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Abstract. In this paper, a learning approach coupling Support Vec-
tor Machines (SVMs) and a Genetic Algorithm (GA) is presented for
knowledge-assisted semantic image analysis in specific domains. Explic-
itly defined domain knowledge under the proposed approach includes
objects of the domain of interest and their spatial relations. SVMs are
employed using low-level features to extract implicit information for each
object of interest via training in order to provide an initial annotation
of the image regions based solely on visual features. To account for the
inherent visual information ambiguity spatial context is subsequently
exploited. Specifically, fuzzy spatial relations along with the previously
computed initial annotations are supplied to a genetic algorithm, which
uses them to decide on the globally most plausible annotation. In this
work, two different fitness functions for the GA are tested and evaluated.
Experiments with outdoor photographs demonstrate the performance of
the proposed approaches.

1 Introduction

Recent advances in both hardware and software technologies have resulted in an
enormous increase of the images that are available in multimedia databases or
over the internet. As a consequence, the need for techniques and tools support-
ing their effective and efficient manipulation has emerged. To this end, several
approaches have been proposed in the literature regarding the tasks of indexing,
searching and retrieval of images [1], [2].

The very first attempts to address these issues concentrated on visual similar-
ity assessment via the definition of appropriate quantitative image descriptions,
which could be automatically extracted, and suitable metrics in the resulting
feature space. Coming one step closer to treating images the way humans do,
these were later adapted to a finer granularity level, making use of the output of
segmentation techniques applied to the image [1]. Whilst low-level descriptors,
metrics and segmentation tools are fundamental building blocks of any image
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manipulation technique, they evidently fail to fully capture by themselves the
semantics of the visual medium; achieving the latter is a prerequisite for reaching
the desired level of efficiency in image manipulation. To this end, research efforts
have concentrated on the semantic analysis of images, combining the aforemen-
tioned techniques with a priori domain specific knowledge, so as to result in
a high-level representation of images [2]. Domain specific knowledge is utilized
for guiding low-level feature extraction, higher-level descriptor derivation, and
symbolic inference.

Depending on the adopted knowledge acquisition and representation process,
two types of approaches can be identified in the relevant literature: implicit,
realized by machine learning methods, and explicit, realized by model-based
approaches. The usage of machine learning techniques has proven to be a ro-
bust methodology for discovering complex relationships and interdependencies
between numerical image data and the perceptually higher-level concepts. More-
over, these elegantly handle problems of high dimensionality. Among the most
commonly adopted machine learning techniques are Neural Networks (NNs),
Hidden Markov Models (HMMs), Bayesian Networks (BNs), Support Vector
Machines (SVMs) and Genetic Algorithms (GAs) [3], [4]. On the other hand,
model-based image analysis approaches make use of prior knowledge in the form
of explicitly defined facts, models and rules, i.e. they provide a coherent semantic
domain model to support “visual” inference in the specified context [5], [6].

Regardless of the adopted approach to knowledge acquisition, the exploitation
of spatial context in the analysis process makes necessary the definition and
extraction of context attributes, which are most commonly limited to spatial
relations. The relevant literature considers roughly of two categories for the
latter: angle-based and projection-based approaches. Angle-based approaches
include [14], where a pair of fuzzy k-NN classifiers are trained to differentiate
between the Above/Below and Left/Right relations and the work of [19], where
an individual fuzzy membership function is defined for every relation and applied
directly to the estimated angle-histogram. Projection-based approaches include
[20], where qualitative directional relations in terms of the centre and the sides
of the corresponding objects MBRs were defined, and [13], where the use of a
representative polygon was introduced.

In this paper, a semantic image analysis approach is proposed that combines
two types of learning algorithms, namely SVMs and GAs, with explicitly defined
knowledge in the form of an ontology that specifies domain objects and fuzzy
spatial relations. SVMs are employed for performing an initial mapping between
low-level visual features and the domain objects in the ontology (i.e. generating
an initial hypothesis set for every image region) at the region level, whereas a
GA is subsequently used to optimize this mapping over the entire image, taking
into account the spatial context. Representation of the latter relies on fuzzy
spatial relations extraction, building on the principles of both projection- and
angle- based methodologies. Application of the proposed approach to images
of the specified domain results in the generation of fine granularity semantic
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representations, i.e. a segmentation map with semantic labels attached to each
segment. These initial labels can be used to infer additional knowledge.

