and the normalization is conducted by the total weight of node
a’s edges. If an indirect tie (a,b) satisfies the conditions for a given criterion, it
is marked as a strong indirect tie; otherwise it is marked as a weak indirect tie.
Table [3| summarizes the tie classification results when these criteria are applied
to the networks TF2 and IE.

Table 3: The statistics of 2- and 3-hop indirect ties in TF2 and IE networks
where ties are divided into strong and weak ties under three criteria.
l Dist. ‘ Network ‘ Tie classification criterion ‘ # strong ties ‘ # weak ties ‘

2 TF2 C-min 6,868 164
2 TF2 C-mean 5,470 1,562
2 TF2 C-max 2,780 4,252
3 TF2 C-min 2,351 90
3 TEF2 C-mean 297 2,144
3 TEF2 C-max 12 2,429
2 1IE C-min 1,555 42
2 1E C-mean 1,235 344
2 1E C-max 715 882
3 1E C-min 193 258
3 1E C-mean 11 440
3 1E C-max 0 451

5.2 Experimental Results

We use the TF2 and IE networks described in Section [3] to analyze link delays
when examining 2- and 3-hop indirect ties. We compare the link delay of weak
and strong ties classified by the previously defined criteria. For TF2, we use days
as the time unit, but for IE we use minutes due to the ephemeral nature of its
face-to-face interactions.

The link delay distributions are plotted in Figure [2) where we see that pairs
with strong indirect ties formed direct links with shorter delay than those with
weak indirect ties. We note that strong ties formed their link with less delay than
weak ties throughout all scenarios and when the tie is stronger, its link formed
even quicker. For example, when using 3-hop indirect ties in TF2 and criterion
C-mazx for classifying strong vs. weak, 33% of strong indirect ties formed a
direct link within a day, compared to only 7% for weak indirect ties. In contrast,
over 40% of weak indirect ties formed direct links with a large delay (over 60
days). Overall, these results indicate several things. First, when indirect ties are
stronger, there is an increased chance for them to establish a link quicker. Second,
even quantifying the strength of the tie from 3-hops away, strong indirect ties
led to faster link creation.

6 Interaction Intensity along Newly Formed Links
A key characteristic of social interactions is their continuous change, and this
change is likely to affect user behavior related to network dynamics. E.g., fre-
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Fig. 2: Link delay comparison between 2- and 3-hop strong vs. weak ties in TF2
and IE. Note that for the IE network, when 3-hop ties are divided by criterion
C-maz, no strong ties exist.

quent interactions lead to the formation of new links, and by interacting with
each other, information can be disseminated in the network. Thus, we believe
the changes in the interactions between nodes previously connected by indirect
ties also can predict the dynamic status of the network.

Note that among all four datasets introduced in Section [3] only the online
game social network (TF2) supplies a timestamp for each friendship formation
and interaction. More importantly, because gamers can play with each others
without being declared friends in Steam Community OSN, we can measure inter-
action intensity in the absence of a declared relationship. Thus, in the following
our analysis is based on TF2 network.

We analyze the intensity of user interactions before and after a pair of users,
who are 2- and 3-hop away, form a new edge. Figure [§|shows that in both scenar-
ios (2 and 3 hops), more pairs of users have interactions after their link formation
than before the link formation. For example, 54% pair of users have no interac-
tions before they establish an edge with each other, while this number decreases
to 17% after a 2-hop indirect tie is closed with a direct tie. This result shows
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2-hop ties 3-hop ties
1.004 Al Ty
w0757
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log(number of interaction)

Fig. 3: Interaction intensity before vs. after 2- and 3-hop link formation in TF2,
and strong vs. weak ties’ (identified by the C-min criterion) interaction intensity
after link formation of TF2

that after users form a direct link, their interactions not only continue but also
increase, implying that users actively maintain their newly formed relationship.

