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Abstract

“Deep-syntactic” dependency structures that capture the argumentative, attributive and coordi-
native relations between full words of a sentence have a great potential for a number of NLP-
applications. The abstraction degree of these structures is in-between the output of a syntactic
dependency parser (connected trees defined over all words of a sentence and language-specific
grammatical functions) and the output of a semantic parser (forests of trees defined over indi-
vidual lexemes or phrasal chunks and abstract semantic role labels which capture the argument
structure of predicative elements, dropping all attributive and coordinative dependencies). We
propose a parser that delivers deep syntactic structures as output.

1 Introduction

Surface-syntactic structures (SSyntSs) as produced by data-driven syntactic dependency parsers are per
force idiosyncratic in that they contain governed prepositions, determiners, support verb constructions
and language-specific grammatical functions such as, e.g., SBJ, OBJ, PRD, PMOD, etc. (Johansson and
Nugues, 2007). For many NLP-applications, including machine translation, paraphrasing, text simpli-
fication, etc., such a high idiosyncrasy is obstructive because of the recurrent divergence between the
source and the target structures. Therefore, the use of more abstract “syntactico-semantic” structures
seems more appropriate. Following Mel’čuk (1988), we call these structures deep-syntactic structures
(DSyntSs). DSyntSs are situated between SSyntSs and PropBank- (Palmer et al., 2005) or Semantic
Frame-like structures (Fillmore et al., 2002). Compared to SSyntSs, they have the advantage to ab-
stract from language-specific grammatical idiosyncrasies. Compared to PropBank and Semantic Frame
stuctures, they have the advantage to be connected and complete, i.e., capture all argumentative, attribu-
tive and coordinative dependencies between the meaningful lexical items of a sentence, while PropBank
and Semantic Frame structures are not always connected, may contain either individual lexical items or
phrasal chunks as nodes, and discard attributive and coordinative relations (be they within the chunks or
sentential). In other words, they constitute incomplete structures that drop not only idiosyncratic, func-
tional but also meaningful elements of a given sentence and often contain dependencies between chunks
rather than individual tokens. Therefore, we propose to put on the research agenda the task of deep-
syntactic parsing and show how a DSyntS is obtained from a SSynt dependency parse using data-driven
tree transduction in a pipeline with a syntactic parser.1 In Section 2, we introduce SSyntSs and DSyntSs
and discuss the fundamentals of SSyntS–DSyntS transduction. Section 3 describes the experiments that
we carried out on Spanish material, and Section 4 discusses their outcome. Section 5 summarizes the
related work, before in Section 6 some conclusions and plans for future work are presented.

2 Fundamentals of SSyntS–DSyntS transduction

Before we set out to discuss the principles of the SSyntS–DSynt transduction, we must specify the
DSyntSs and SSyntSs as used in our experiments.

This work is licenced under a Creative Commons Attribution 4.0 International License. Page numbers and proceedings footer
are added by the organizers. License details: http://creativecommons.org/licenses/by/4.0/

1The term ‘tree transduction’ is used in this paper in the sense of Rounds (1970) and Thatcher (1970) to denote an extension
of finite state transduction (Aho, 1972) to trees.
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2.1 Defining SSyntS and DSyntS
SSyntSs and DSyntSs are directed, node- and edge-labeled dependency trees with standard feature-value
structures (Kasper and Rounds, 1986) as node labels and dependency relations as edge labels.

The features of the node labels in SSyntSs are lexssynt, and “syntactic grammemes” of the value of
lexssynt, i.e., number, gender, case, definiteness, person for nouns and tense, aspect, mood and voice for
verbs. The value of lexssynt can be any (either full or functional) lexical item; in graphical representations
of SSyntSs, usually only the value of lexssynt is shown. The edge labels of a SSyntS are grammatical
functions ‘subj’, ‘dobj’, ‘det’, ‘modif’, etc. In other words, SSyntSs are syntactic structures of the kind
as encountered in the standard dependency treebanks; cf., e.g., dependency version of the Penn TreeBank
(Johansson and Nugues, 2007) for English, Prague Dependency Treebank for Czech (Hajič et al., 2006),
Ancora for Spanish (Taulé et al., 2008), Copenhagen Dependency Treebank for Danish (Buch-Kromann,
2003), etc. In formal terms that we need for the outline of the transduction below, a SSyntS is defined as
follows:

Definition 1 (SSyntS) An SSyntS of a language L is a quintuple TSS = 〈N,A, λls→n, ρrs→a, γn→g〉
defined over all lexical items L of L, the set of syntactic grammemes Gsynt, and the set of grammatical
functions Rgr, where
• the set N of nodes and the set A of directed arcs form a connected tree,
• λls→n assigns to each n ∈ N an ls ∈ L,
• ρrs→a assigns to each a ∈ A an r ∈ Rgr, and
• γn→g assigns to each λls→n(n) a set of grammemes Gt ∈ Gsynt.

The features of the node labels in DSyntSs as worked with in this paper are lexdsynt and “seman-
tic grammemes” of the value of lexdsynt, i.e., number and determination for nouns and tense, aspect,
mood and voice for verbs.2 In contrast to lexssynt in SSyntS, DSyntS’s lexdsynt can be any full, but
not a functional lexeme. In accordance with this restriction, in the case of look after a person, AFTER

will not appear in the corresponding DSyntS; it is a functional (or governed) preposition (so are TO or
BY, in Figure 1).3 In contrast, AFTER in leave after the meeting is a full lexeme; it will remain in the
DSyntS because there it has its own meaning of “succession in time”. The edge labels of a DSyntS are
language-independent “deep-syntactic” relations I,. . . ,VI, ATTR, COORD, APPEND. ‘I’,. . . ,‘VI’ are
argument relations, analogous to A0, A1, etc. in the PropBank annotation. ‘ATTR’ subsumes all (cir-
cumstantial) ARGM-x PropBank relations as well as the modifier relations not captured by the PropBank
and FrameNet annotations. ‘COORD’ is the coordinative relation as in: John-COORD→and-II→Mary,
publish-COORD→or-II→perish, and so on. APPEND subsumes all parentheticals, interjections, direct
addresses, etc., as, e.g., in Listen, John!: listen-APPEND→John. DSyntSs thus show a strong similarity
with PropBank structures, with four important differences: (i) their lexical labels are not disambiguated;
(ii) instead of circumstantial thematic roles of the kind ARGM-LOC, ARGM-DIR, etc. they use a unique
ATTR relation; (iii) they capture all existing dependencies between meaningful lexical nodes; and (iv)
they are connected.4 A number of other annotations have resemblance with DSyntSs; cf. (Ivanova et al.,
2012) for an overview of deep dependency structures. Formally, a DSyntS is defined as follows:

Definition 2 (DSyntS) An DSyntS of a language L is a quintuple TDS = 〈N,A, λls→n, ρrs→a, γn→g〉
defined over the full lexical items Ld of L, the set of semantic grammemes Gsem, and the set of deep-
syntactic relations Rdsynt, where
• the set N of nodes and the set A of directed arcs form a connected tree,
• λls→n assigns to each n ∈ N an ls ∈ Ld,
• ρrs→a assigns to each a ∈ A an r ∈ Rdsynt, and
• γn→g assigns to each λls→n(n) a set of grammemes Gt ∈ Gsem.

Consider in Figure 1 an example for an SSyntS and its corresponding DSyntS.
2Most of the grammemes have a semantic and a surface interpretation; see (Mel’čuk, 2013).
3Functional lexemes also include auxiliaries (e.g. HAVE, or BE when it is not a copula), and definite and indefinite deter-

miners (THE, A); see Figure 1).
4Our DSyntSs are thus DSyntSs as used in the Meaning-Text Theory (Mel’čuk, 1988), only that our DSyntSs do not

disambiguate lexical items and do not use lexical functions (Mel’čuk, 1996).
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(a) almost 1.2 million jobs have been created by the state thanks to their endeavours

restr

quant
quant subj analyt perf analyt pass agent

adv

prepos
det obl obj

prepos

det

(b) almost 1.2 million job create state thanks their endeavour

ATTR

ATTR
ATTR II I

ATTR II

I

Figure 1: An SSyntS (a) and its corresponding DSyntS (b)

2.2 Fleshing out the SSyntS–DSyntS transduction
It is clear that the SSyntS and DSyntS of the same sentence are not isomorphic. The following corre-
spondences between the SSyntS Sss and DSyntS Sds of a sentence need to be taken into account during
SSyntS–DSyntS transduction:

(i) a node in Sss is a node in Sds;
(ii) a relation in Sss corresponds to a relation in Sds;

(iii) a fragment of the Sss tree corresponds to a single node in Sds;
(iv) a relation with a dependent node in Sss is a grammeme in Sds;
(v) a grammeme in Sss is a grammeme in Sds;

(vi) a node in Sss is conflated with another node in Sds; and
(vii) a node in Sds has no correspondence in Sss.