The paper is organized as follows: Section 2 presents the overall system archi-
tecture. Sections 3 and 4 describe the employed low- and high-level knowledge
respectively. Sections 5 and 6 detail individual system components. Experimen-
tal results for outdoor photographs are presented in Sect. 7 and conclusion are
drawn in Sect. 8.

2 System Overview

The overall architecture of the proposed system for semantic image analysis is
illustrated in Fig. 1. Initially, a segmentation algorithm is applied in order to
divide the given image into regions, which are likely to represent meaningful
semantic objects. Then, for every resulting segment, low-level descriptions and
spatial relations are estimated, the latter according to the relations supported
by the domain ontology.

Estimated low-level descriptions for each region are employed for generating
initial hypotheses regarding the region’s semantic label. This is realized by eval-
uating the compound low-level descriptor vector by a set of SVMs, each trained
to identify instances of a single concept defined in the ontology. SVMs were
selected for this task due to their generalization ability and their efficiency in
solving high-dimensionality pattern recognition problems [7], [8].

The generated hypothesis sets for each region with the associated degrees
of confidence for each hypothesis along with the spatial relations computed for
every image segment, are subsequently employed for selecting a globally optimal
set of semantic labels for the image regions by introducing them to a genetic
algorithm. The choice of a GA for this task is based on its extensive use in a
wide variety of global optimization problems [9], where they have been shown to
outperform traditional methods, and is further endorsed by the authors previous
experience [10], which showed promising results.

3 Low-Level Visual Information Processing

3.1 Segmentation and Feature Extraction

In order to implement the initial hypothesis generation procedure, the examined
image has to be segmented into regions and suitable low-level descriptions have
to be extracted for every resulting segment. In the current implementation, an
extension of the Recursive Shortest Spanning Tree (RSST) algorithm has been
used for segmenting the image [11].

Considering low-level descriptions, specific descriptors of the MPEG-7 stan-
dard have been selected, namely the Scalable Color, Homogeneous Texture, Region
Shape and Edge Histogram descriptors. Their extraction is performed according
to the guidelines provided by the MPEG-7 eXperimentation Model (XM) [12].
The above descriptors are extracted for every computed image segment and are
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Fig. 1. System Architecture

combined in a single feature vector. This vector constitutes the input to the SVMs
framework which computes the initial hypothesis set for every segment, as will be
described in Sect. 5.

3.2 Spatial Context

Exploiting spatial context, i.e. domain-specific spatial knowledge, in image anal-
ysis tasks is a common practice among the object recognition community. It is
generally observed that objects tend to be present in a scene within a particular
spatial context and thus spatial information can substantially assist in discrimi-
nating between objects exhibiting similar visual characteristics. Among the most
commonly adopted spatial context representations, directional spatial relations
have received particular interest. They are used to denote the order of objects
in space. In the present analysis framework, eight fuzzy directional relations are
supported, namely Above (A), Right (R), Below (B), Left (L), Below-Right (BR),
Below-Left (BL), Above-Right (AR) and Above-Left (AL).

Fuzzy directional relations extraction in the proposed analysis approach builds
on the principles of projection- and angle- based methodologies [13], [14] and
consists of the following steps. First, a reduced box is computed from the ground
object’s (the object used as reference and is pointed in dark grey in Fig. 2)
Minimum Bounding Rectangle (MBR) so as to include the object in a more
representative way. The computation of this reduced box is performed in terms
of the MBR compactness value c, which is defined as the value of the fraction of
the objects’s area to the area of the respective MBR: If the initially computed
c is below a threshold T, the ground objects’s MBR is reduced repeatedly until
the desired threshold is satisfied. Then, eight cone-shaped regions are formed on
top of this reduced box, as illustrated in Fig. 2, each corresponding to one of the
defined directional relations. The percentage of the figure object (whose relative
position is to be estimated and is pointed in light grey in Fig. 2) points that are
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included in each of the cone-shaped regions determines the degree to which the
corresponding directional relation is satisfied. After extensive experimentation,
the value of threshold T was set equal to 0.85.
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Fig. 2. Fuzzy directional relations definition

