
 Page 1

MULTISENSOR
Mining and Understanding of multilingual content for Intelligent Sentiment Enriched

context and Social Oriented interpretation

FP7-610411

D5.2

Hybrid Reasoning Techniques

Dissemination level: Public

Contractual date of delivery: Month 18, 30 April 2015

Actual date of delivery: Month 18, 30 April 2015

Workpackage: WP5 Semantic Reasoning and Decision Support

Task: T5.3 Hybrid Reasoning

Type: Report

Approval Status: Final Draft

Version: 1.0

Number of pages: 36

Filename: D5.2_HybridReasoningTechniques_2015-04-30_v1.0.pdf

Abstract

The goal of this document is to describe the technical details and motivation behind the
implementation of four different types of reasoning strategies - Hybrid reasoning (Forward
plus Backward), Parallel multi-threaded reasoning, GeoSPARQL and SPARQL-MM. It explains
how these approaches cover the specific requirements of the main use cases expressed in
D8.2.

The information in this document reflects only the author’s views and the European Community is not liable for any use that
may be made of the information contained therein. The information in this document is provided as is and no guarantee or
warranty is given that the information is fit for any particular purpose. The user thereof uses the information at its sole risk
and liability.

 Page 2

Co-funded by the European Union

D5.2 – V1.0

 Page 3

History

Version Date Reason Revised by
0.1 10/04/2015 First draft sent to partners for comments Dimitar Manov (ONTO)

0.2 15/04/2015 First integrated draft Dimitar Manov (ONTO)

0.8 28/04/2015 Document for internal review Dimitar Manov (ONTO),
Boyan Simeonov
(ONTO)

0.9 29/04/2015 Review E. Kamateri (CERTH),
Stefanos Vrochidis
(CERTH)

1.0 30/04/2015 Final updated document correcting minor
errors

Dimitar Manov (ONTO),
Boyan Simeonov
(ONTO)

Author list

Organization Name Contact Information
Ontotext AD Dimitar Manov dimitar.manov@ontotext.com

Ontotext AD Boyan Simeonov boyan.simeonov@ontotext.com

Ontotext AD Kiril Simov kiril.simov@ontotext.com

Ontotext AD Pavel Mihaylov pavel.mihaylov@ontotext.com

OntotextAD Vladimir Alexiev vladimir.alexiev@ontotext.com

D5.2 – V1.0

 Page 4

Executive Summary

The objective of this deliverable is to develop inference methods that support efficient
information selection from heterogeneous data pools. They have to be implemented on top
of GraphDB – an RDF graph database engine. The final goal is to enable efficient retrieval of
data, considering different criteria and implementing mechanisms, which go beyond the
capabilities of today’s database and search engines. Technically, these mechanisms can be
implemented in two ways (i) as expert-systems-style reasoning techniques, which allow new
facts to be inferred or (ii) as query language extensions, which allow for more efficient
handling of specific data constraints.

For the purposes of MULTISENSOR, Ontotext has developed four different types of
inference:

 Hybrid reasoning: a combination of forward- and backward-chaining;

 Parallel multi-threaded reasoning;

 SPARQL-MM;

 GeoSPARQL.

The first section of this document provides an introduction. Section 2 describes hybrid
reasoning that involves partial forward-chaining materialization, where new facts are derived
upon insertion of data and stored in the database, with query-time backward-chaining or
query re-writing. Such support is important in cases where none of the reasoning strategies
can do the job alone. For instance, in scenarios with very complex reasoning over big
datasets that would take too long time to pre-compute using forward-chaining. Forward-
chaining is also impractical when big parts of the dataset are deleted or updated on a regular
basis.

The third section describes the implementation of parallel multi-threaded reasoning. It
allows for a serious speed up of the forward-chaining and materialization – the main method
used for inference in GraphDB. Effectively, this results in loading times that are between 50%
and 200% faster compared to loading data with a serial inference engine. This is an
important advantage for a number of application scenarios involving very large datasets (in
the range of billions of statements). Thus, speeding the inference up makes the use of
GraphDB feasible for applications where loading data with non-trivial inference can take
several days or even weeks. Ontotext has multiple clients in the publishing and
pharmaceutical sectors, which deal with datasets larger than 20 billion triples and for them
parallel inference is a must.

Section 4 is about SPARQL-MM, which allows for efficient retrieval of multimedia content,
based on annotation of images, and movies, using both temporal constraints and positioning
of objects within the video scenes. The SPARQL-MM support in GraphDB implements the
required additional specific index structures and the handling of SPARQL syntax extensions.
The additional indexing structures allow SPARQL-MM queries to be executed in real time. In
news and media organizations this means that authors and editors will be able to search
content archives in a much more efficient manner.

Section 5 presents GraphDB’s support for GeoSPARQL – an extension of SPARQL that defines
a powerful language for expressing geo-spatial constraints, e.g. overlap or proximity of two

D5.2 – V1.0

 Page 5

geographic regions. Such queries enable much more efficient querying and visualization of
datasets where geographic location is of high importance, such as news and content
archives.

D5.2 – V1.0

 Page 6

Abbreviations and Acronyms

LOD Linked Open Data

RDF Resource Description Framework

RDFS Resource Description Framework Schema

SPARQL SPARQL Protocol and RDF Query Language

WP

BCWI

SI

W3C

URI

GDP

OGC

GML

WKT

RCC

Work Package

Backward-Chaining Wrapping Iterator

Statement Iterator

World Wide Web Consortium

Uniform resource identifier

Gross domestic product

Open Geospatial Consortium

Geography Markup Language

Well-known Text

Region Connection calculus

QSQ Query-subquery

OWL Web Ontology Language

SPB Semantic Publishing Benchmark

FC Forward Chaining

BC Backward Chaining

D5.2 – V1.0

 Page 7

Table of Contents

1 INTRODUCTION .. 9

1.1 Requirements ... 9

2 COMBINATION OF FORWARD AND BACKWARD-CHAINING... 12

2.1 Approaches overview ... 12

2.2 Implementation in MULTISENSOR.. 13
2.2.1 Supporting indexes for each added statement.. 14
2.2.2 Answering a SPARQL Query .. 14
2.2.3 owl:inverseOf ... 14
2.2.4 owl:SymmetricProperty.. 14
2.2.5 owl:equivalentProperty .. 14
2.2.6 Combining inverse/symmetric and equivalent properties for efficiency 15
2.2.7 owl:equivalentClass .. 15
2.2.8 rdf:type and rdfs:subClassOf .. 15
2.2.9 owl:Transitive and owl:TransitiveOver .. 15

2.3 Evaluation .. 15

3 PARALLEL MULTI-THREADED REASONING.. 17

3.1 Approaches overview ... 17

3.2 Implementation in MULTISENSOR.. 18
3.2.1 GraphDB storage background ... 18
3.2.2 GraphDB parallel data loading pipeline ... 18
3.2.3 Implementation details .. 20

