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Executive Summary 

The objective of this deliverable is to develop inference methods that support efficient 
information selection from heterogeneous data pools. They have to be implemented on top 
of GraphDB – an RDF graph database engine. The final goal is to enable efficient retrieval of 
data, considering different criteria and implementing mechanisms, which go beyond the 
capabilities of today’s database and search engines. Technically, these mechanisms can be 
implemented in two ways (i) as expert-systems-style reasoning techniques, which allow new 
facts to be inferred or (ii) as query language extensions, which allow for more efficient 
handling of specific data constraints.  

For the purposes of MULTISENSOR, Ontotext has developed four different types of 
inference: 

 Hybrid reasoning: a combination of forward- and backward-chaining;  

 Parallel multi-threaded reasoning;  

 SPARQL-MM; 

 GeoSPARQL. 

The first section of this document provides an introduction. Section 2 describes hybrid 
reasoning that involves partial forward-chaining materialization, where new facts are derived 
upon insertion of data and stored in the database, with query-time backward-chaining or 
query re-writing. Such support is important in cases where none of the reasoning strategies 
can do the job alone. For instance, in scenarios with very complex reasoning over big 
datasets that would take too long time to pre-compute using forward-chaining. Forward-
chaining is also impractical when big parts of the dataset are deleted or updated on a regular 
basis.  

The third section describes the implementation of parallel multi-threaded reasoning. It 
allows for a serious speed up of the forward-chaining and materialization – the main method 
used for inference in GraphDB. Effectively, this results in loading times that are between 50% 
and 200% faster compared to loading data with a serial inference engine. This is an 
important advantage for a number of application scenarios involving very large datasets (in 
the range of billions of statements). Thus, speeding the inference up makes the use of 
GraphDB feasible for applications where loading data with non-trivial inference can take 
several days or even weeks. Ontotext has multiple clients in the publishing and 
pharmaceutical sectors, which deal with datasets larger than 20 billion triples and for them 
parallel inference is a must. 

Section 4 is about SPARQL-MM, which allows for efficient retrieval of multimedia content, 
based on annotation of images, and movies, using both temporal constraints and positioning 
of objects within the video scenes. The SPARQL-MM support in GraphDB implements the 
required additional specific index structures and the handling of SPARQL syntax extensions. 
The additional indexing structures allow SPARQL-MM queries to be executed in real time. In 
news and media organizations this means that authors and editors will be able to search 
content archives in a much more efficient manner. 

Section 5 presents GraphDB’s support for GeoSPARQL – an extension of SPARQL that defines 
a powerful language for expressing geo-spatial constraints, e.g. overlap or proximity of two 
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geographic regions. Such queries enable much more efficient querying and visualization of 
datasets where geographic location is of high importance, such as news and content 
archives. 
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RDF Resource Description Framework 

RDFS Resource Description Framework Schema 
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WP 
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1 INTRODUCTION 

The objective of this deliverable is to develop inference methods that support efficient 
information selection from heterogeneous data pools. They have to be implemented on top 
of the GraphDB – an RDF graph database (a type of NoSQL graph database engine), also 
known as triplestore1. The final goal is to enable efficient retrieval of data, considering 
different criteria and implementing mechanisms, which go beyond the capabilities of today’s 
database and search engines.  

This deliverable explores the development of four different types of reasoning. Technically, 
these mechanisms can be implemented in two ways (i) as expert-systems-style reasoning 
techniques, which allow new facts to be inferred or (ii) as query language extensions, which 
allow for more efficient handling of specific data constraints. Broadly speaking, inference can 
be characterized by discovering new relations. On the Semantic Web, data is modeled as a 
set of (named) relations between resources. “Inference” means that automatic procedures 
can generate new relations based on the data and some additional information in the form 
of a vocabulary - a set of rules. Whether the new relations are explicitly added to the set of 
data or returned at query time is matter of implementation. Inference is a tool of choice for 
improving the quality of data integration by discovering new relations, automatically 
analyzing the content of data, or managing knowledge in general. Inference-based 
techniques are also important for discovering possible inconsistencies in the data. 

The reasoning techniques will support the semantic search service (i.e. semantic reasoning in 
the knowledge base) and the decision support service. In Figure 1 (taken from D7.2 
deliverable describing the overall architecture) we highlight the exact role of these services 
in the whole MULTISENSOR architecture. 

1.1 Requirements 

In this section, we present the relation of the four different reasoning techniques to the 
purpose of the project. 

Hybrid reasoning combines the strengths of forward-chaining (the default reasoning strategy 
in GraphDB) and backward-chaining. Such combined strategies are useful for reasoning 
scenarios where large amounts of data are combined with the need for goal-driven 
reasoning, particularly in: decision support systems, semantic data integration from multiple 
sources and involving multiple ontologies. 

GraphDB already implements a kind of limited backward-chaining, namely the owl:sameAs 
optimization. With this optimization, statements are stored against clusters of sameAs-
equivalent URIs, rather than directly against URIs. Thus, all statements of a URI are 
"inherited" by all equivalent URIs. When solving queries, any constant URI is treated as the 
equivalent cluster, thus ensuring completeness. A special mode allows enumerating all 
equivalent URIs, if needed. In MULTISENSOR, we extend this approach to other mechanisms 
for semantic data integration, namely through the OWL mapping properties 
owl:equivalentProperty and owl:equivalentClass. Currently, these constructs generate a large 

                                                        
1 Triplestores are built around a range of W3C standards for representation and querying of data in the 
Semantic Web: RDF (data representation, sort of alternative to XML), RDFS (schema language), OWL 
(ontology language), SPARQL (query language) 
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number of "duplicate" inferences (e.g. each statement for a property P is repeated for all 
other properties Q in its cluster of equivalent properties). We also address symmetric, 
inverse, and transitive reasoning by implementing special reasoning strategies. 
Implementing efficient hybrid reasoning is a complex problem as it always involves a tradeoff 
between load-time pre-computation (forward-chaining) and storage consumption on one 
hand, and the speed of query answering on the other. The criteria when to use one or the 
other are not always clear and are hard to estimate. With this initial implementation in 
MULTISENSOR, we are only starting to explore this area. 

 

 

Figure 1: Reasoning services in MULTISENSOR architecture. 