4 Knowledge Infrastructure

Among the possible domain knowledge representations, ontologies [15] present
a number of advantages, the most important being that they provide a for-
mal framework for supporting explicit, machine-processable semantics definition
and they enable the derivation of new knowledge through automated inference.
Thus, ontologies are suitable for expressing multimedia content semantics so
that automatic semantic analysis and further processing of the extracted seman-
tic descriptions is allowed. Following these considerations, a domain ontology was
developed for representing the knowledge components that need to be explicitly
defined under the proposed approach. This contains the semantic concepts that
are of interest in the examined domain (e.g. in the beach vacation domain: Sea,
Sand, Person, etc.), as well as their spatial relations. The values of the latter for
the concepts of the given domain, as opposed to concepts themselves that are
manually defined, are estimated according to the following ontology population
procedure:

Let S = {si , i = 1, ..., I} denote the set of regions produced for an image
by segmentation, O = {op , p = 1, ... P} denote the set of objects defined in the
employed domain ontology and

R = {rk, k = 1, ..., K} = { A, AL, AR, B, BL, BR, L, R } , (1)

denote the set of supported spatial relations. Then, the degree to which si satis-
fies relation rk with respect to sj can be denoted as Irk

(si, sj), where the values
of function Irk

are estimated according to the procedure of Sect. 3.2 and belong
to [0, 1]. To populate the ontology, this function needs to be evaluated over a set
of segmented images with ground truth annotations, that serves as a training
set. More specifically, the mean values, Irkmean, of Irk

are estimated, for every k
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over all region pairs of segments assigned to objects (op, oq), p �= q. Additionally,
the variance values σ2

rk
(2), are obtained for each of the relations.

σ2
rk

=
∑N

i=1(Irki − Irkmean)2

N , (2)

where N denotes the plurality of object pairs (op, oq) for which rk is satisfied.
The calculated values are stored in the ontology. These constitute the constraints
input to the optimization problem which is solved by the genetic algorithm, as
will be described in Sect. 6.

5 Initial Hypothesis Generation

As already described in Sect. 2, a Support Vector Machines (SVMs) structure is
utilized to compute the initial hypothesis set for every image segment. Specifi-
cally, an individual SVM is introduced for every defined concept of the employed
domain ontology, to detect the corresponding instances. Each SVM is trained un-
der the ‘one-against-all’ approach. For that purpose, the training set assembled
in Sect. 4 is employed and the combined region feature vector, as defined in Sect.
3.1, constitutes the input to each SVM. For the purpose of initial hypothesis gen-
eration, every SVM returns a numerical value in the range [0, 1] which denotes
the degree of confidence to which the corresponding segment is assigned to the
concept associated with the particular SVM. The metric adopted is defined as
follows: For every input feature vector the distance D from the corresponding
SVM’s separating hyperplane is initially calculated. This distance is positive in
case of correct classification and negative otherwise. Then, a sigmoid function
[16] is employed to compute the degree of confidence, DOC, as follows:

DOC =
1

1 + e−mD
, (3)

where the slope parameter m is experimentally set. The pairs of all domain
concepts and their respective degree of confidence comprise each segment’s hy-
pothesis set. The above SVM structure was realized using the SVM software
libraries of [17].

6 Hypothesis Refinement

As outlined in Sect. 2, after the initial set of hypotheses is generated (Sect. 5),
based solely on visual features, and the fuzzy spatial relations are computed
for every pair of image segments (Sect. 3.2), a genetic algorithm (GA) is intro-
duced to decide on the optimal image interpretation. The GA is employed to
solve a global optimization problem, while exploiting the available domain spa-
tial knowledge, and thus overcoming the inherent visual information ambiguity.
Spatial knowledge is obtained as described in Sect. 4 and the resulting learnt
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fuzzy spatial relations serve as constraints denoting the “allowed” domain ob-
jects spatial topology.