3.3 Evaluation .. 20

4 SPARQL-MM ... 22

4.1 Approaches overview ... 22
4.1.1 SPARQL multimedia functions .. 24

4.1.1.1 Spatial Relations .. 24
4.1.1.2 Spatial Aggregations .. 26
4.1.1.3 Temporal Relations .. 26
4.1.1.4 Temporal Aggregations .. 27
4.1.1.5 Combined Aggregations ... 27

4.2 Implementation in MULTISENSOR.. 28

4.3 Evaluation .. 28

D5.2 – V1.0

 Page 8

5 GEO-SPARQL... 29

5.1 Approaches overview ... 29
5.1.1 GeoSPARQL ontology ... 29
5.1.2 Rules for query transformation .. 30

5.2 Implementation in MULTISENSOR.. 31
5.2.1 Query optimization .. 33
5.2.2 Custom literals-in-relations extension .. 33
5.2.3 Third-party libraries used ... 33

5.3 Evaluation .. 34

6 CONCLUSIONS .. 35

7 REFERENCES ... 36

D5.2 – V1.0

Page 9

1 INTRODUCTION

The objective of this deliverable is to develop inference methods that support efficient
information selection from heterogeneous data pools. They have to be implemented on top
of the GraphDB – an RDF graph database (a type of NoSQL graph database engine), also
known as triplestore1. The final goal is to enable efficient retrieval of data, considering
different criteria and implementing mechanisms, which go beyond the capabilities of today’s
database and search engines.

This deliverable explores the development of four different types of reasoning. Technically,
these mechanisms can be implemented in two ways (i) as expert-systems-style reasoning
techniques, which allow new facts to be inferred or (ii) as query language extensions, which
allow for more efficient handling of specific data constraints. Broadly speaking, inference can
be characterized by discovering new relations. On the Semantic Web, data is modeled as a
set of (named) relations between resources. “Inference” means that automatic procedures
can generate new relations based on the data and some additional information in the form
of a vocabulary - a set of rules. Whether the new relations are explicitly added to the set of
data or returned at query time is matter of implementation. Inference is a tool of choice for
improving the quality of data integration by discovering new relations, automatically
analyzing the content of data, or managing knowledge in general. Inference-based
techniques are also important for discovering possible inconsistencies in the data.

The reasoning techniques will support the semantic search service (i.e. semantic reasoning in
the knowledge base) and the decision support service. In Figure 1 (taken from D7.2
deliverable describing the overall architecture) we highlight the exact role of these services
in the whole MULTISENSOR architecture.

1.1 Requirements

In this section, we present the relation of the four different reasoning techniques to the
purpose of the project.

Hybrid reasoning combines the strengths of forward-chaining (the default reasoning strategy
in GraphDB) and backward-chaining. Such combined strategies are useful for reasoning
scenarios where large amounts of data are combined with the need for goal-driven
reasoning, particularly in: decision support systems, semantic data integration from multiple
sources and involving multiple ontologies.

GraphDB already implements a kind of limited backward-chaining, namely the owl:sameAs
optimization. With this optimization, statements are stored against clusters of sameAs-
equivalent URIs, rather than directly against URIs. Thus, all statements of a URI are
"inherited" by all equivalent URIs. When solving queries, any constant URI is treated as the
equivalent cluster, thus ensuring completeness. A special mode allows enumerating all
equivalent URIs, if needed. In MULTISENSOR, we extend this approach to other mechanisms
for semantic data integration, namely through the OWL mapping properties
owl:equivalentProperty and owl:equivalentClass. Currently, these constructs generate a large

1 Triplestores are built around a range of W3C standards for representation and querying of data in the
Semantic Web: RDF (data representation, sort of alternative to XML), RDFS (schema language), OWL
(ontology language), SPARQL (query language)

D5.2 – V1.0

Page 10

number of "duplicate" inferences (e.g. each statement for a property P is repeated for all
other properties Q in its cluster of equivalent properties). We also address symmetric,
inverse, and transitive reasoning by implementing special reasoning strategies.
Implementing efficient hybrid reasoning is a complex problem as it always involves a tradeoff
between load-time pre-computation (forward-chaining) and storage consumption on one
hand, and the speed of query answering on the other. The criteria when to use one or the
other are not always clear and are hard to estimate. With this initial implementation in
MULTISENSOR, we are only starting to explore this area.

Figure 1: Reasoning services in MULTISENSOR architecture.

One of the important technical problems that the GraphDB development team had to solve
in 2014 was to increase data loading speed. This is an important requirement for very large
or often-changing datasets. We have implemented parallel loading, where the major
challenge was how to ensure the correct work of the Entity Pool (a central storage of URIs
and literals) given the multiple loading threads. This has increased the loading speeds from
50% to 200%. While the parallel loader made the storage process work in parallel, it did not
do so for the reasoning. The next improvement requested by our clients was to increase the
speed of inferencing during loading. This requirement is important for even moderately big
datasets, which involve a significant amount of inferencing (over 20%). MULTISENSOR also
benefits a lot from this as the ontologies that it uses (NIF and related) involve large amounts

Inference
methods

D5.2 – V1.0

Page 11

of inferencing. Guaranteeing the accuracy of inferencing when it is performed in parallel is a
challenging technical task, which we are able to tackle as part of our MULTISENSOR work.

SPARQL-MM (Multimedia) is a proposed SPARQL extension that enables reasoning and query
answering over media files (e.g. videos). The query extensions include exploring spatio-
temporal relations in semantically annotated multimedia, e.g. finding particular objects or
types of objects in a spatial relation to each other (e.g. left-right), or a temporal relation to
each other (e.g. one appearing immediately after the other). Given MULTISENSOR's goals to
work with varied media content (including images and videos), SPARQL-MM reasoning is a
natural requirement. Such relations can be very useful for precise querying of large
multimedia collections. The power of querying shows synergies with semantic enrichment
and classification. For example, if a video asset is annotated with DBpedia URLs of Barack
Obama and Gen. Martin Dempsey, we know their professions/offices, and have reasonable
classification of military professions, then the asset can be found through a query like "find
shots of the US President standing next to a Soldier".

Geographical reasoning and querying is very relevant for the news and media domain,
especially for local news. Many events happen in a specific locality, and the ability to query
by geography provides an important dimension. In addition, geography is very important in a
trade context. Therefore, GeoSPARQL reasoning is also relevant for Use Case 32. GraphDB
supported only rudimentary geospatial reasoning, based on some custom extensions. It can
find points within a rectangle, points nearby a center, and compute distances. However,
GeoSPARQL is an emerging standard that provides much deeper functionality, based on
sophisticated "algebras of regions". These allow various spatial questions to be answered,
and various geometries and features to be addressed.