The grammeme correspondences (iv) and (v) and the “pseudo” correspondences in (vi) and (vii)5 are
few or idiosyncratic and are best handled in a rule-based post-processing stage. The main task of the
SSyntS–DSyntS transducer is thus to cope with the correspondences (i)–(iii). For this purpose, we can
view both SSyntS and DSyntS as vectors indexed in terms of two-dimensional matrices I = N ×N (N
being the set of nodes of a given tree 1, . . . ,m), with I(i, j) = ρ(ni, nj), if ni, nj ∈ N and (ni, nj) ∈ A
and I(i, j) = 0 otherwise (where ‘ρ(ni, nj)’ is the function that assigns to an edge a relation label and
i, j = 1, . . . ,m; i 6= j are nodes of the tree). That is, for a given SSyntS, the matrix I(i, j) contains in
the cells (i, j), i, j = 1, . . . ,m, the names of the SSynt-relations between the nodes ni and nj , and ‘0’
otherwise, while for a given DSyntS, the cells of its matrix ID contain DSyntS-relations.

Starting from the matrix IS of a given SSyntS, the task is therefore to obtain the matrix ID of the
corresponding DSyntS, that is, to identify correspondences between i/j, (i, j) and groups of (i, j) of
IS with i′/j′ and (i′, j′) of ID; see (i)–(iii) above. In other words, the task consists in identifying and
removing all functional lexemes, and attach correctly the remaining nodes between them.6

As a “token chain→surface-syntactic tree” projection, this task can be viewed as a classification task.
However, while the former is isomorphic, we know that the SSyntS–DSyntS projection is not. In order
to approach the task to an isomorphic projection (and thus simplify its modelling), it is convenient to
interpret SSyntS and the targeted DSyntS as collections of hypernodes:

Definition 3 (Hypernode) Given a SSyntS Ss with its index matrix IS (a DSyntS Sd with its index matrix
ID), a node partition p (with |p |≥ 1) of IS (ID) is a hypernode hsi (hdi

) iff p corresponds to a partition
p′ (with |p′ |≥ 1) of Sd (Ss).

In this way, the SSyntS–DSyntS correspondence boils down to a correspondence between individual
hypernodes and between individual arcs, and the transduction embraces the following three (classifica-
tion) subtasks: 1. Hypernode identification, 2. DSynt tree construction, and 3. DSynt arc labeling, which
are completed by a post-processing stage.

5(vi) covers, e.g., reflexive verb particles such as se in Spanish, which are conflated in the DSyntS with the verb:
se←aux refl dir-conocer vs. CONOCERSE ‘know each other’; (vii) covers, e.g., the zero subject in pro-drop languages (which
is absent in the SSyntS and present in the DSyntS).

6What is particularly challenging is the identification of functional prepositions: based on the information found in the
corpus only, our system must decide if a given preposition is a full or a functional lexeme. That is, we do not resort to any
external lexical resources.
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1. Hypernode identification. The hypernode identification consists of a binary classification of the
nodes of a given SSyntS as nodes that form a hypernode of cardinality 1 (i.e., nodes that have a one-
to-one correspondence to a node in the DSyntS) vs. nodes that form part of a hypernode of cardinality
> 1. In practice, hypernodes of type one will be formed by: 1) noun nodes that do not govern determiner
or functional preposition nodes, 2) full verb nodes that are not governed by any auxiliary verb nodes
and that do not govern any functional preposition node, adjective nodes, adverbial nodes, and semantic
preposition nodes. Hypernodes of type two will be formed by: 1) noun nodes + determiner / func-
tional preposition nodes they govern, 2) verb nodes + auxiliary nodes they are governed by + functional
preposition nodes they govern.