One of the important technical problems that the GraphDB development team had to solve 
in 2014 was to increase data loading speed. This is an important requirement for very large 
or often-changing datasets. We have implemented parallel loading, where the major 
challenge was how to ensure the correct work of the Entity Pool (a central storage of URIs 
and literals) given the multiple loading threads. This has increased the loading speeds from 
50% to 200%. While the parallel loader made the storage process work in parallel, it did not 
do so for the reasoning. The next improvement requested by our clients was to increase the 
speed of inferencing during loading. This requirement is important for even moderately big 
datasets, which involve a significant amount of inferencing (over 20%). MULTISENSOR also 
benefits a lot from this as the ontologies that it uses (NIF and related) involve large amounts 

Inference 
methods 
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of inferencing. Guaranteeing the accuracy of inferencing when it is performed in parallel is a 
challenging technical task, which we are able to tackle as part of our MULTISENSOR work. 

SPARQL-MM (Multimedia) is a proposed SPARQL extension that enables reasoning and query 
answering over media files (e.g. videos). The query extensions include exploring spatio-
temporal relations in semantically annotated multimedia, e.g. finding particular objects or 
types of objects in a spatial relation to each other (e.g. left-right), or a temporal relation to 
each other (e.g. one appearing immediately after the other). Given MULTISENSOR's goals to 
work with varied media content (including images and videos), SPARQL-MM reasoning is a 
natural requirement. Such relations can be very useful for precise querying of large 
multimedia collections. The power of querying shows synergies with semantic enrichment 
and classification. For example, if a video asset is annotated with DBpedia URLs of Barack 
Obama and Gen. Martin Dempsey, we know their professions/offices, and have reasonable 
classification of military professions, then the asset can be found through a query like "find 
shots of the US President standing next to a Soldier". 

Geographical reasoning and querying is very relevant for the news and media domain, 
especially for local news. Many events happen in a specific locality, and the ability to query 
by geography provides an important dimension. In addition, geography is very important in a 
trade context. Therefore, GeoSPARQL reasoning is also relevant for Use Case 32. GraphDB 
supported only rudimentary geospatial reasoning, based on some custom extensions. It can 
find points within a rectangle, points nearby a center, and compute distances. However, 
GeoSPARQL is an emerging standard that provides much deeper functionality, based on 
sophisticated "algebras of regions". These allow various spatial questions to be answered, 
and various geometries and features to be addressed. 

                                                        
2 D8.2 Requirements Use Cases Validation Plan 
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2 COMBINATION OF FORWARD AND BACKWARD-CHAINING 

2.1 Approaches overview  

The logical inference over RDF datasets allows for two principle strategies for rules 
application: 

 Forward-chaining: to start from the known facts (the explicit statements) and to 
perform inference in an inductive fashion. Typically, the goal is to compute the 
Inferred Closure. 

 Backward-chaining: to start from a particular fact or a query, and to verify it or get all 
possible results. In a nutshell, the reasoner decomposes (or transforms) the query (or 
the fact) into simpler (or alternative) facts, which are available in the knowledge base 
or can be proven through further recursive transformations. 

The forward-chaining strategy applies the rules over the available facts in order to infer new 
facts, which are added to the dataset, and then recursively applies the rules over the new 
dataset. The result is the so-called inferred closure: an extension of a knowledge base (the 
RDF dataset or the graph of RDF triples) with all implicit facts (RDF triples) that can be 
inferred from it. The notion Materialization is defined as a procedure that keeps an up-to-
date inferred closure of the knowledge base. Materialization is known as a technique for 
applying inference before query evaluation. This allows for many query optimization 
approaches to be implemented as querying is realized by lookups in the database. The main 
drawback of materialization is that the database changes, additions, and updates are 
generally slow operations. In many scenarios, the materialization of such frequent changes 
does not affect the querying process, as many of the materialized facts are not used in the 
answers. 

In such cases, an alternative to forward-chaining is a backward-chaining strategy for 
inferencing over knowledge bases. Here, answering a query requires only partial 
materialization over the knowledge base. Unfortunately, backward-chaining is inefficient for 
large knowledge bases, as many optimizations for the materialization of a knowledge base 
are not possible. 

In the MULTISENSOR user scenarios, we come across heterogeneous knowledge bases, 
including a stable core set of RDF datasets from a LOD cloud such as DBpedia, Geonames, 
etc., as well as dynamic datasets, extracted by the services from different sources (text and 
multimedia documents), or hypothesis testing for decision support systems. Therefore, to 
support the necessary functionality, we have implemented a hybrid approach to rule 
application in the project. In order to gain from both strategies, one needs to understand 
very well their positive and negative sides.  

Pros and Cons of materialization: 

 Fast query evaluation: 

o No deduction, satisfiability testing, or other kind of reasoning are required at 
query time; 

o RDBMS-like query optimization techniques are applicable. 
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 Slower insertion of new facts (the repository extends the inferred closure after each 
transaction for modification); 

 Slower deletion of facts (the repository has to remove all facts that are no longer true 
from the inferred closure); 

 The maintenance of the inferred closure requires additional space (RAM and disk) to 
manage the extra statements;  

Pros and Cons of backward-chaining: 

 No impact on the insert and update performance (no work is required, when the 
schema changes); 

 Queries easily become 10x slower: 

o If pattern-level re-writing is used, query optimization is impossible, making 
working with big datasets with query optimization impractical; 

o If query re-writing is used, one has to evaluate tens of query variants (to 
mitigate this, some engines using query re-writing have strategies that cut-off 
query re-writing at a certain point, which leads to incomplete results). 

 Query-time reasoning is OK only if: 

o It is not recursive AND 

o It does not introduce multiple alternatives at pattern level (this is the case 
when there is a simple “syntactic transformation”, i.e. If it is equivalent to 
custom SPARQL functions); 

o OR if data is very small (for instance, less than 1M statements), query 
performance is acceptable even without optimization. 

In the next section, we present the main elements of the backward-chaining strategy 
implemented in the project. 