2 D8.2 Requirements Use Cases Validation Plan

D5.2 – V1.0

Page 12

2 COMBINATION OF FORWARD AND BACKWARD-CHAINING

2.1 Approaches overview

The logical inference over RDF datasets allows for two principle strategies for rules
application:

 Forward-chaining: to start from the known facts (the explicit statements) and to
perform inference in an inductive fashion. Typically, the goal is to compute the
Inferred Closure.

 Backward-chaining: to start from a particular fact or a query, and to verify it or get all
possible results. In a nutshell, the reasoner decomposes (or transforms) the query (or
the fact) into simpler (or alternative) facts, which are available in the knowledge base
or can be proven through further recursive transformations.

The forward-chaining strategy applies the rules over the available facts in order to infer new
facts, which are added to the dataset, and then recursively applies the rules over the new
dataset. The result is the so-called inferred closure: an extension of a knowledge base (the
RDF dataset or the graph of RDF triples) with all implicit facts (RDF triples) that can be
inferred from it. The notion Materialization is defined as a procedure that keeps an up-to-
date inferred closure of the knowledge base. Materialization is known as a technique for
applying inference before query evaluation. This allows for many query optimization
approaches to be implemented as querying is realized by lookups in the database. The main
drawback of materialization is that the database changes, additions, and updates are
generally slow operations. In many scenarios, the materialization of such frequent changes
does not affect the querying process, as many of the materialized facts are not used in the
answers.

In such cases, an alternative to forward-chaining is a backward-chaining strategy for
inferencing over knowledge bases. Here, answering a query requires only partial
materialization over the knowledge base. Unfortunately, backward-chaining is inefficient for
large knowledge bases, as many optimizations for the materialization of a knowledge base
are not possible.

In the MULTISENSOR user scenarios, we come across heterogeneous knowledge bases,
including a stable core set of RDF datasets from a LOD cloud such as DBpedia, Geonames,
etc., as well as dynamic datasets, extracted by the services from different sources (text and
multimedia documents), or hypothesis testing for decision support systems. Therefore, to
support the necessary functionality, we have implemented a hybrid approach to rule
application in the project. In order to gain from both strategies, one needs to understand
very well their positive and negative sides.

Pros and Cons of materialization:

 Fast query evaluation:

o No deduction, satisfiability testing, or other kind of reasoning are required at
query time;

o RDBMS-like query optimization techniques are applicable.

D5.2 – V1.0

Page 13

 Slower insertion of new facts (the repository extends the inferred closure after each
transaction for modification);

 Slower deletion of facts (the repository has to remove all facts that are no longer true
from the inferred closure);

 The maintenance of the inferred closure requires additional space (RAM and disk) to
manage the extra statements;

Pros and Cons of backward-chaining:

 No impact on the insert and update performance (no work is required, when the
schema changes);

 Queries easily become 10x slower:

o If pattern-level re-writing is used, query optimization is impossible, making
working with big datasets with query optimization impractical;

o If query re-writing is used, one has to evaluate tens of query variants (to
mitigate this, some engines using query re-writing have strategies that cut-off
query re-writing at a certain point, which leads to incomplete results).

 Query-time reasoning is OK only if:

o It is not recursive AND

o It does not introduce multiple alternatives at pattern level (this is the case
when there is a simple “syntactic transformation”, i.e. If it is equivalent to
custom SPARQL functions);

o OR if data is very small (for instance, less than 1M statements), query
performance is acceptable even without optimization.

In the next section, we present the main elements of the backward-chaining strategy
implemented in the project.

2.2 Implementation in MULTISENSOR

The Graph DB workbench already supports a state-of-the-art forward-chaining strategy,
which is additionally extended with parallel reasoning in the MULTISENSOR project. Thus,
here we present mainly the elements of backward-chaining. We follow one of the most
advanced approaches to implementing hybrid reasoning for a fraction of OWL in RDF
databases as presented in the work of Urbani et al. (2014). They implement backward-
chaining based on the QSQ (query-subquery) algorithm for Datalog databases modified to
support reasoning over OWL RL. In the application of the algorithm, the facts are divided in
two sets: one over which the forward-chaining is applied and the materialization over the set
is stored in GraphDB in an optimal way. The other is used to support a backward-chaining
strategy. It applies the materialization only when it is necessary.

The paper defines the following properties, which can use backward-chaining:

 TYPE rdf:type

 SCO rdfs:subClassOf

 SPO rdfs:subPropertyOf

D5.2 – V1.0

Page 14

 EQC owl:equivalentClass

 EQP owl:equivalentProperty

 INV owl:inverseOf

 SYM owl:SymmetricProperty

 TRANS owl:TransitiveProperty

We have implemented some of these, and want to add support for ptop:transitiveOver – a
property that specifies that one property is transitive with respect to another. E.g. rdf:type is
transitive-over rdfs:subClassOf.

2.2.1 Supporting indexes for each added statement

On each added statement, we perform checks for the backward-chaining properties and
keep in-memory structures relevant to each of them:

 owl:inverseProperty and owl:equivalentProperty keep a mapping between each
property and the list of its inverse (or equivalent) properties.

 rdf:type and rdfs:subClassOf keep the explicit types and the whole subclass hierarchy.

2.2.2 Answering a SPARQL Query

Generally speaking, all SPARQL queries are answered using iterators It(?subject, ?predicate,
?object), where each of the variables can be a wildcard (the contexts, limit/offset are mostly
irrelevant to the inference). Therefore, in order to provide an answer for the query, we need
to explain how we define the iterator for each backward-chained property. The
implementation introduces a new class BackwardChainingWrappingIterator (BCWI), which
uses the default GraphDB StatementIterator (SI) to provide extended results.

2.2.3 owl:inverseOf

We keep track of the list of inverse properties for each property (there might be more than
one, although all will be equivalent). There are two cases depending on whether the
property of the iterator (?p) is bound or not:

1) BCWI(?s, ?p=P, ?o) = Restrict(UnionOf {SI(?o, Pi1, ?s), …, SI(?o, PiN, ?s))) where
Pi1…PiN is the set of the inverse properties of the property P and Restrict() is an
operator filtering the results in case ?s or ?o are bound.

2) BCWI(?s, ?p, ?o) = UnionOf(BCWI(?s, ?p=P1, ?o), …, BCWI(?s, ?p=PN, ?o))

Where P1…PN is the list of all properties in the database.

2.2.4 owl:SymmetricProperty

The symmetric properties are handled as simplified inverse properties.

2.2.5 owl:equivalentProperty

There are again two cases depending on whether the predicate is bound or not:

1) BCWI(?s, ?p=P, ?o) = Restrict(UnionOf {SI(?s, Pi1, ?o), …, SI(?s, PiN, ?o))) where
Pi1…PiN is the set of all the equivalent properties of the property P.

D5.2 – V1.0

Page 15

2) BCWI(?s, ?p, ?o) = UnionOf(BCWI(?s, ?p=P1, ?o), …, BCWI(?s, ?p=PN, ?o))

Where P1…PN is the list of all properties in the database.