2. DSynt tree reconstruction. The outcome of the hypernode identification stage is thus the set Hs =
Hs|p|=1

∪Hs|p|>1
of hypernodes of two types. With this set at hand, we can define an isomorphy function

τ : Hs → Hd|p|=1
(with hd ∈ Hd|p|=1

consisting of nd ∈ Nds, i.e., the set of nodes of the target DSyntS).
τ is the identity function for hs ∈ Hs|p|=1

. For hs ∈ Hs|p|>1
, τ maps the functional nodes in hs onto

grammemes (attribute-value pairs) of the lexically meaningful node in hd and identifies the lexically
meaningful node as head. Some of the dependencies of the obtained nodes nd ∈ Nds can be recovered
from the dependencies of their sources. Due to the projection of functional nodes to grammemes (which
can be also seen as node removal), some dependencies will be also missing and must be introduced.
Algorithm 1 recalculates the dependencies for the target DSyntS Sd, starting from the index matrix IS of
SSyntS Ss to obtain a connected tree.

Algorithm 1: DSyntS tree reconstruction
for ∀ni ∈ Nd do

if ∃nj : (nj , ni) ∈ Ss ∧ τ(nj) ∈ Nd then
(nj , ni)→ Sd // the equivalent of the head node of ni is included in DSyntS
else if ∃nj , na : (nj , ni) ∈ Ss ∧ τ(nj) 6∈ Nd∧

τ(na) ∈ Nd then
//na is the first ancestor of nj that has an equivalent in DSyntS
//the equivalent of the head node of ni is not included in DSyntS, but the ancestor na is
(na, ni)→ Sd

else
//the equivalent of the head node of ni is not included in DSyntS, but several ancestors of it are
nb := BestHead(ni, Ss, Sd)
(nb, ni)→ Sd

endfor

BestHead recursively ascends Ss from a given node ni until it encounters one or several head nodes
nd ∈ Nds. In case of several encountered head nodes, the one which governs the highest frequency
dependency is returned.

3. Label Classification. The tree reconstruction stage produces a “hybrid” connected dependency tree
Ss→d with DSynt nodes Nds, and arcs As labelled by SSynt relation labels, i.e., an index matrix we
can denote as I−, whose cells (i, j) contain SSynt labels for all ni, nj ∈ Nds : (ni, nj) ∈ As and
‘0’ otherwise. The next and last stage of SSynt-to-DSyntS transduction is thus the projection of SSynt
relation labels of Ss→d to their corresponding DSynt labels, or, in other words, the mapping of I− to ID
of the target DSyntS.

4. Postprocessing. As mentioned in Section 2, there is a limited number of idiosyncratic correspon-
dences between elements of SSyntS and DSyntS (the correspondences (iv–vii) which can be straight-
forwardly handled by a rule-based postprocessor because (a) they are non-ambiguous, i.e., a ↔ b, c ↔
d ⇒ a = b ∧ c = d, and (b) they are few. Thus, only determiners and auxiliaries in SSyntS map onto a
grammeme in DSyntS, both SSyntS and DSyntS count with less than a dozen grammemes, etc.

3 Experiments

In order to validate the outlined SSyntS–DSyntS transduction and to assess its performance in combi-
nation with a surface dependency parser, i.e., starting from plain sentences, we carried out a number of
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experiments in which we implemented the transducer and integrated it into a pipeline shown in Figure 2.

Joint
PoS Tagger
SSynt parser

SSynt−DSynt
Transducer

Plain
Sentences

DSynt
Treebank

SSynt
Treebank

SSyntS
DSynS

Figure 2: Setup of a deep-syntactic parser

For our experiments, we use the AnCora-UPF SSyntS and DSyntS treebanks of Spanish (Mille et
al., 2013) in CoNLL format, adjusted for our needs. In particular, we removed from the 79-tag SSyntS
treebank the semantically and information structure influenced relation tags to obtain an annotation gran-
ularity closer to the ones used for previous parsing experiments (55 relation tags, see (Mille et al., 2012)).

Our development set consisted of 219 sentences (3271 tokens in the DSyntS treebank and 4953 tokens
in the SSyntS treebank), the training set of 3036 sentences (57665 tokens in the DSyntS treebank and
86984 tokens in the SSyntS treebank), and the test set held-out for evaluation of 258 sentences (5641
tokens in the DSyntS treebank and 8955 tokens in the SSyntS treebank).