2.2 Implementation in MULTISENSOR 

The Graph DB workbench already supports a state-of-the-art forward-chaining strategy, 
which is additionally extended with parallel reasoning in the MULTISENSOR project. Thus, 
here we present mainly the elements of backward-chaining. We follow one of the most 
advanced approaches to implementing hybrid reasoning for a fraction of OWL in RDF 
databases as presented in the work of Urbani et al. (2014). They implement backward-
chaining based on the QSQ (query-subquery) algorithm for Datalog databases modified to 
support reasoning over OWL RL. In the application of the algorithm, the facts are divided in 
two sets: one over which the forward-chaining is applied and the materialization over the set 
is stored in GraphDB in an optimal way. The other is used to support a backward-chaining 
strategy. It applies the materialization only when it is necessary.  

The paper defines the following properties, which can use backward-chaining:  

 TYPE rdf:type 

 SCO rdfs:subClassOf 

 SPO rdfs:subPropertyOf  
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 EQC owl:equivalentClass  

 EQP owl:equivalentProperty  

 INV owl:inverseOf 

 SYM owl:SymmetricProperty  

 TRANS owl:TransitiveProperty 

We have implemented some of these, and want to add support for ptop:transitiveOver – a 
property that specifies that one property is transitive with respect to another. E.g. rdf:type is 
transitive-over rdfs:subClassOf. 

2.2.1 Supporting indexes for each added statement 

On each added statement, we perform checks for the backward-chaining properties and 
keep in-memory structures relevant to each of them: 

 owl:inverseProperty and owl:equivalentProperty keep a mapping between each 
property and the list of its inverse (or equivalent) properties. 

 rdf:type and rdfs:subClassOf keep the explicit types and the whole subclass hierarchy. 

2.2.2 Answering a SPARQL Query 

Generally speaking, all SPARQL queries are answered using iterators It(?subject, ?predicate, 
?object), where each of the variables can be a wildcard (the contexts, limit/offset are mostly 
irrelevant to the inference). Therefore, in order to provide an answer for the query, we need 
to explain how we define the iterator for each backward-chained property. The 
implementation introduces a new class BackwardChainingWrappingIterator (BCWI), which 
uses the default GraphDB StatementIterator (SI) to provide extended results. 

2.2.3 owl:inverseOf 

We keep track of the list of inverse properties for each property (there might be more than 
one, although all will be equivalent). There are two cases depending on whether the 
property of the iterator (?p) is bound or not: 

1) BCWI(?s, ?p=P, ?o) = Restrict(UnionOf {SI(?o, Pi1, ?s), …, SI(?o, PiN, ?s))) where 
Pi1…PiN is the set of the inverse properties of the property P and Restrict() is an 
operator filtering the results in case ?s or ?o are bound. 

2) BCWI(?s, ?p, ?o) = UnionOf(BCWI(?s, ?p=P1, ?o), …, BCWI(?s, ?p=PN, ?o)) 

Where P1…PN is the list of all properties in the database. 

2.2.4 owl:SymmetricProperty 

The symmetric properties are handled as simplified inverse properties. 

2.2.5 owl:equivalentProperty 

There are again two cases depending on whether the predicate is bound or not: 

1) BCWI(?s, ?p=P, ?o) = Restrict(UnionOf {SI(?s, Pi1, ?o), …, SI(?s, PiN, ?o))) where 
Pi1…PiN is the set of all the equivalent properties of the property P. 
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2) BCWI(?s, ?p, ?o) = UnionOf(BCWI(?s, ?p=P1, ?o), …, BCWI(?s, ?p=PN, ?o)) 

Where P1…PN is the list of all properties in the database. 

2.2.6 Combining inverse/symmetric and equivalent properties for efficiency 

Because all the three properties are handled similarly, it is more efficient to process them 
together. 

2.2.7 owl:equivalentClass 

This has not been implemented yet. 

2.2.8 rdf:type and rdfs:subClassOf 

We keep the explicit types and the subclass hierarchy in memory. It takes 17 bytes for each 
entity (with 32-bit entity IDs) that has a type statement.  

The queries for type are expressed as a join between two iterators: 

BCWI(?s type ?o)=SI(?s type ?x) join SI(?x subClassOf ?o). 

2.2.9 owl:Transitive and owl:TransitiveOver 

We plan to handle them in a similar way to type/subClassOf. 

2.3 Evaluation 

As explained, the trade-off between FC and BC is the loading speed improvement for query 
speed decrease. As shown in the next table, the loading speed has improved nearly 4 times:  

Reasoning Load time, s Total statements Speed, statements/s 

Forward-chaining 905 64M 70,718 

Backward-chaining 3551 64M 18,023 

We have executed two very simple queries to get an initial idea of the query speed decrease: 

Query Forward-chaining Backward-chaining 

select count (*) {?x a cwork:CreativeWork} 11,283 15,851 

select count (*) {?x owl:inverseOf ?y} 153 172 

So, it seems that for simple queries the decrease is OK (negligible for non-transitive 
properties and quite acceptable for type/subClassOf or transitive properties). 

In order to get a feel how the backward chaining performs in a real world scenario, we run 
the basic interactive query mix LDBC’s SPB on this data set. The setup is multithreaded and 
the test ends when each query from the mix has been executed 10 times. The results are 
presented in Table 1. 

Query FC, Time, ms BC, Time, ms Times slower 
Q1 171 2,448 14.32 
Q2 6 14 2.33 
Q3 50 46 0.92 
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Q4 43 44 1.02 
Q5 111 104 0.94 
Q6 120 5,969 49.74 
Q7 45 43 0.96 
Q8 250 210 0.84 
Q9 211 219 1.04 
Q10 454 422 0.93 
Q11 28 789,499 28,196.39 
Q12 70 63 0.90 

Table 1: The execution time of 12 queries 

Table 1 shows that there are some queries that are tens of times slower in the BC scenario, 
compared to the FC one. A notable exception is the query Q11 which is very slow. The 
reason for that is it uses the pattern “?e a owl:Thing”, and owl:Thing is the root of the 
hierarchy. 