2.2.6 Combining inverse/symmetric and equivalent properties for efficiency

Because all the three properties are handled similarly, it is more efficient to process them
together.

2.2.7 owl:equivalentClass

This has not been implemented yet.

2.2.8 rdf:type and rdfs:subClassOf

We keep the explicit types and the subclass hierarchy in memory. It takes 17 bytes for each
entity (with 32-bit entity IDs) that has a type statement.

The queries for type are expressed as a join between two iterators:

BCWI(?s type ?o)=SI(?s type ?x) join SI(?x subClassOf ?o).

2.2.9 owl:Transitive and owl:TransitiveOver

We plan to handle them in a similar way to type/subClassOf.

2.3 Evaluation

As explained, the trade-off between FC and BC is the loading speed improvement for query
speed decrease. As shown in the next table, the loading speed has improved nearly 4 times:

Reasoning Load time, s Total statements Speed, statements/s

Forward-chaining 905 64M 70,718

Backward-chaining 3551 64M 18,023

We have executed two very simple queries to get an initial idea of the query speed decrease:

Query Forward-chaining Backward-chaining

select count (*) {?x a cwork:CreativeWork} 11,283 15,851

select count (*) {?x owl:inverseOf ?y} 153 172

So, it seems that for simple queries the decrease is OK (negligible for non-transitive
properties and quite acceptable for type/subClassOf or transitive properties).

In order to get a feel how the backward chaining performs in a real world scenario, we run
the basic interactive query mix LDBC’s SPB on this data set. The setup is multithreaded and
the test ends when each query from the mix has been executed 10 times. The results are
presented in Table 1.

Query FC, Time, ms BC, Time, ms Times slower
Q1 171 2,448 14.32
Q2 6 14 2.33
Q3 50 46 0.92

D5.2 – V1.0

Page 16

Q4 43 44 1.02
Q5 111 104 0.94
Q6 120 5,969 49.74
Q7 45 43 0.96
Q8 250 210 0.84
Q9 211 219 1.04
Q10 454 422 0.93
Q11 28 789,499 28,196.39
Q12 70 63 0.90

Table 1: The execution time of 12 queries

Table 1 shows that there are some queries that are tens of times slower in the BC scenario,
compared to the FC one. A notable exception is the query Q11 which is very slow. The
reason for that is it uses the pattern “?e a owl:Thing”, and owl:Thing is the root of the
hierarchy.

On the other hand there are queries t(Q3, Q8 and Q10) that are faster in the BC scenario.
This could be attributed to the fact that there are less statements in the repository and some
queries become slightly faster.

D5.2 – V1.0

Page 17

3 PARALLEL MULTI-THREADED REASONING

3.1 Approaches overview

Parallel architecture and multi-threaded reasoning provide very appealing techniques for
processing RDF knowledge bases consisting of an enormous amount of statements (usually
several billions). The main reasoning strategy for RDF knowledge bases - materialization,
faces two problems: (i) maintenance of huge number of URIs, and (ii) inferring new RDF
statements via inference rules applied to existing, in the knowledge base, RDF statements.
The problem of handling URIs is related to their size. In order to define a more compact
representation of RDF statements, the URIs are represented in dictionaries, where each URI
is identified by a numeric value, which is then used for the internal representation of the RDF
statements. One of the URI terms’ characteristics in an RDF knowledge base is their uneven
distribution, i.e. many URI terms appear only a few times. This compression approach allows
for using parallel processing. Urbani, Maassen and Bal 2010 (Urbani, et al. 2010) describes a
MapReduce architecture performing the creation of a URI dictionary in three steps.

The first algorithm identifies the popular terms that appear in knowledge bases above some
given threshold. It randomly reads portions of the knowledge bases and counts the URI
terms that appear above the threshold. A dictionary of these most popular terms is created
and loaded in the memory.

The second algorithm simultaneously processes all URIs of the statements in the knowledge
base and constructs dictionaries for the more rare terms. In this way, the algorithm
constructs also the compact representation of the RDF statements.

The third algorithm performs the reconstruction of the original statements. A similar
technique is already implemented in GraphDB and maximally optimized for materialization
reasoning. Thus, in the MULTISENSOR project, we concentrate on parallel optimization of
inference of new statements during the materialization of the knowledge base.

The parallel reasoning cannot manage the global characteristics of RDF reasoning for very
expressive ontological languages. For example, Oren et. al (2009) shows that partitioning of
an RDF data base into independent parts is very difficult because it is hard to guarantee the
soundness and completeness of the reasoning. Random partitioning of the knowledge base
results in communication overload between the different partitions. Another approach is
grouping the statements based on the URI terms, participating in the corresponding
statements. This results in uneven balance between the different groups because of the
different popularity (as we mentioned above) of the different terms.

In order to cope with this problem, some authors impose additional restrictions on the
language expressivity and the type of statements in the knowledge base. For example, Priaya
et. al (2014) defines an ABox independent partitioning, which supports reasoning in OWL Lite
knowledge bases. They assume that the knowledge base is represented as a TBox, containing
the ontology, and an ABox, containing the statements about the world. The independent
ABox partitioning is defined for a knowledge base K=(T,A), where T is the TBox and A is ABox
of the knowledge base. Then A = A1 A2 ... Ai in such a way that if (T,A) |= F then there is
a partition Aj such that (T,Aj) |= F. Using this definition, they define an incremental algorithm
for constructing an independent ABox partitioning of K. After building the partitioning, the
inference is performed on different machines in such a way that different inferences on sub-

D5.2 – V1.0

Page 18

queries are done in the appropriate partition. In MULTISENSOR, we have also used
knowledge base partitioning but we do not separate the ontology statements from the world
statements, and we support a more expressive ontology language as well. Our approach is
tuned to the overall architecture of GraphDB. It is presented it in the next section 3.2.

3.2 Implementation in MULTISENSOR

3.2.1 GraphDB storage background

GraphDB stores the statements in the following manner:

 First the entities (URIs, literals, or blank nodes) are resolved into internal IDs (32- or
40-bit long values), which are stored in a dictionary file-based structure, called Entity
Pool;

 Then each statement is stored in several disk-based structures, called Collections. The
structures differ by their sort order and are named after it. They are called POS, PSO,
CPSO, CPSO (the last two are optional). The letters C, P, S and O stand for “context”,
“predicate”, “subject” and “object” respectively. Thus, the statements are multiplied
and the advantage is faster query times.

3.2.2 GraphDB parallel data loading pipeline

Figure 2: The GraphDB parallel data loading pipeline

In Figure 2, the workflow for fast loading is indicated with blue arrows and the one for
reasoning is indicated with red arrows. What follows is a brief description of the mechanism:

1. The thread that stores statements in the PSO collection is modified to put newly
added statements (i.e. not existing in the repository before) in a buffer. There we
collect the statements that will be used as an input for the inference. The buffer is
attached to the PSO collection, because (i) unlike C... collections, it is always there

D5.2 – V1.0

Page 19

and (ii) the POS collection already takes care to update the statistics. Therefore, it
is a sort of distribution of the load between POS and PSO storing threads.