To obtain the SSyntS, we use Bohnet and Nivre (2012)’s transition-based parser, which combines
lemmatization, PoS tagging, and syntactic dependency parsing—tuned and trained on the respective sets
of the SSyntS treebank. Cf. Table 1 for the performance of the parser on the development set.

POS LEMMA LAS UAS
96.14 91.10 78.64 86.49

Table 1: Results of Bohnet and Nivre’s surface-syntactic parser on the development set
In what follows, we first present the realization of the SSyntS–DSyntS transducer and then the real-

ization of the baseline.

3.1 SSyntS–DSyntS transducer

As outlined in Section 2.2, the SSyntS–DSyntS transducer is composed of three submodules and a post-
processing stage:

1. Hypernode identification. For the hypernode identification, we trained a binary polynomial (degree
2) SVM from LIBSVM (Chang and Lin, 2001). The SVM allows both features related to the processed
node and higher-order features, which can be related to the head node of the processed node or to its
sibling nodes. After several feature selection trials, we chose the following features for each node n:

• lemma or stem of the label of n,
• label of the relation between n and its head,
• surface PoS of n’s label (the SSynt and DSyntS treebanks distinguish between surface and deep

PoS),
• label of the relation between n’s head to its own head,
• surface PoS of the label of n’s head node.

After an optimization round of the parameters available in the SVM implementation, the hypernode
identification achieved over the gold development set 99.78% precision and 99.02% recall (and thus
99.4% F1). That is, only very few hypernodes are not identified correctly. The main error source are
governed prepositions: the classifier has to learn when to assign a preposition an own hypernode (i.e.,
when it is lexically meaningful) and when it should be included into the hypernode of the governor (i.e.,
when it is functional). Our interpretation is that the features we use for this task are appropriate, but
that the training data set is too small. As a result, some prepositions are erroneously left out from or
introduced into the DSyntS.
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2. Tree reconstruction. The implementation of the tree reconstruction module shows an unlabelled
dependency attachment precision of 98.18% and an unlabelled dependency attachment recall of 97.43%
over the gold development set. Most of the errors produced by this module have their origin in the
previous module, i.e., hypernode identification. When a node has been incorrectly removed, the module
errs in the attachment because it cannot use the node in question as the destination or the origin of a
dependency, as it is the case in the gold-standard annotation:

Gold-standard: ser como eñe
be like letter-n

II II

Predicted: ser eñe

II

When a node has erroneously not been removed, no dependencies between its governor and its depen-
dent can be established since DSyntS must remain a tree (which gives the same LAS and UAS errors as
when a node has been erroneously removed):

Gold-standard: y Michael Jackson

II

Predicted: y a Michael Jackson
and to Michael Jackson

II

II

3. Relation label classification. For relation label classification, we use a multiclass linear SVM. The
label classification depends on the concrete annotation schemata of the SSyntS and DSyntS treebanks
on which the parser is trained. Depending on the schemata, some DSynt relation labels may be easier to
derive from the original SSyntS relation labels than others. Table 2 lists all SSynt relation labels that have
a straightforward mapping to DSyntS relation labels in the used treebanks, i.e., neither their dependent
nor their governor are removed, and the SSyntS label always maps to the same DSynt label.

SSynt DSynt
abbrev ATTR
abs pred ATTR
adv ATTR
adv mod ATTR
agent I
appos ATTR
attr ATTR
aux phras —
aux refl dir II

SSynt DSynt
aux refl indir III
bin junct ATTR
compl1 II
compl2 III
compl adnom ATTR
coord COORD
copul II
copul clitic II
copul quot II

SSynt DSynt
dobj clitic II
dobj quot II
elect ATTR
juxtapos APPEND
modal II
modif ATTR
num junct COORD
obj copred ATTR
prepos II

SSynt DSynt
prepos quot II
prolep APPEND
quant ATTR
quasi coord COORD
quasi subj I
relat ATTR
restr ATTR
sequent ATTR
subj I
subj copred ATTR

Table 2: Straightforward SSynt to DSyntS mappings

Table 3 shows SSyntS relation–DSyntS relation label correspondences that are not straightforward.