On the other hand there are queries t(Q3, Q8 and Q10) that are faster in the BC scenario. 
This could be attributed to the fact that there are less statements in the repository and some 
queries become slightly faster. 
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3 PARALLEL MULTI-THREADED REASONING 

3.1 Approaches overview  

Parallel architecture and multi-threaded reasoning provide very appealing techniques for 
processing RDF knowledge bases consisting of an enormous amount of statements (usually 
several billions). The main reasoning strategy for RDF knowledge bases - materialization, 
faces two problems: (i) maintenance of huge number of URIs, and (ii) inferring new RDF 
statements via inference rules applied to existing, in the knowledge base, RDF statements. 
The problem of handling URIs is related to their size. In order to define a more compact 
representation of RDF statements, the URIs are represented in dictionaries, where each URI 
is identified by a numeric value, which is then used for the internal representation of the RDF 
statements. One of the URI terms’ characteristics in an RDF knowledge base is their uneven 
distribution, i.e. many URI terms appear only a few times. This compression approach allows 
for using parallel processing. Urbani, Maassen and Bal 2010 (Urbani, et al. 2010) describes a 
MapReduce architecture performing the creation of a URI dictionary in three steps.  

The first algorithm identifies the popular terms that appear in knowledge bases above some 
given threshold. It randomly reads portions of the knowledge bases and counts the URI 
terms that appear above the threshold. A dictionary of these most popular terms is created 
and loaded in the memory.  

The second algorithm simultaneously processes all URIs of the statements in the knowledge 
base and constructs dictionaries for the more rare terms. In this way, the algorithm 
constructs also the compact representation of the RDF statements.  

The third algorithm performs the reconstruction of the original statements. A similar 
technique is already implemented in GraphDB and maximally optimized for materialization 
reasoning. Thus, in the MULTISENSOR project, we concentrate on parallel optimization of 
inference of new statements during the materialization of the knowledge base.  

The parallel reasoning cannot manage the global characteristics of RDF reasoning for very 
expressive ontological languages. For example, Oren et. al (2009) shows that partitioning of 
an RDF data base into independent parts is very difficult because it is hard to guarantee the 
soundness and completeness of the reasoning. Random partitioning of the knowledge base 
results in communication overload between the different partitions. Another approach is 
grouping the statements based on the URI terms, participating in the corresponding 
statements. This results in uneven balance between the different groups because of the 
different popularity (as we mentioned above) of the different terms.  

In order to cope with this problem, some authors impose additional restrictions on the 
language expressivity and the type of statements in the knowledge base. For example, Priaya 
et. al (2014) defines an ABox independent partitioning, which supports reasoning in OWL Lite 
knowledge bases. They assume that the knowledge base is represented as a TBox, containing 
the ontology, and an ABox, containing the statements about the world. The independent 
ABox partitioning is defined for a knowledge base K=(T,A), where T is the TBox and A is ABox 
of the knowledge base. Then A = A1  A2 ...  Ai in such a way that if (T,A) |= F then there is 
a partition Aj such that (T,Aj) |= F. Using this definition, they define an incremental algorithm 
for constructing an independent ABox partitioning of K. After building the partitioning, the 
inference is performed on different machines in such a way that different inferences on sub-



D5.2 – V1.0  

Page 18 

queries are done in the appropriate partition. In MULTISENSOR, we have also used 
knowledge base partitioning but we do not separate the ontology statements from the world 
statements, and we support a more expressive ontology language as well. Our approach is 
tuned to the overall architecture of GraphDB. It is presented it in the next section 3.2. 

3.2 Implementation in MULTISENSOR 

3.2.1 GraphDB storage background 

GraphDB stores the statements in the following manner: 

 First the entities (URIs, literals, or blank nodes) are resolved into internal IDs (32- or 
40-bit long values), which are stored in a dictionary file-based structure, called Entity 
Pool; 

 Then each statement is stored in several disk-based structures, called Collections. The 
structures differ by their sort order and are named after it. They are called POS, PSO, 
CPSO, CPSO (the last two are optional). The letters C, P, S and O stand for “context”, 
“predicate”, “subject” and “object” respectively. Thus, the statements are multiplied 
and the advantage is faster query times. 

3.2.2 GraphDB parallel data loading pipeline 

 

Figure 2: The GraphDB parallel data loading pipeline 

In Figure 2, the workflow for fast loading is indicated with blue arrows and the one for 
reasoning is indicated with red arrows. What follows is a brief description of the mechanism: 

1. The thread that stores statements in the PSO collection is modified to put newly 
added statements (i.e. not existing in the repository before) in a buffer. There we 
collect the statements that will be used as an input for the inference. The buffer is 
attached to the PSO collection, because (i) unlike C... collections, it is always there 
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and (ii) the POS collection already takes care to update the statistics. Therefore, it 
is a sort of distribution of the load between POS and PSO storing threads. 

2. There are N identical threads that do inference, each of which consuming 
statements from the buffer, populated on the previous step. This process starts 
when the storage of all statements from the buffer that is currently being loaded 
is completed in all collections. If inference starts beforehand, there is a chance of 
missing valid inferences.  

3. Each of the inferencers feeds newly inferred statements in a queue (eventually, 
blocking queue). This simple structure has to allow multiple threads to put 
statements into it with minimal contention. 

4. There is a separate thread that consumes statements from the inference results 
queue and produces a sorted buffer of statements without duplications. 

5. One "epoch" of inference is done, when (i) the inferencers have exhausted all the 
statements from the buffer of newly added statements, (ii) all the inference 
threads are done and (iii) the sorter and deduplication thread have exhausted the 
inference results queue and have completed the generation of the buffer of 
sorted unique inference results. 

6. The Storage Controller starts a new iteration of storage and inference epoch as it 
starts to consume statements from the Buffer of sorted unique inferred 
statements. 

7. The inference process is done when at the end of an inference epoch the Buffer 
of sorted unique inferred statements is empty. 

Notes: 

 The Storage Controller does not start processing the next Buffer of resolved 
statements until the inference for the previous one is completed. In other words, 
storage and inference work in shifts and never run in parallel. 

 There is a space for further parallelization here and there but we consider the 
implementation of this algorithm to be the right starting point. Because there is a 
good balance between parallelization and simplicity, it looks manageable to 
implement and debug. It serves as a formal proof that this type of parallel inference 
can generate correct results. It also provides a baseline for speed. 

o One such parallelization is not to process the statements in epochs but in a 
continuous manner, in which the queue for the deduplicated inferred 
statements will not wait for all the inferencers to finish before feeding the 
statements in the storage controller; 

o Another one is to postpone the updates for context indexes, CPSO, CPOS until 
the whole data is loaded and then update them from one of the other 
indexes. This will reduce the time inferencers wait for the storage to be 
updated. 
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3.2.3 Implementation details 

 sameAs optimization not supported (we still support sameAs but we keep all 
statements as if they were fully materialized); 

 Currently, the LRU Object Cache has a locking issue, which severely limits the speed 
of the parallel load, especially with big data sets; 

 Update and delete transactions cannot be handled in such a parallel mode; 

 The functionality is currently implemented in the LoadRDF tool, which is used for 
initial loading of data but the pipeline works for normal commits as well; 

 There are detailed performance statistics allowing the comparison between two runs 
with different number of threads. 