2. There are N identical threads that do inference, each of which consuming
statements from the buffer, populated on the previous step. This process starts
when the storage of all statements from the buffer that is currently being loaded
is completed in all collections. If inference starts beforehand, there is a chance of
missing valid inferences.

3. Each of the inferencers feeds newly inferred statements in a queue (eventually,
blocking queue). This simple structure has to allow multiple threads to put
statements into it with minimal contention.

4. There is a separate thread that consumes statements from the inference results
queue and produces a sorted buffer of statements without duplications.

5. One "epoch" of inference is done, when (i) the inferencers have exhausted all the
statements from the buffer of newly added statements, (ii) all the inference
threads are done and (iii) the sorter and deduplication thread have exhausted the
inference results queue and have completed the generation of the buffer of
sorted unique inference results.

6. The Storage Controller starts a new iteration of storage and inference epoch as it
starts to consume statements from the Buffer of sorted unique inferred
statements.

7. The inference process is done when at the end of an inference epoch the Buffer
of sorted unique inferred statements is empty.

Notes:

 The Storage Controller does not start processing the next Buffer of resolved
statements until the inference for the previous one is completed. In other words,
storage and inference work in shifts and never run in parallel.

 There is a space for further parallelization here and there but we consider the
implementation of this algorithm to be the right starting point. Because there is a
good balance between parallelization and simplicity, it looks manageable to
implement and debug. It serves as a formal proof that this type of parallel inference
can generate correct results. It also provides a baseline for speed.

o One such parallelization is not to process the statements in epochs but in a
continuous manner, in which the queue for the deduplicated inferred
statements will not wait for all the inferencers to finish before feeding the
statements in the storage controller;

o Another one is to postpone the updates for context indexes, CPSO, CPOS until
the whole data is loaded and then update them from one of the other
indexes. This will reduce the time inferencers wait for the storage to be
updated.

D5.2 – V1.0

Page 20

3.2.3 Implementation details

 sameAs optimization not supported (we still support sameAs but we keep all
statements as if they were fully materialized);

 Currently, the LRU Object Cache has a locking issue, which severely limits the speed
of the parallel load, especially with big data sets;

 Update and delete transactions cannot be handled in such a parallel mode;

 The functionality is currently implemented in the LoadRDF tool, which is used for
initial loading of data but the pipeline works for normal commits as well;

 There are detailed performance statistics allowing the comparison between two runs
with different number of threads.

3.3 Evaluation

We have evaluated the parallel inference with three datasets and with different number of
threads. These are Wordnet, and the SPB-50 million and SPB-1 billion, artificially generated
datasets from the LDBC’s Semantic Publishing Benchmark (SPB, 2015). As a baseline for each
dataset, we take the single threaded inference.

Dataset Wordnet 2.2

Explicit statements 2.2M

Total statements 13M

Rule set Owl-max

Table 2: Description of the dataset Wordnet 2.2

According to the LDBC Website “The Semantic Publishing Benchmark v2.0 (SPB) is a LDBC
benchmark for RDF database engines inspired by the Media/Publishing industry, particularly
by the BBC’s Dynamic Semantic Publishing approach.”

The application scenario considers a media or a publishing organization that deals with large
volume of streaming content, namely news, articles or "media assets". This content is
enriched with metadata that describes it and links it to reference knowledge – taxonomies
and databases that include relevant concepts, entities and factual information. This
metadata allows publishers to efficiently retrieve relevant content, according to their various
business models. For instance, some, like the BBC, can use it to maintain rich and interactive
web-presence for their content, while others, e.g. news agencies, would be able to provide
better-defined content feeds, etc.

From a technology standpoint, the benchmark assumes that an RDF database is used to
store both the reference knowledge (mostly static) and the metadata (that grows constantly,
to stay in synch with the inflow of streaming content). The main interactions with the
repository are (i) updates, that add new metadata or alter it, and (ii) queries, that retrieve
content according to various criteria.”3

3 See more at: http://ldbcouncil.org/developer/spb

D5.2 – V1.0

Page 21

Dataset SPB-50m

Explicit statements 64M

Total statements 133M

Rule set Custom: RDFS + owl:sameAs + owl:inverseOf

Table 3: Description of the dataset SPB-50m

Dataset SPB-1B

Explicit statements 1B

Total statements 1.3B

Rule set Custom: RDFS + owl:sameAs + owl:inverseOf

Table 4: Description of the dataset SPB-1B

Only the 4-thread parallel results are presented in the Table 5 below. The 2- and 8-thread
are skipped because they are not good enough due to a locking issue.

The SPB-1B dataset has not been successfully loaded in a parallel mode but the expected
increase is around 20%.

Dataset Serial Parallel Increase

 time, s speed, st/s time, s speed, st/s

Wordnet 730 3,727 628 4,338 16%

SPB-50M 6,818 7,764 1,345 39,351 407%

SPB-1B ~48h 5,787 n/a n/a n/a
Table 5: The 4-thread parallel results

D5.2 – V1.0

Page 22

4 SPARQL-MM

Over the last decade, we have witnessed the incredible growth of multimedia technologies.
The video content is all around us – television, Internet, mobile applications, etc. The video
content takes a big part of our lives. However, armies of journalists, engineers, and media
specialists are working behind the scene to make it possible for all this content to reach us.
One of the MULTISENSOR project’s goals is to deliver a platform and services that will
support and help these people to do their job more efficiently, and provide a better media
content as a result.

The first Pilot Use Case covered by MULTISENSOR describes journalism and media
monitoring. To tell a story or to present a story from a different angle, a journalist needs to
analyze a big amount of data from different sources – newspapers, blogs, web sources, social
media, video materials, etc. All of these different types of data have their own style and
specifics. It is difficult for a single person, in our case a journalist or a media monitoring
specialist, to select and find all the data he needs for a limited period.

The MULTISENSOR project will deliver an infrastructure that will lead to a better data quality
and reduce the time significantly. Parts of the services that will be provided are speech
recognition, entity recognition, data enrichment, semantic and faceted search over the data,
and a decision support system. As we are talking about journalistic work and media
monitoring, one of the first things that come to mind is video material. This is because today
video is one of the main means of information in this area. However, it is not an easy job to
process many video materials and get the relevant information for your task.

For example, we are working on a story about Barack Obama and the military policy
represented by his cabinet. We are searching for video content where the US president is
seen next to a US soldier or officer. Usually, the search will start from the video archives. If
they are stored in a computer database and we use a full-text search over the titles of the
materials such as YouTube, this will facilitate our task. Now we retrieve 10 results and every
video material is between 30 min to an hour. It will take a long time to watch all of it and find
the content and the scenes that we need for our material. But what happens if a title does
not represent the content and the most important material never appears in our result set?
The answer of this question is SPARQL-MM. It gives us the ability to retrieve structural data
from annotated video content.