SSynt DepRelA Mapping to DSynt
analyt fut remove Gov and Dep; add tense=FUT
analyt pass remove Gov; invert I and II; add voice=PASS
analyt perf remove Gov; add tense=PAST
analyt progr remove Gov; add tem constituency=PROGR
aux refl lex remove Dep; add se at the end of Gov’s lemma
aux refl pass remove Dep; invert I and II; add voice=PASS
compar remove Dep if conjunction
compar /coord /sub conj remove Dep if governed preposition

det
IF Dep=el—un THEN remove Dep; add definiteness=DEF/INDEF
IF Dep=possessive THEN DepRel ATTR‖I‖II‖III
IF Dep=other THEN DepRel ATTR

dobj remove Dep if governed preposition
iobj remove Dep if governed preposition; DepRel II‖III‖IV‖V‖VI
iobj clitic DepRel II‖III‖IV‖V‖VI
obl compl remove Dep if governed preposition; DepRel I‖II‖III‖IV‖V‖VI
obl obj remove Dep if governed preposition; DepRel II‖III‖IV‖V‖VI
punc —
punc init —

Table 3: Complex SSynt to DSynt mappings
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The final set of features selected for label classification includes: (i) lemma of the dependent node, (ii)
dependency relation to the head of the dependent node, (iii) dependency relation label of the head node
to its own head, (iv) dependency relation to the head of the sibling nodes of the dependent node, if any.

After an optimization round of the parameter set of the SVM-model, relation labelling achieved
94.00% label precision and 93.28% label recall on the development set. The recall is calculated con-
sidering all the nodes that are included in the gold standard. The error sources for relation labelling
were mostly the dependencies that involved possessives and the various types of objects (see Table
3) due to their differing valency. For instance, the relation det in su←det−coche ‘his/her car’ and
su←det−llamada ‘his/her phone call’ have different correspondences in DSyntS: su←ATTR−coche
vs. su←I−llamada. That is, the DSyntS relation depends on the lexical properties of the governor.7

Once again, more training data is needed in order to classify better those cases.

4. Postprocessing In the postprocessing stage for Spanish, the following rules capture non-ambiguous
correspondences between elements of the SSynt-index matrix IS = Ns ×Ns and DSyntS index matrix
ID = Nd ×Nd, with ns ∈ Ns and nd ∈ Nd, and ns and nd corresponding to each other (we do not list
here identity correspondences such as between the number grammemes of ns and nd):
• if ns is dependent of analyt pass or analyt refl pass relation, then the voice grammeme in nd is

PASS;
• if ns is dependent of analyt progr, then the voice grammeme in nd is PROGR;
• if ns is dependent of analyt refl lex, then add the particle -SE as suffix of node label (word) of dd;
• if any of the children of ns is labelled by one of the tokens UN ‘amasc’, UNA ‘afem’, UNOS

‘somemasc’ or UNAS ‘somefem’, then the definiteness grammeme in nd INDEF, otherwise it is
DEF;
• if the ns label is a finite verb and ns does not govern a subject relation, then add to I ′ the relation
nd − I→n′d, with n′d being a newly introduced node.

3.2 Baseline
As point of reference for the evaluation of the performance of our SSyntS–DSyntS transducer, we use a
rule-based baseline that carries out the most direct transformations extracted from Tables 2 and 3. The
baseline detects hypernodes by directly removing all the nodes that we are sure need to be removed, i.e.
punctuation and auxiliaries. The nodes that are only potentially to be removed, i.e., all dependents of
DepRels that have a possibly governed preposition or conjunction in Table 3, are left in the DSyntS. The
new relation labels in the DSyntS are obtained by selecting the label that is most likely to substitute the
SSyntS relation label according to classical grammar studies. The rules of the rule-based baseline look
as follows:

1 if (deprel==abbrev) then deep deprel=ATTR
2 if (deprel==obl obj) then deep deprel=II
. . .
n if (deprel==punc) then remove(current node)

4 Results and Discussion

Let us look in this section at the performance figures of the SSyntS parser, the SSyntS–DSyntS trans-
ducer, and the sentence–DSyntS pipeline obtained in the experiments.