Fitness function

More specifically, the proposed algorithm uses as input the initial hypothesis
sets (generated by the SVMs structure), the fuzzy spatial relations extracted be-
tween the examined image segments, and the spatial-related domain knowledge
as produced by the particular training process. Under the proposed approach,
each chromosome represents a possible solution. Consequently, the number of
the genes comprising each chromosome equals the number I of the segments si

produced by the segmentation algorithm and each gene assigns a defined domain
concept to an image segment.

An appropriate fitness function is introduced to provide a quantitative mea-
sure of each solution fitness, i.e. to determine the degree to which each interpre-
tation is plausible:

f(C) = λ × FSnorm + (1 − λ) × SCnorm , (4)

where C denotes a particular chromosome, FSnorm refers to the degree of low-
level descriptors matching, and SCnorm stands for the degree of consistency with
respect to the provided spatial domain knowledge. The variable λ is introduced
to adjust the degree to which visual features matching and spatial relations
consistency should affect the final outcome.

The value of FSnorm is computed as follows:

FSnorm =
∑I

i=1 IM (gij) − Imin

Imax − Imin
, (5)

where

IM (gij) ≡ DOCij , (6)

denotes the degree to which the visual descriptors extracted for segment si match
the ones of object op, where gip represents the particular assignment of op to
si. Thus, IM (gip) gives the degree of confidence, DOCip , associated with each
hypothesis and takes values in the interval [0, 1]. Imin =

∑I
i=1 minjIM (gij) is

the sum of the minimum degrees of confidence assigned to each region hypothe-
ses set and Imax =

∑I
i=1 maxjIM (gij) is the sum of the maximum degrees of

confidence values respectively. For the computation of SCnorm, two different ap-
proaches are followed, as described in the following subsections.

First approach to fuzzy spatial constraints verification

Estimating the degree to which the spatial constraints between two object to
segment mappings gip, gjq are satisfied is a prerequisite for exploiting spatial
context in the analysis procedure. In this work, this degree of satisfaction is
expressed by the function Is(gip, gjq). In the first approach presented in this
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subsection, IS (gip, gjq) is defined with the help of a normalized euclidean dis-
tance d(gip, gjq), which is calculated according to the following equation:

d(gip, gjq) =

√∑8
k=1(Irkmean(op, oq) − Irk

(si, sj))2√
8

, (7)

where Irkmean is part of the knowledge infrastructure, as discussed in Sect. 4,
Irk

(si, sj) denotes the degree to which spatial relation rk is verified for a certain
pair of segments si, sj of the examined image and op, oq denote the domain de-
fined concepts assigned to them respectively. Distance d(gip, gjq) receives values
in the interval [0, 1]. The function IS (gip, gjq) is then defined as:

IS (gip, gjq) = 1 − d(gip, gjq) (8)

and takes values in the interval [0, 1] as well, where ‘1’ denotes an allowable
relation and ‘0’ denotes an unacceptable one. Using this, the values of SCnorm

is computed according to the following equation:

SCnorm =
∑W

l=1 ISl
(gij , gpq)

W
, (9)

where W denotes the number of the constraints that had to be examined.

Second approach to fuzzy spatial constraints verification factor

In this second approach, function IS(gip, gjq) returning the degree to which
the spatial constraint between the objects involved in the gip and gjq mappings
is satisfied, is set to receive values in the interval [−1, 1], where ‘1’ denotes an
allowable relation and ‘−1’ denotes an unacceptable one based on the learnt
spatial constraints. To calculate this value for a specific pair of objects oi and
oj the following procedure is used. For every computed triplet [rk Irkmean σ2

rk
]

of the corresponding spatial constraint (Sect. 4) where Irkmean �= 0, a triangular
fuzzy membership function [21] is formed, as illustrated in Fig. 3(a), to compute
the corresponding degree.