4.1 Approaches overview

Over the last years, multimedia content and semantic technologies have come closer
together than ever. Different projects and initiatives have contributed to this process such as
the W3C recommendations for media annotations and fragmented URIs. The main goal of
these initiatives is to standardize the representation of multimedia metadata by semantic
technologies. SPARQL-MM is an extension of the SPARQL query language, which provides
spatio-temporal filters and aggregated functions and can be valuable for journalists and
media analyzers.

In the Barack Obama example, by using SPARQL-MM we can ask with a structured query
“Give me all video fragments from my archive, where Barack Obama is next to a US soldier
or a US officer.” The results with the annotated content are shown on video 1 and 2. We use
Media Fragment URIs to connect the annotations with specific spatio-temporal parts of the

D5.2 – V1.0

Page 23

video. These specifications provide a standardized media format, which helps to address
specific media fragments on the web by URIs. Twisted pairs are supported – name-value-
pairs, for example s=start, end for temporal and xywh=x, y, width, height for regions of a
given fragment.

In the first video, Barack Obama is next to a US soldier from sec 29 to sec 33 and in the
second, for the better part of the video. If you want to retrieve a spatio-temporal snippet
that shows the US president next to a US soldier or officer, you have to ask the database.
Currently SPARQL does not support queries of this kind because the required information is
not represented in RDF format but is hidden in media fragmented URIs. SPARQL does not
support functions of the type rightBeside, remporalOverlap and boudingBox, either.

Figure 3: A snapshot from Video 1.

D5.2 – V1.0

Page 24

Figure 4: A snapshot from Video 2.

Thanks to SPARQL-MM, you can ask the database by the following query:

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX mmf: <http://linkedmultimedia.org/sparql-
mm/ns/1.0.0/function#>

SELECT ?t1 ?t2 WHERE {

 ?f1 rdfs:label “Barack Obama”.

 ?f2 rdfs:label “US soldier”.

 FILTER mmf:rightBeside(?f1,?f2)

} ORDER BY ?t1 ?t2

4.1.1 SPARQL multimedia functions

SPARQL-MM supports a set of functions and all of them are following the DE-9IM standard
describing the topological and temporal relations. The following tables present the name of
a given function and a short description of the returned results.

4.1.1.1 Spatial Relations

Relation name Description

mf:bottom(resource1,resource2) returns true if resource.y >= 50%.

mf:isAbove(resource1,resource2)
returns true if resource1.y + resource1.h <=
resource2.y, else false.

mf:isBelow(resource1,resource2)
returns true if resource2.y + resource2.h <=
resource1.y, else false.

D5.2 – V1.0

Page 25

Relation name Description

mf:left(resource1,resource2) returns true if resource.x + resource.w <= 50%.

mf:leftBeside(resource1,resource2)
returns true if resource1.x + resource1.w <=
resource2.x, else false.

mf:right(resource1,resource2) returns true if resource.x >= 50%.

mf:rightBeside(resource1,resource2)
returns true if resource2.x + resource2.w <=
resource1.x, else false.

mf:spatialCovers(resource1,resource2)
returns true if all points of resource1.box are
points of resource2.box, else false.

mf:spatialDisjoint(resource1,resource2)
returns true is resource1.box has no common
points with resource2.box, else false.

mf:spatialEqual(resource1,resource2)
returns true if resource1.box ==
resource2.box, else false.

mf:spatialIntersects(resource1,resource2)
returns true if resource1.box has at least one
common point with resource2.box, else false.

mf:spatialTouches(resource1,resource2)

returns true if resource1.box.edge has at least
one common point with resource2.box.edge
and resource1.box.interior has no common
point with resource2.box.interior, else false.

mf:top(resource1,resource2) returns true if resource.y + resource.h <= 50%.

D5.2 – V1.0

Page 26

4.1.1.2 Spatial Aggregations

Relation name Description

mf:spatialBoundingBox(resource1,resource2)

returns new MediaFragmentURI with
spatial fragment out of existing resources A
and B, so that x = min(A.x, B.x) and y =
min(A.y, B.y) and w = max(A.x + A.w, B.x +
B.w) and h = max(A.y + A.h, B.y + B.h).

mf:spatialIntersection(resource1,resource2)

returns new MediaFragmentURI with
spatial fragment out of existing resources A
and B, so that x = max(A.x, B.x) and y =
max(A.y, B.y) and w = min(A.x + A.w, B.x +
B.w) - max(A.x, B.x) and h = min(A.y +
A.h, B.y + B.h) - max(A.y, A.x)

4.1.1.3 Temporal Relations

Relation name Description

mf:after(resource1,resource2)
Returns true if resource1.start >=
resource2.end, else false.

mf:before(resource1,resource2)
returns true if resource1.end <=
resource2.start, else false.

mf:finishes(resource1,resource2)
returns true if resource1.end ==
resource2.end and resource1.start >
resource1.start , else false.

mf:temporalMeets(resource1,resource2)
returns true if resource1.start =
resource2.end or resource1.end =
resource2.start, else false.

mf:starts(resource1,resource2)
returns true if resource1.start ==
resource2.start and resource1.end <
resource2.end , else false.

mf:temporalContains(resource1,resource2)
returns true if resource1.start <=
resource2.start and resource1.end >=
resource2.end, else false.

mf:temporalEqual(resource1,resource2)
returns true if resource1.start ==
resource2.start and resource1.end ==
resource2.end, else false.

D5.2 – V1.0

Page 27

Relation name Description

mf:temporalOverlaps(resource1,resource2)

returns true if resource1.start <
resource2.start < resource1.end <
resource2.end or resource2.start <
resource1.start < resource2.end <
resource1.end, else false.

4.1.1.4 Temporal Aggregations

Relation name Description

mf:temporalBoundingBox(resource1,resource2)

returns new MediaFragmentURI with
temporal fragment (Min(
resource1.start, resource2.start), Max(
resource1.end, resource2.end)).

mf:temporalIntermediate(resource1,resource2)

returns new MediaFragmentURI with
temporal fragment (Min(
resource1.end, resource2.end), Max(
resource1.start, resource2.start)) if
intersection not exists, else null.

mf:temporalIntersection(resource1,resource2)

returns new MediaFragmentURI with
temporal fragment (Max(
resource1.start, resource2.start), Min(
resource1.end, resource2.end)) if
intersection exists, else null.

4.1.1.5 Combined Aggregations

Relation name Description

mf:boundingBox(resource1,resource2)

returns new MediaFragmentURI with spatial and
temporal fragment. It it works like
spatialFunction:boundingBox,
temporalFunction:boundingBox or both together.

mf:intersection(resource1, resource2)

returns new MediaFragmentURI with spatial and
temporal fragment. It works like
spatialFunction:boundingBox,
temporalFunction:intersection and both.