3.3 Evaluation 

We have evaluated the parallel inference with three datasets and with different number of 
threads. These are Wordnet, and the SPB-50 million and SPB-1 billion, artificially generated 
datasets from the LDBC’s Semantic Publishing Benchmark (SPB, 2015). As a baseline for each 
dataset, we take the single threaded inference.  

Dataset Wordnet 2.2 

Explicit statements 2.2M 

Total statements 13M 

Rule set Owl-max 

Table 2: Description of the dataset Wordnet 2.2 

According to the LDBC Website “The Semantic Publishing Benchmark v2.0 (SPB) is a LDBC 
benchmark for RDF database engines inspired by the Media/Publishing industry, particularly 
by the BBC’s Dynamic Semantic Publishing approach.” 

The application scenario considers a media or a publishing organization that deals with large 
volume of streaming content, namely news, articles or "media assets". This content is 
enriched with metadata that describes it and links it to reference knowledge – taxonomies 
and databases that include relevant concepts, entities and factual information. This 
metadata allows publishers to efficiently retrieve relevant content, according to their various 
business models. For instance, some, like the BBC, can use it to maintain rich and interactive 
web-presence for their content, while others, e.g. news agencies, would be able to provide 
better-defined content feeds, etc. 

From a technology standpoint, the benchmark assumes that an RDF database is used to 
store both the reference knowledge (mostly static) and the metadata (that grows constantly, 
to stay in synch with the inflow of streaming content). The main interactions with the 
repository are (i) updates, that add new metadata or alter it, and (ii) queries, that retrieve 
content according to various criteria.”3 

 

                                                        
3 See more at: http://ldbcouncil.org/developer/spb 
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Dataset SPB-50m 

Explicit statements 64M 

Total statements 133M 

Rule set Custom: RDFS + owl:sameAs  + owl:inverseOf 

Table 3: Description of the dataset SPB-50m 

Dataset SPB-1B 

Explicit statements 1B 

Total statements 1.3B 

Rule set Custom: RDFS + owl:sameAs  + owl:inverseOf 

Table 4: Description of the dataset SPB-1B 

Only the 4-thread parallel results are presented in the Table 5 below. The 2- and 8-thread 
are skipped because they are not good enough due to a locking issue.  

The SPB-1B dataset has not been successfully loaded in a parallel mode but the expected 
increase is around 20%. 

Dataset Serial Parallel Increase 

 time, s speed, st/s time, s speed, st/s  

Wordnet 730 3,727 628 4,338 16% 

SPB-50M 6,818 7,764 1,345 39,351 407% 

SPB-1B ~48h 5,787 n/a n/a n/a 
Table 5: The 4-thread parallel results 
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4 SPARQL-MM 

Over the last decade, we have witnessed the incredible growth of multimedia technologies. 
The video content is all around us – television, Internet, mobile applications, etc. The video 
content takes a big part of our lives. However, armies of journalists, engineers, and media 
specialists are working behind the scene to make it possible for all this content to reach us. 
One of the MULTISENSOR project’s goals is to deliver a platform and services that will 
support and help these people to do their job more efficiently, and provide a better media 
content as a result.  

The first Pilot Use Case covered by MULTISENSOR describes journalism and media 
monitoring. To tell a story or to present a story from a different angle, a journalist needs to 
analyze a big amount of data from different sources – newspapers, blogs, web sources, social 
media, video materials, etc. All of these different types of data have their own style and 
specifics. It is difficult for a single person, in our case a journalist or a media monitoring 
specialist, to select and find all the data he needs for a limited period.  

The MULTISENSOR project will deliver an infrastructure that will lead to a better data quality 
and reduce the time significantly. Parts of the services that will be provided are speech 
recognition, entity recognition, data enrichment, semantic and faceted search over the data, 
and a decision support system. As we are talking about journalistic work and media 
monitoring, one of the first things that come to mind is video material. This is because today 
video is one of the main means of information in this area. However, it is not an easy job to 
process many video materials and get the relevant information for your task.  

For example, we are working on a story about Barack Obama and the military policy 
represented by his cabinet. We are searching for video content where the US president is 
seen next to a US soldier or officer. Usually, the search will start from the video archives. If 
they are stored in a computer database and we use a full-text search over the titles of the 
materials such as YouTube, this will facilitate our task. Now we retrieve 10 results and every 
video material is between 30 min to an hour. It will take a long time to watch all of it and find 
the content and the scenes that we need for our material. But what happens if a title does 
not represent the content and the most important material never appears in our result set? 
The answer of this question is SPARQL-MM. It gives us the ability to retrieve structural data 
from annotated video content.  

4.1 Approaches overview 

Over the last years, multimedia content and semantic technologies have come closer 
together than ever. Different projects and initiatives have contributed to this process such as 
the W3C recommendations for media annotations and fragmented URIs. The main goal of 
these initiatives is to standardize the representation of multimedia metadata by semantic 
technologies. SPARQL-MM is an extension of the SPARQL query language, which provides 
spatio-temporal filters and aggregated functions and can be valuable for journalists and 
media analyzers.  

In the Barack Obama example, by using SPARQL-MM we can ask with a structured query 
“Give me all video fragments from my archive, where Barack Obama is next to a US soldier 
or a US officer.” The results with the annotated content are shown on video 1 and 2. We use 
Media Fragment URIs to connect the annotations with specific spatio-temporal parts of the 
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video. These specifications provide a standardized media format, which helps to address 
specific media fragments on the web by URIs. Twisted pairs are supported – name-value-
pairs, for example s=start, end for temporal and xywh=x, y, width, height for regions of a 
given fragment.  