As a further step, we investigate the difference of interaction intensity be-
tween nodes previously connected via strong vs. weak indirect ties after forming
their direct links. We use the C-min criterion introduced in Section [5| to classify
indirect ties into strong and weak. Figure [3| plots interaction intensity after link
formation. The figure shows that strong indirect ties lead to direct ties with more
interactions than weak indirect ties do.

7 Predicting Information Diffusion Paths

Information diffusion is a fundamental process in social networks and has been
extensively studied in the past (e.g., [B0IB1I32I33134]). In fact, some studies have
shown that the evolution of a network is affected by the diffusion of information
in the network [33] and vice versa [32]. Our results from the previous sections
show that indirect ties affect the process of network evolution. In this section,
we go a step further and investigate if the strength of indirect ties can predict
diffusion paths between distant nodes in the graph. That is, departing from
the step-wise diffusion processes examined in the past, and given that a user
received a piece of information at time step ¢, can we predict which other users
will receive this information at time step t+mn (n > 2)? Le., if we know someone
who received the information at ¢y, then can we directly predict the infected
users at t, (n > 2) instead of step-wise (e.g., at ¢1)?

Predictions over such longer intervals could help OSN providers customize
strategies for preventing or accelerating information spreading. For example, to
contain rumors, OSN providers could block related messages sent to the sus-
ceptible users several time steps before the rumor arrives, or disseminate offi-
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cial anti-rumor messages in advance. Similarly, marketers could accelerate their
advertisements spreading in the network by discovering who will be the next
susceptible to infection. This n-hop path prediction can supply more time for
decision makers to contain harmful disseminations, and to choose users who are
pivotal in information spreading for targeted advertisements.

This section describes our experiments of applying several indirect-tie metrics
to predict information diffusion paths.

7.1 Experimental Setup

The strength of an indirect tie decreases with the length of the shortest path be-
tween the two individuals. This has been quantitatively observed by Friedkin [22],
who concluded that people’s awareness of others’ performance decreases beyond
2 hops. Three degrees of influence theory, proposed by Christakis et al. [23],
states that social influence does not end with people who are directly connected
but also continues to 2- and 3-hop relationships, albeit with diminishing returns.
This theory has held true in a variety of social networks examined [3536] and
in accordance with these observations, we set our experiments up to 3 hops. A
single node is chosen as the original source of information at ty. We then predict
the nodes that will accept the information at ¢,, with the knowledge from ¢.

Diffusion Simulation. As ground truth, we applied the basic and widely stud-
ied Linear Threshold (LT) diffusion model [37] to simulate a diffusion process,
i.e., which nodes are affected during each time step.

The LT model is a threshold-based diffusion model where nodes can be in
one of two states: active or inactive. We say a node has accepted the information
if it is active, and once active, it can never return to the inactive state. In the
LT model, a node v is influenced by each of its neighbors Neigh, according
to an edge weight b, .. Each node v chooses a threshold 6, that is randomly
generated from the interval [0,1]. The diffusion process is simulated as follows:
first, an initial set of active nodes Ay is chosen at random and these are the seed
nodes. Then, at each step t, all nodes that were active in step ¢ — 1 remain active,
and we activate any node v for which the total weight of its active neighbors
is at least 6,, that is > byw > 0,. Thus, the threshold 6, intuitively

weNeigh,
represents the different latent tendencies of nodes to adopt the behavior exhibited
by neighbors, and a node’s tendency to become active increases as more of its
neighbors become active. The input to the simulation is a weighted graph where
edge weights represent the intensity of interactions between nodes (u.b., the LT
model considers only the status of a node’s directly connected neighbors).

We controlled the effectiveness of the diffusion by gradually changing the
upper bound of the thresholds applied on the nodes to simulate different diffusion
processes; from almost no diffusion to fully dissemination to all nodes in the
graph. To do so, we set a threshold 8, = random(0,1)/w where w is empirically
selected based on the range of edge weights in each of the tested networks, i.e.,
w in the range of [1-10] for the CA-I, [1-30] for the CA-II and [1-60] for the TF2.