D5.2 – V1.0

Page 28

4.2 Implementation in MULTISENSOR

Support for SPARQL-MM in MULTISENSOR is provided through a set of GraphDB SPARQL
functions, based on a code written by Thomas Kurz (Kurz et al. 2014), one of the principal
authors of the SPARQL-MM specification.

This initial release has no SPARQL-MM indexing or optimizations but it is fully functional.

4.3 Evaluation

No further evaluation besides conformance testing has been done.

D5.2 – V1.0

Page 29

5 GEO-SPARQL

The second main Pilot Use Case in the MULTISENSOR project is about expanding the market
of small and medium-sized enterprises outside the country where they operate. The reasons
for this can be different – searching for new markets, revenue growth, business expansion,
etc. When making such a decision, many steps have to be considered. For example, studying
the laws of the chosen country can be challenging, as most of the documents are available
only in the native language.

For this purpose, MULTISENSOR offers a platform and services that will provide important
information about the country’s GDP, corruption, unemployment, purchasing power,
geopolitical information and specification in a human-readable form. The geopolitical
information also includes geographical areas, settlements, nested regions, etc. This requires
the implementation of a single standard for working with this type of data – GeoSPARQL.

5.1 Approaches overview

GeoSPARQL represents a standard for retrieving and inserting geospatial RDF data in a wide
range of geospatial cases – from simple point of interest knowledge bases to detailed
authoritative geospatial data sources for transportation. It is designed to accommodate
systems based on qualitative spatial reasoning as well as systems based on quantitative
spatial computations. This means that a simple knowledge base implementation intended
for simple use cases does not need to implement all advanced reasoning capabilities of
GeoSPARQL such as quantitative reasoning or query re-writing.

There are several terminology sets connected with the topological relations between
geometries. Every triplestore implementation can choose which terminology set to use and
support.

The GeoSPARQL specification contains three main components:

 Vocabulary definitions, which represent the geometries, relations, and connections
between them;

 Aggregation of specific domain functions, which are used in the SPARQL queries;

 Set of rules for query re-writing.

5.1.1 GeoSPARQL ontology

The ontology for representation of features and geometries allows writing queries and
retrieving spatial data. It is based on the OGC Simple Features model with some adaptations
for RDF and consists of the geo:SpatialObject class, which can be linked to any ontology of
interest, and its two subclasses (geo:Features and geo:Geometry). geo:Features and
geo:Geometry are connected via the geo:hasGeometry property.

For example, the entity “airport” is represented as geo:Feature and its coordinates as
geo:Geometry. Depending on the purpose and function, there are different approaches for
measuring coordinates - from a single point denoting the center of the area to a very
detailed rectangle describing all points along the borders of an airport. In most of the cases,
the used geometry will be represented as geo:defaultGeometry.

D5.2 – V1.0

Page 30

GeoSPARQL includes two different approaches for representing geometry literals and their
associated hierarchy types – WKT and GML. The default coordinate system for WKT is
WGS84. The implementation of a given triple store can support either one or both of these
types. GeoSPARQL provides different OWL classes of the geometry hierarchies associated
with these geometry representations. Classes for many different types of geometries such as
points, rectangles, curves, and arcs are provided. The geo:asGML property connects
geometry entities to the geometry representation literals. The property values use the geo-
sf:WKTLiteral and geo-gml:GMLLiteral types.

GeoSPARQL also supports a standard for representing topological relations such as
overlapping between spatial entities. They come in the form of binary properties between
entities and geospatial functions. The topological binary properties can be used in a SPARQL
query like a normal property, mainly between objects of Geometry type. However, they can
also be used between objects of type Features or between Features and Geometries, if
GeoSPARQL query rewriting is supported. The properties can be represented by three
different vocabularies – OGC’s Simple Features, Egenhofer’s 9-intersection model, and RCC8.
Which of them is supported depends on the triple store implementation although usually
they all are. Simple Futures topological relations include: equals, disjoint, intersects, within,
contains, overlap, and crosses.

The filtering functions provide two different types of functionalities. The first type is an
operator function that takes multiple geometries such as predicates and produces a new
geometry or a new data type as a result. ogcf:intersection is an example of such a function. It
takes two geometries and returns a new one representing a spatial intersection. Another
function such as ogcf:distance produces xsd:double as a result. The second type of functions
provide a Boolean topological test of geometries. They come with the same three
vocabularies as binary topological properties – simple features, topological relations,
Egenhofer relations, and RCC8 relations. These functions are partially redundant because of
the topological binary properties but the topological functions take geometry literals as
parameters, while the binary properties link Geometry and Features entities. This means
that quantitative and qualitative applications can use topological functions. Comparison
between concrete geometry provided in a query can also be done only by a function. One
example of a topological function is ogcf:intersects, which is true, if two geometries overlap.

5.1.2 Rules for query transformation

The rules for query re-writing allow an additional abstraction layer in the SPARQL queries.
While only the Geometry entities can be quantitatively compared, sometimes we have to
consider whether there is a topological connection between two entities. In natural language
this is represented by the question: “Is Reagan National airport in Washington, DC?”
Although Reagan National is referred to as a Washington DC airport, it is actually across the
Potomac River in Virginia. In GeoSPARQL, geo:Feature to geo:Feature and geo:Geometry to
geo:Feature topological relations are represented as a combination of geo:defaultGeometry
property and the rules for query re-writing. If geo:Feature is used as a subject or an object of
the topological relation, the query is automatically rewritten to compare the geo:Geometry
linked as a default, thus removing the abstraction for processing. For example:

#Before

ASK {

D5.2 – V1.0

Page 31

 ex:DC a geo:Feature;

 geo:within ex:WashingtonDC.

 ex:WashingtonDC a geo:Feature.

}

#After
ASK{

 ex:DCA a geo:Feature;

 geo:defaultGeometry ?g1.

 ex:WashingtonDC a geoFeature;

 geo:defaultGeometry ?g2.

 ?g1 geo:within ?g2

}

Thus, we provide a more intuitive approach for creating geospatial queries, especially in the
cases where we do not need many different geometries.

5.2 Implementation in MULTISENSOR

In MULTISENSOR, support for GeoSPARQL has been implemented as a GraphDB plugin. The
plugin provides support for the following GeoSPARQL conformance classes:

Conformance class Description Note

Core Defines top-level
spatial vocabulary
components.

General SPARQL support through
GraphDB.

Support for the classes geo:SpatialObject
and geo:Feature.

Topology vocabulary
extension

Defines topological
relation vocabulary.

Support for all Simple Features
properties (geo:sfxxx).

Support for all Egenhofer properties
(geo:ehxxx).

Support for all RCC8 properties
(geo:rcc8xxx).

D5.2 – V1.0

Page 32

Conformance class Description Note

Geometry extension Defines geometry
vocabulary and non-
topological query
functions.