In the first video, Barack Obama is next to a US soldier from sec 29 to sec 33 and in the 
second, for the better part of the video. If you want to retrieve a spatio-temporal snippet 
that shows the US president next to a US soldier or officer, you have to ask the database. 
Currently SPARQL does not support queries of this kind because the required information is 
not represented in RDF format but is hidden in media fragmented URIs. SPARQL does not 
support functions of the type rightBeside, remporalOverlap and boudingBox, either.  

 

Figure 3: A snapshot from Video 1. 
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Figure 4: A snapshot from Video 2. 

Thanks to SPARQL-MM, you can ask the database by the following query: 

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> 

PREFIX mmf: <http://linkedmultimedia.org/sparql-
mm/ns/1.0.0/function#> 

SELECT ?t1 ?t2 WHERE { 

    ?f1 rdfs:label “Barack Obama”. 

    ?f2 rdfs:label “US soldier”. 

    FILTER mmf:rightBeside(?f1,?f2) 

} ORDER BY ?t1 ?t2 

4.1.1 SPARQL multimedia functions  

SPARQL-MM supports a set of functions and all of them are following the DE-9IM standard 
describing the topological and temporal relations. The following tables present the name of 
a given function and a short description of the returned results. 

4.1.1.1 Spatial Relations 

Relation name Description 

mf:bottom(resource1,resource2) returns true if resource.y >= 50%. 

mf:isAbove(resource1,resource2) 
returns true if resource1.y + resource1.h <= 
resource2.y, else false. 

mf:isBelow(resource1,resource2) 
returns true if resource2.y + resource2.h <= 
resource1.y, else false. 
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Relation name Description 

mf:left(resource1,resource2) returns true if resource.x + resource.w <= 50%. 

mf:leftBeside(resource1,resource2) 
returns true if resource1.x + resource1.w <= 
resource2.x, else false. 

mf:right(resource1,resource2) returns true if resource.x >= 50%. 

mf:rightBeside(resource1,resource2) 
returns true if resource2.x + resource2.w <= 
resource1.x, else false. 

mf:spatialCovers(resource1,resource2) 
returns true if all points of resource1.box are 
points of resource2.box, else false. 

mf:spatialDisjoint(resource1,resource2) 
returns true is resource1.box has no common 
points with resource2.box, else false. 

mf:spatialEqual(resource1,resource2) 
returns true if resource1.box == 
resource2.box, else false. 

mf:spatialIntersects(resource1,resource2) 
returns true if resource1.box has at least one 
common point with resource2.box, else false. 

mf:spatialTouches(resource1,resource2) 

returns true if resource1.box.edge has at least 
one common point with resource2.box.edge 
and resource1.box.interior has no common 
point with resource2.box.interior, else false. 

mf:top(resource1,resource2) returns true if resource.y + resource.h <= 50%. 
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4.1.1.2 Spatial Aggregations 

Relation name Description 

mf:spatialBoundingBox(resource1,resource2) 

returns new MediaFragmentURI with 
spatial fragment out of existing resources A 
and B, so that x = min( A.x, B.x ) and y = 
min( A.y, B.y ) and w = max( A.x + A.w, B.x + 
B.w ) and h = max( A.y + A.h, B.y + B.h ). 

mf:spatialIntersection(resource1,resource2) 

returns new MediaFragmentURI with 
spatial fragment out of existing resources A 
and B, so that x = max( A.x, B.x ) and y = 
max( A.y, B.y ) and w = min( A.x + A.w, B.x + 
B.w ) - max( A.x, B.x ) and h = min( A.y + 
A.h, B.y + B.h ) - max( A.y, A.x ) 

4.1.1.3 Temporal Relations 

Relation name Description 

mf:after(resource1,resource2) 
Returns true if resource1.start >= 
resource2.end, else false. 

mf:before(resource1,resource2) 
returns true if resource1.end <= 
resource2.start, else false. 

mf:finishes(resource1,resource2) 
returns true if resource1.end == 
resource2.end and resource1.start > 
resource1.start , else false. 

mf:temporalMeets(resource1,resource2) 
returns true if resource1.start = 
resource2.end or resource1.end = 
resource2.start, else false. 

mf:starts(resource1,resource2) 
returns true if resource1.start == 
resource2.start and resource1.end < 
resource2.end , else false. 

mf:temporalContains(resource1,resource2) 
returns true if resource1.start <= 
resource2.start and resource1.end >= 
resource2.end, else false. 

mf:temporalEqual(resource1,resource2) 
returns true if resource1.start == 
resource2.start and resource1.end == 
resource2.end, else false. 
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Relation name Description 

mf:temporalOverlaps(resource1,resource2) 

returns true if resource1.start < 
resource2.start < resource1.end < 
resource2.end or resource2.start < 
resource1.start < resource2.end < 
resource1.end, else false. 

4.1.1.4 Temporal Aggregations 

Relation name Description 

mf:temporalBoundingBox(resource1,resource2) 

returns new MediaFragmentURI with 
temporal fragment ( Min( 
resource1.start, resource2.start ), Max( 
resource1.end, resource2.end ) ). 

mf:temporalIntermediate(resource1,resource2) 

returns new MediaFragmentURI with 
temporal fragment ( Min( 
resource1.end, resource2.end ), Max( 
resource1.start, resource2.start ) ) if 
intersection not exists, else null. 

mf:temporalIntersection(resource1,resource2) 

returns new MediaFragmentURI with 
temporal fragment ( Max( 
resource1.start, resource2.start ), Min( 
resource1.end, resource2.end ) ) if 
intersection exists, else null. 

4.1.1.5 Combined Aggregations 

Relation name Description 

mf:boundingBox(resource1,resource2) 

returns new MediaFragmentURI with spatial and 
temporal fragment. It it works like 
spatialFunction:boundingBox, 
temporalFunction:boundingBox or both together. 

mf:intersection(resource1, resource2) 

returns new MediaFragmentURI with spatial and 
temporal fragment. It works like 
spatialFunction:boundingBox, 
temporalFunction:intersection and both. 



D5.2 – V1.0  

Page 28 

4.2 Implementation in MULTISENSOR 

Support for SPARQL-MM in MULTISENSOR is provided through a set of GraphDB SPARQL 
functions, based on a code written by Thomas Kurz (Kurz et al. 2014), one of the principal 
authors of the SPARQL-MM specification. 

This initial release has no SPARQL-MM indexing or optimizations but it is fully functional. 