Predicting Diffusion Paths via Indirect Ties. Once we generate the ground
truth from the LM model, we then use the strength of indirect ties to predict the
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path of diffusion. To measure the strength of indirect ties, we also employ social
strength, Adamic-Adar and Jaccard metrics introduced in Section [f.1] where the
social strength metric considers the edge weight while Adamic-Adar and Jaccard
only consider the neighborhood overlap. We calculate the strength of indirect tie
values between the seed and its n-hop nodes, then convert the values to a social
rank. Each user has a rank list for all her n-hop nodes according to the strength
of the indirect tie value between the user and the node.

After obtaining social ranks, we need a cut-off threshold to decide whether or
not a node’s n-hop nodes will be active at tp,(n=2 or 3). Our strategy requires
that the social ranks from information recipient’s perspective must be high, e.g.,
socialrank, (A, B) ranks among the top 10% of user A’s contacts. Then, the
cut-off threshold can classify a node’s n-hop nodes into two categories: active or
inactive at to4n,(n=2 or 3). The intuition of this cut-off is that users will likely
believe the information from their “closest” social ties. The cut-off threshold can
be calculated as 0preq = |Neighnnops|/q where ¢ is empirically selected to have
an inversely proportional relationship to w, which decides the diffusion process
from almost no diffusion to full dissemination to all nodes. In other words, when
no diffusion happens the 6,,.q should be small enough to select the strongest
indirect ties while in a fully diffused scenario a larger 6,,.q is needed to cover a
large portion of indirect ties.

7.2 Results and Evaluation

In literature, co-authorship networks capture many general features of social
networks [38] and have been studied in information cascades [37], and diffusion
dynamics have been observed in online game social networks [39J40]. Therefore,
in our experiments, we use the three datasets—CA-I, CA-II and TF2—as de-
scribed in the previous section. To better demonstrate indirect ties’ effective
power on inferring diffusion processes, we compare indirect tie metrics with a
baseline method, which randomly selects a information recipient’s 2 and 3-hop
friends to accept the information.

We compare the prediction results with the ground truth obtained from the
diffusion simulation to verify the effectiveness of indirect ties in predicting dif-
fusion paths. We evaluate our method using accuracy, sensitivity and speci-
ficity [41]. Figures {4 and [5| depict the prediction results in a 2- and 3-hop social
distance, respectively. We see that for both 2- and 3-hop path predictions, over-
all the accuracies of indirect tie metrics are higher than the baseline’s, reaching
a maximum of 0.90 with social strength metric in 2-hop path predictions. Also,
the accuracies of the three indirect tie metrics in all cases are always higher
than 0.56, and social strength outperforms the other two metrics in most of the
scenarios. Although 3-hop predictions (generated by the Social Strength metric)
show decreased sensitivity, specificity and accuracy compared to 2-hop results,
they remain above 0.64. It is important to note that these three networks have
very different network structure (from sparse to dense), yet the performance of
indirect tie metrics are consistently higher than the baseline in all three networks
and for different diffusion thresholds. From these results, we conclude that indi-
rect ties can be used in the prediction of information diffusion, i.e., along which
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Fig. 4: Performance of different measures of strength for 2-hop indirect ties, in
the prediction of information diffusion paths in the networks CA-I, CA-II and

TF2.

paths information will propagate and which users will be activated, at least 2-3
steps before a susceptible node is even in contact with an infected node.

8 Summary and Discussions

In this paper, we empirically examine the predictive power of indirect ties in
network dynamics. By using four real-world social network datasets and three
indirect measurements, we empirically show that indirect ties can be used for
predicting the newly formed edges and the stronger an indirect tie is, the quicker
the tie will form a link. In addition, strong indirect ties correlate to more interac-
tions, and the interaction has the tendency to be continued after the link formed.
Finally, we show that indirect ties can also be used for predicting information
diffusion paths in social networks.

This is our first step to investigate the influences of indirect ties on network
dynamics. In the future, we will further study the effects of indirect ties on in-
formation diffusion paths with various diffusion models and real-world cascades.
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