4.1 SSyntS–DSyntS transducer results
In Table 4, the performance of the subtasks of the SSyntS–DSyntS transducer is contrasted to the per-
formance of the baselines; the evaluation of the postprocessing subtask is not included because the one-
to-one projection of SSyntS elements to DSyntS guarantees an accuracy of 100% of the operations
performed. The transducer has been applied to the gold standard test set, which is the held-out test set,
with gold standard PoS tags, lemmas and dependency trees. It outputs in total 5610 nodes; the rule-based
baseline outputs 8653 nodes. As mentioned in Section 3, our gold standard includes 5641 nodes.

7Note that lexemes are not generalized: a verb and its corresponding noun (e.g., construct/construction) are considered
distinct lexemes.
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Hyper-Node Detection
Measure Rule-based Baseline Tree Transducer

p 64.31 (5565/8653) 99.79 (5598/5610)
r 98.65 (5565/5641) 99.24 (5598/5641)
F1 77.86 99.51

Attachment and Labelling
Measure Rule-based Baseline Tree Transducer

LAP 50.02 (4328/8653) 91.07 (5109/5610)
UAP 53.05 (4590/8653) 98.32 (5516/5610)
LA-P 57.66 (4989/8653) 92.37 (5182/5610)
LAR 76.72 (4328/5641) 90.57 (5109/5641)
UAR 81.37 (4590/5641) 97.78 (5516/5641)
LA-R 88.44 (4989/5641) 91.86 (5182/5641)

Table 4: Performance of the SSyntS–DSyntS transducer and of the rule-based baseline over the gold-
standard held-out test set (LAP: labelled attachment precision, UAP: unlabelled attachment precision, LA-P: label assign-

ment precision, LAR: labelled attachment recall, UAR: Unlabelled attachment recall and LA-R: Label assignment recall)

Our data-driven SSyntS–DSyntS transducer is much better than the baseline with respect to all eval-
uation measures.8 The transducer relies on distributional patterns identified in the training data set, and
makes thus use of information that is not available for the rule-based baseline, which studies one node
at a time. However, the rule-based baseline results also show that transduction that would remove a few
nodes would provide results close to a 100% recall for the hypernode detection because a DSynt tree is a
subtree of the SSynt tree (if we ignore the nodes introduced by post-processing). This is also evidenced
by the labeled and attachment recall scores. The results of the transducer on the test and development
sets are quite comparable. The hypernode detection is even better on the test set. The label accuracy
suffers most from using unseen data during the development of the system. The attachment figures are
approximately equivalent on both sets.

4.2 Results of deep-syntactic parsing

Let us consider now the performance of the complete DSynt parsing pipeline (PoS-tagger+surface-
dependency parser→ SSyntS–DSyntS transducer) on the held-out test set. Table 5 displays the figures
of the Bohnet and Nivre parser. The figures are in line with the performance of state-of-the-art parsers
for Spanish (Mille et al., 2012).

POS LEMMA LAS UAS
96.05 92.10 81.45 88.09

Table 5: Performance of Bohnet and Nivre’s joint PoS-tagger+dependency parser trained on Ancora-UPF

Table 6 shows the performance of the pipeline when we feed the output of the syntactic parser to the
rule-based baseline SSyntS–DSyntS module and the tree transducer. We observe a clear error propaga-
tion from the dependency parser (which provides 81.45% LAS) to the SSyntS–DSyntS transducer, which
loses in tree quality more than 18%.

Hyper-Node Detection
Measure Baseline Tree Transducer

p 63.87 (5528/8655) 97.07 (5391/5554)
r 98.00 (5528/5641) 95.57 (5391/5641)
F1 77.33 96.31

Labelling and Attachment
Measure Baseline Tree Transducer

LAP 38.75 (3354/8655) 68.31 (3794/5554)
UAP 44.69 (3868/8655) 77.31 (4294/5554)
LA-P 49.66 (4298/8655) 80.47 (4469/5554)
LAR 59.46 (3354/5641) 67.26 (3794/5641)
UAR 68.57 (3868/5641) 76.12 (4294/5641)
LA-R 76.19 (4298/5641) 79.22 (4469/5641)