4.3 Evaluation 

No further evaluation besides conformance testing has been done. 
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5 GEO-SPARQL 

The second main Pilot Use Case in the MULTISENSOR project is about expanding the market 
of small and medium-sized enterprises outside the country where they operate. The reasons 
for this can be different – searching for new markets, revenue growth, business expansion, 
etc. When making such a decision, many steps have to be considered. For example, studying 
the laws of the chosen country can be challenging, as most of the documents are available 
only in the native language.  

For this purpose, MULTISENSOR offers a platform and services that will provide important 
information about the country’s GDP, corruption, unemployment, purchasing power, 
geopolitical information and specification in a human-readable form. The geopolitical 
information also includes geographical areas, settlements, nested regions, etc. This requires 
the implementation of a single standard for working with this type of data – GeoSPARQL.  

5.1 Approaches overview 

GeoSPARQL represents a standard for retrieving and inserting geospatial RDF data in a wide 
range of geospatial cases – from simple point of interest knowledge bases to detailed 
authoritative geospatial data sources for transportation. It is designed to accommodate 
systems based on qualitative spatial reasoning as well as systems based on quantitative 
spatial computations. This means that a simple knowledge base implementation intended 
for simple use cases does not need to implement all advanced reasoning capabilities of 
GeoSPARQL such as quantitative reasoning or query re-writing.  

There are several terminology sets connected with the topological relations between 
geometries. Every triplestore implementation can choose which terminology set to use and 
support.  

The GeoSPARQL specification contains three main components: 

 Vocabulary definitions, which represent the geometries, relations, and connections 
between them;  

 Aggregation of specific domain functions, which are used in the SPARQL queries;  

 Set of rules for query re-writing. 

5.1.1 GeoSPARQL ontology 

The ontology for representation of features and geometries allows writing queries and 
retrieving spatial data. It is based on the OGC Simple Features model with some adaptations 
for RDF and consists of the geo:SpatialObject class, which can be linked to any ontology of 
interest, and its two subclasses (geo:Features and geo:Geometry). geo:Features and 
geo:Geometry are connected via the geo:hasGeometry property. 

For example, the entity “airport” is represented as geo:Feature and its coordinates as  
geo:Geometry. Depending on the purpose and function, there are different approaches for 
measuring coordinates - from a single point denoting the center of the area to a very 
detailed rectangle describing all points along the borders of an airport. In most of the cases, 
the used geometry will be represented as geo:defaultGeometry.  
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GeoSPARQL includes two different approaches for representing geometry literals and their 
associated hierarchy types – WKT and GML. The default coordinate system for WKT is 
WGS84. The implementation of a given triple store can support either one or both of these 
types. GeoSPARQL provides different OWL classes of the geometry hierarchies associated 
with these geometry representations. Classes for many different types of geometries such as 
points, rectangles, curves, and arcs are provided. The geo:asGML property connects 
geometry entities to the geometry representation literals. The property values use the geo-
sf:WKTLiteral and geo-gml:GMLLiteral types.  

GeoSPARQL also supports a standard for representing topological relations such as 
overlapping between spatial entities. They come in the form of binary properties between 
entities and geospatial functions. The topological binary properties can be used in a SPARQL 
query like a normal property, mainly between objects of Geometry type. However, they can 
also be used between objects of type Features or between Features and Geometries, if 
GeoSPARQL query rewriting is supported. The properties can be represented by three 
different vocabularies – OGC’s Simple Features, Egenhofer’s 9-intersection model, and RCC8. 
Which of them is supported depends on the triple store implementation although usually 
they all are. Simple Futures topological relations include: equals, disjoint, intersects, within, 
contains, overlap, and crosses.  

The filtering functions provide two different types of functionalities. The first type is an 
operator function that takes multiple geometries such as predicates and produces a new 
geometry or a new data type as a result. ogcf:intersection is an example of such a function. It 
takes two geometries and returns a new one representing a spatial intersection. Another 
function such as ogcf:distance produces xsd:double as a result. The second type of functions 
provide a Boolean topological test of geometries. They come with the same three 
vocabularies as binary topological properties – simple features, topological relations, 
Egenhofer relations, and RCC8 relations. These functions are partially redundant because of 
the topological binary properties but the topological functions take geometry literals as 
parameters, while the binary properties link Geometry and Features entities. This means 
that quantitative and qualitative applications can use topological functions. Comparison 
between concrete geometry provided in a query can also be done only by a function. One 
example of a topological function is ogcf:intersects, which is true, if two geometries overlap.  

5.1.2 Rules for query transformation 

The rules for query re-writing allow an additional abstraction layer in the SPARQL queries. 
While only the Geometry entities can be quantitatively compared, sometimes we have to 
consider whether there is a topological connection between two entities. In natural language 
this is represented by the question: “Is Reagan National airport in Washington, DC?” 
Although Reagan National is referred to as a Washington DC airport, it is actually across the 
Potomac River in Virginia. In GeoSPARQL, geo:Feature to geo:Feature and geo:Geometry to 
geo:Feature topological relations are represented as a combination of geo:defaultGeometry 
property and the rules for query re-writing. If geo:Feature is used as a subject or an object of 
the topological relation, the query is automatically rewritten to compare the geo:Geometry 
linked as a default, thus removing the abstraction for processing. For example: 

#Before 

ASK { 
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 ex:DC a geo:Feature; 

 geo:within ex:WashingtonDC. 

 ex:WashingtonDC a geo:Feature. 

} 

#After 
ASK{ 

 ex:DCA a geo:Feature; 

     geo:defaultGeometry ?g1. 

 ex:WashingtonDC a geoFeature; 

     geo:defaultGeometry ?g2. 

 ?g1 geo:within ?g2 

} 

Thus, we provide a more intuitive approach for creating geospatial queries, especially in the 
cases where we do not need many different geometries.  

5.2 Implementation in MULTISENSOR 

In MULTISENSOR, support for GeoSPARQL has been implemented as a GraphDB plugin. The 
plugin provides support for the following GeoSPARQL conformance classes: 

Conformance class Description Note 

Core Defines top-level 
spatial vocabulary 
components. 

General SPARQL support through 
GraphDB.  

Support for the classes geo:SpatialObject 
and geo:Feature. 

Topology vocabulary 
extension 

Defines topological 
relation vocabulary. 