Support for the class geo:Geometry.

Support for the geof:getSRID function.

Support for WKT literals with default CRS
http://www.opengis.net/def/crs/OGC/1.3/CRS8
4 and all CRSs defined in the EPSG
Geodetic parameter Dataset. Support for
the Geometry serialization property
geo:asWKT.

Partial support for the GML literals
supporting a subset of GML 3.1.1 with
the same CRSs as those for WKT. Support
for the Geometry serialization property
geo:asGML.

Geometry topology
extensions

Defines topological
query functions for
geometry objects.

Support for the geof:relate function.

Support for all Simple Features functions
(geof:sfxxx).

Support for all Egenhofer functions
(geof:ehxxx).

Support for all RCC8 functions
(geof:rcc8xxx)

RDFS entailment
extension

Defines a mechanism
for matching implicit
RDF triples that are
derived based on RDF
and RDFS semantics.

RDF and RDFS support through GraphDB.
Support for WKT and GML geometry
classes as defined by their respective
ontologies.

Query rewrite
extension

Defines query
transformation rules
for computing spatial
relations between
spatial objects based
on their associated
geometries.

Support for all Simple Features rules
(geor:sfxxx).

Support for all Egenhofer rules
(geor:ehxxx).

Support for all RCC8 rules (geor:rcc8xxx).

Custom literals-in-
relations extension

Defines a custom
extension that allows
the use of WKT and
GML literals in place of
a geo:SpatialObject

GeoSPARQL requires geo:SpatialObject
for queries with spatial relation
properties. The extension allows for
specifying a literal geometry serialization
at the object position.

Table 6: GeoSPARQL conformance classes

D5.2 – V1.0

Page 33

5.2.1 Query optimization

The query re-write extension implementation uses an optimized GraphDB approach with an
internal custom Lucene index to boost the performance with SPARQL queries that involve
spatial relations properties. All RDF data that conforms to GeoSPARQL will be automatically
synchronized with the Lucene index as part of the internal INSERT or DELETE operations.

In order to benefit from the Lucene index optimization, you have to use the spatial relations
properties and not the spatial relations functions. For example, the index will be used in the
query: “find all Features that are within <urn:Europe>”

select ?x where {

 ?x a geo:Feature .

 ?x geo:sfWithin <urn:Europe>

}

and will not be used in the query: “find all Features that are within <urn:Europe>”, although
it will return the same results.

select ?x where {

 ?x a geo:Feature .

 ?x geo:hasDefaultGeometry ?xg .

 ?xg geo:hasSerialization ?xgLit .

 <urn:Europe> geo:hasDefaultGeometry ?eg .

 ?eg geo:hasSerialization ?egLit .

 filter(geo:sfWithin(?xgLit, ?egLit))

}

5.2.2 Custom literals-in-relations extension

Standard GeoSPARQL supports only geo:SpatialObject (either geo:Feature or geo:Geometry)
for the subject and object of spatial relations properties. The GeoSPARQL GraphDB plugin
provides an extension to the standard that allows for Geometry WKT or GML literals to be
used in the object position. This simplifies some queries and provides an easy way to use the
Lucene index with geometries supplied at query time, for example:

find all Features that are roughly within Bulgaria (based on the supplied polygon that
includes parts of neighboring countries too)

select ?x where {

 ?x a geo:Feature .

 ?x geo:sfWithin "Polygon((22 41, 29 41, 29 45, 22 45, 22
41))"^^geo:wktLiteral .

}

5.2.3 Third-party libraries used

The GeoSPARQL plugins relies on the following third-party libraries:

 The JTS Topology Suite, an API of 2D spatial predicates and functions, version 1.13,
LGPL;

D5.2 – V1.0

Page 34

 Geotoolkit.org, a library for developing geospatial applications, version 3.20, Apache
license;

 OGC Tools GML-JTS, a GML parser for Java that supports JTS, version 1.0.3, a
modified BSD license.

In addition, some code has been imported from uSeekM, a seemingly obsolete Java library
that integrates JTS and Geotoolkit.org, version 1.2.2-SNAPSHOT, Apache License.

5.3 Evaluation

This release of the GeoSPARQL plugin has undergone only basic conformance testing.

D5.2 – V1.0

Page 35

6 CONCLUSIONS

In this report we have presented the development of four different types of reasoning –
hybrid reasoning, parallel multi-thread reasoning, SPARQL-MM, and GeoSPARQL.

Hybrid reasoning combines the strengths of forward- and backward-chaining. It is useful for
scenarios where a goal-driven reasoning is applied over a large amount of data. Hybrid
reasoning is particularly common in decision support systems and semantic data integration
from multiple sources, involving multiple ontologies. The results we achieved with the
backward chaining prove that we can successfully trade query speed for loading speed (for
~50M datasets, at least), although some queries might become non-performant.

The parallel multi-threaded reasoning reduces the loading times from 50% to 200%
compared to loading with a serial inference engine.

SPARQL-MM is a proposed SPARQL extension that enables reasoning and query answering
over media files. Our implementation is very simple and does not integrate well with our
Query Optimizer. Lack of available public data sets of annotated videos currently prevents
the evaluation of our implementation.

GeoSPARQL defines a powerful language for expressing geo-spatial constraints, e.g.
overlapping or proximity of two geographical regions. Our previous proprietary
implementation supported only limited number of simple constructs for geospatial RDF
querying and also it was not dynamic (i.e. inserting new data did not automatically update
the indexes). This new GeoSPARQL implementation is dynamic, conforms to the standard
and at the same time allows for efficient query execution plans.

The updates on the reasoning techniques including also evaluation will be reported in D5.3
and D5.4 including also assessment according to the performance indicators discussed in
D1.1.

D5.2 – V1.0

Page 36

7 REFERENCES

Urbani, J., Maaseen, J., & Bal, H. (2010), Massive Semantic Web data compression with
MapReduce, In Proceedings of the MapReduce workshop at HPDC ’10.

Oren, E., Kotoulas, S., Anadiotis, G., Siebes, R., Teije, A., & van Harmelen, F. (2009), MARVIN:
A platform for large scale analysis of Semantic Web data, In Proceedings of the WebSci’09:
Society On- Line.

Kurz, T., Schaffert, S., Schlegel, K., Stegmaier, F., & Kosch, H. (2014). Sparql-mm-extending
sparql to media fragments. In The Semantic Web: ESWC 2014 Satellite Events (pp. 236-240).
Springer International Publishing.

Battle, R. & Kolas D. (2012) Enabling the Geospatial Semantic Web with Parlament and
GeoSPARQL. Semantic Web 3(4): 355-370

SPB (2015), Semantic Publishing Benchmark - http://ldbcouncil.org

Urbani, J., Piro, R., van Harmelen, F., Bal, E. (2014) Hybrid reasoning on OWL RL. Semantic
Web 5(6): 423-447