Table 6: Performance of the deep-syntactic parsing pipeline

5 Related Work

To the best of our knowledge, data-driven deep-syntactic parsing as proposed in this paper is novel. As
semantic role labeling and frame-semantic analysis, it has the goal to obtain more semantically oriented
structures than those delivered by state-of-the-art syntactic parsing. Semantic role labeling received
considerable attention in the CoNLL shared tasks for syntactic dependency parsing in 2006 and 2007

8We also ran MaltParser by training it on the DSynt-treebank to parse the SSynt-test set; however, the outcome was too
weak to be used as baseline.
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(Buchholz and Marsi, 2006; Nivre et al., 2007), the CoNLL shared task for joint parsing of syntactic and
semantic dependencies in 2008 (Surdeanu et al., 2008) and the shared task in 2009 (Hajič et al., 2009).
The top ranked systems were pipelines that started with a syntactic analysis (as we do) and continued
with predicate identification, argument identification, argument labeling, and word sense disambigua-
tion; cf. (Johansson and Nugues, 2008; Che et al., 2009). At the end, a re-ranker that considers jointly
all arguments to select the best combination was applied. Some of the systems were based on integrated
syntactic and semantic dependency analysis; cf., e.g., (Gesmundo et al., 2009); see also (Lluı́s et al.,
2013) for a more recent proposal along similar lines. However, all of them lack the ability to perform
structural changes—as, e.g., introduction of nodes or removal of nodes necessary to obtain a DSyntS.
Klimeš (2006)’s parser removes nodes (producing tectogrammatical structures as in the Prague Depen-
dency Treebank), but is based on rules instead of classifiers, as in our case. The same applies to earlier
works in the TAG-framework, as, e.g., in (Rambow and Joshi, 1997).

However, this is not to say that the idea of the surface→surface syntax→deep syntax pipeline is new.
It goes back at least to Curry (1961) and is implemented in a number of more recent works; see, e.g., (de
Groote, 2001; Klimeš, 2006; Bojar et al., 2008).

6 Conclusions and Future Work

We have presented a deep-syntactic parsing pipeline which consists of a state-of-the-art dependency
parser and a novel SSyntS–DSyntS transducer. The obtained DSyntSs can be used in different applica-
tions since they abstract from language-specific grammatical idiosyncrasies of the SSynt structures as
produced by state-of-the art dependency parsers, but still avoid the complexities of genuine semantic
analysis.9 DSyntS-treebanks needed for data-driven applications can be bootstrapped by the pipeline.
If required, a SSyntS–DSyntS structure pair can be also mapped to a pure predicate-argument graph
such as the DELPH-IN structure (Oepen, 2002) or to an approximation thereof (as the Enju conversion
(Miyao, 2006), which keeps functional nodes), to an DRS (Kamp and Reyle, 1993), or to a PropBank
structure. On the other hand, DSyntS-treebanks can be used for automatic extraction of deep grammars.
As shown by Cahill et al. (2008), automatically obtained resources can be of an even better quality than
manually-crafted resources. In this context, especially research in the context of CCGs (Hockenmeier,
2003; Clark and Curran, 2007) and TAGs (Xia, 1999) should be also mentioned.

To validate our approach with languages other than Spanish, we carried out an experiment on a Chi-
nese SSyntS-DSyntS Treebank (training the DSynt-transducer on the outcome of the SSynt-parser). The
results over predicted input showed an accuracy of about 75%, i.e., an accuracy comparable to the accu-
racy achieved for Spanish. We are also investigating multilingual approaches, such as the one proposed
by McDonald et al. (2013).

In the future, we will carry out further in-depth feature engineering for the task of DSynt-parsing. It
proved to be crucial in semantic role labelling and dependency parsing (Che et al., 2009; Ballesteros and
Nivre, 2012); we expect it be essential for our task as well. Furthermore, we will join surface syntactic
and deep-syntactic parsing we kept so far separate; see, e.g., (Zhang and Clark, 2008; Lluı́s et al., 2013;
Bohnet and Nivre, 2012) for analogous proposals. Further research is required here since although joint
models avoid error propagation from the first stage to the second, overall, pipelined models still proved
to be competitive; cf. the outcome of CoNLL shared tasks.

The deep-syntactic parser described in this paper is available for downloading at https://code.
google.com/p/deepsyntacticparsing/.
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