Support for all Simple Features 
properties (geo:sfxxx). 

Support for all Egenhofer properties 
(geo:ehxxx). 

Support for all RCC8 properties 
(geo:rcc8xxx). 
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Conformance class Description Note 

Geometry extension Defines geometry 
vocabulary and non-
topological query 
functions. 

Support for the class geo:Geometry. 

Support for the geof:getSRID function. 

Support for WKT literals with default CRS 
http://www.opengis.net/def/crs/OGC/1.3/CRS8
4 and all CRSs defined in the EPSG 
Geodetic parameter Dataset. Support for 
the Geometry serialization property 
geo:asWKT. 

Partial support for the GML literals 
supporting a subset of GML 3.1.1 with 
the same CRSs as those for WKT. Support 
for the Geometry serialization property 
geo:asGML. 

Geometry topology 
extensions 

Defines topological 
query functions for 
geometry objects. 

Support for the geof:relate function. 

Support for all Simple Features functions 
(geof:sfxxx). 

Support for all Egenhofer functions 
(geof:ehxxx). 

Support for all RCC8 functions 
(geof:rcc8xxx) 

RDFS entailment 
extension 

Defines a mechanism 
for matching implicit 
RDF triples that are 
derived based on RDF 
and RDFS semantics. 

RDF and RDFS support through GraphDB. 
Support for WKT and GML geometry 
classes as defined by their respective 
ontologies. 

Query rewrite 
extension 

Defines query 
transformation rules 
for computing spatial 
relations between 
spatial objects based 
on their associated 
geometries. 

Support for all Simple Features rules 
(geor:sfxxx). 

Support for all Egenhofer rules 
(geor:ehxxx). 

Support for all RCC8 rules (geor:rcc8xxx). 

Custom literals-in-
relations extension 

Defines a custom 
extension that allows 
the use of WKT and 
GML literals in place of 
a geo:SpatialObject 

GeoSPARQL requires geo:SpatialObject 
for queries with spatial relation 
properties. The extension allows for 
specifying a literal geometry serialization 
at the object position. 

Table 6: GeoSPARQL conformance classes 
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5.2.1 Query optimization 

The query re-write extension implementation uses an optimized GraphDB approach with an 
internal custom Lucene index to boost the performance with SPARQL queries that involve 
spatial relations properties. All RDF data that conforms to GeoSPARQL will be automatically 
synchronized with the Lucene index as part of the internal INSERT or DELETE operations. 

In order to benefit from the Lucene index optimization, you have to use the spatial relations 
properties and not the spatial relations functions. For example, the index will be used in the 
query: “find all Features that are within <urn:Europe>” 

select ?x where { 

 ?x a geo:Feature . 

 ?x geo:sfWithin <urn:Europe> 

} 

and will not be used in the query: “find all Features that are within <urn:Europe>”, although 
it will return the same results. 

select ?x where { 

 ?x a geo:Feature . 

 ?x geo:hasDefaultGeometry ?xg . 

 ?xg geo:hasSerialization ?xgLit . 

 <urn:Europe> geo:hasDefaultGeometry ?eg . 

 ?eg geo:hasSerialization ?egLit . 

 filter(geo:sfWithin(?xgLit, ?egLit)) 

} 

5.2.2 Custom literals-in-relations extension 

Standard GeoSPARQL supports only geo:SpatialObject (either geo:Feature or geo:Geometry) 
for the subject and object of spatial relations properties. The GeoSPARQL GraphDB plugin 
provides an extension to the standard that allows for Geometry WKT or GML literals to be 
used in the object position. This simplifies some queries and provides an easy way to use the 
Lucene index with geometries supplied at query time, for example: 

# find all Features that are roughly within Bulgaria (based on the supplied polygon that 
includes parts of neighboring countries too) 

select ?x where { 

 ?x a geo:Feature . 

 ?x geo:sfWithin "Polygon((22 41, 29 41, 29 45, 22 45, 22 
41))"^^geo:wktLiteral . 

} 

5.2.3 Third-party libraries used 

The GeoSPARQL plugins relies on the following third-party libraries: 

 The JTS Topology Suite, an API of 2D spatial predicates and functions, version 1.13, 
LGPL; 
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 Geotoolkit.org, a library for developing geospatial applications, version 3.20, Apache 
license; 

 OGC Tools GML-JTS, a GML parser for Java that supports JTS, version 1.0.3, a 
modified BSD license. 

In addition, some code has been imported from uSeekM, a seemingly obsolete Java library 
that integrates JTS and Geotoolkit.org, version 1.2.2-SNAPSHOT, Apache License. 

5.3 Evaluation 

This release of the GeoSPARQL plugin has undergone only basic conformance testing. 



D5.2 – V1.0  

Page 35 

6 CONCLUSIONS 

In this report we have presented the development of four different types of reasoning –
hybrid reasoning, parallel multi-thread reasoning, SPARQL-MM, and GeoSPARQL.  

Hybrid reasoning combines the strengths of forward- and backward-chaining. It is useful for 
scenarios where a goal-driven reasoning is applied over a large amount of data. Hybrid 
reasoning is particularly common in decision support systems and semantic data integration 
from multiple sources, involving multiple ontologies. The results we achieved with the 
backward chaining prove that we can successfully trade query speed for loading speed (for 
~50M datasets, at least), although some queries might become non-performant.  

The parallel multi-threaded reasoning reduces the loading times from 50% to 200% 
compared to loading with a serial inference engine.  

SPARQL-MM is a proposed SPARQL extension that enables reasoning and query answering 
over media files. Our implementation is very simple and does not integrate well with our 
Query Optimizer. Lack of available public data sets of annotated videos currently prevents 
the evaluation of our implementation. 

GeoSPARQL defines a powerful language for expressing geo-spatial constraints, e.g. 
overlapping or proximity of two geographical regions. Our previous proprietary 
implementation supported only limited number of simple constructs for geospatial RDF 
querying and also it was not dynamic (i.e. inserting new data did not automatically update 
the indexes). This new GeoSPARQL implementation is dynamic, conforms to the standard 
and at the same time allows for efficient query execution plans. 

The updates on the reasoning techniques including also evaluation will be reported in D5.3 
and D5.4 including also assessment according to the performance indicators discussed in 
D1.1. 
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