Let dk denote the value resulted from applying the membership function with
respect to relation rk, as illustrated in Fig. 3(b). Once, the corresponding dk val-
ues have been computed for each relation, i.e. for k = 0, 1, ..8, they are combined
to form the degree IS(gip, gjq) to which the corresponding spatial constraint is
satisfied. The calculation is based on based on (10), where rm are the relations
for which Irmmean �= 0, and rn are the extracted relations for which Irnmean = 0.

IS (gip, gjq) =
∑

m
Irm∗dm

IR∑
m dm

−
∑

n

Irn , i �= j (10)

where IR stands for

IR =
∑

m

Irm (11)
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Fig. 3. Triangular fuzzy membership function

Then, SCnorm is calculated according to the following equation:

SCnorm =
SC + 1

2
and SC =

∑W
l=1 ISl

(gij , gpq)
W

, (12)

where W denotes again the number of the constraints that had to be examined.

Implementation of the genetic algorithm

To implement the previously described optimization process, a population of 200
chromosomes is employed, and it is initialized with respect to the input set of
hypotheses. After the population initialization, new generations are iteratively
produced until the optimal solution is reached. Each generation results from the
current one through the application of the following operators.

– Selection: a pair of chromosomes from the current generation are selected
to serve as parents for the next generation. In the proposed framework, the
Tournament Selection Operator [18], with replacement, is used.

– Crossover: two selected chromosomes serve as parents for the computation
of two new offsprings. Uniform crossover with probability of 0.7 is used.

– Mutation: every gene of the processed offspring chromosome is likely to be
mutated with probability of 0.008. If mutation occurs for a particular gene,
then its corresponding value is modified, while keeping unchanged the degree
of confidence.

Parameter λ, regulating the relative weights of low-level descriptor matching
and spatial context consistency was set to 0.35 after experimentation. The re-
sulting weight of SCnorm, points out the importance of spatial context in the
optimization process.
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To ensure that chromosomes with high fitness will contribute to the next gen-
eration, the overlapping populations approach was adopted. More specifically,
assuming a population of m chromosomes, ms chromosomes are selected ac-
cording to the employed selection method, and by application of the crossover
and mutation operators, ms new chromosomes are produced. Upon the resulting
m + ms chromosomes, the selection operator is applied once again in order to
select the m chromosomes that will comprise the new generation. After exper-
imentation, it was shown that choosing ms = 0.4m resulted in higher perfor-
mance and faster convergence. The above iterative procedure continues until the
diversity of the current generation is equal to/less than 0.001 or the number of
generations exceeds 50.

7 Experimental Results

In this section, we present experimental results from testing the proposed ap-
proach in outdoor images. First, a domain ontology had to be developed to repre-
sent the domain objects of interest and their relations. Six concepts are currently
supported, namely Sky, Water, Ground, Building, Vegetation and Rock.

Then, a set of 200 randomly selected images belonging to the beach vacation
domain were used to assemble a training set for the low-level implicit knowledge
acquisition (SVMs training) and computation of the fuzzy spatial constraints. A
corresponding set comprising 400 images was similarly formed to serve as a test
set for the evaluation of the proposed system performance. Each image of the
training/test set was first manually annotated according to the domain ontology
definitions.

According to the SVMs training process, a set of instances were selected for
every defined domain concept from the assembled training image set. The Gaus-
sian radial basis function was used as a kernel function by each SVM, to allow
for nonlinear discrimination of the samples. The low-level combined feature vec-
tor, as described in detail in Sect. 3.1, is composed of 433 values, normalized in
the interval [−1, 1]. On the other hand, for the acquisition of the fuzzy spatial
constraints, the procedure described in Sect. 4 was followed for each possible
combination of the defined domain objects that were present in the employed
image training set.

Based on the trained SVMs structure, initial hypotheses are generated for
each image segment as described in Sect. 5, which are then passed in the genetic
algorithm along with the fuzzy spatial constraints in order to determine the
globally optimal interpretation. In Fig. 4 indicative results are given showing the
input image, the annotation resulting from the initial hypotheses set, considering
for each image segment the hypothesis with the highest degree of confidence, and
the final interpretation after the application of the genetic algorithm.

In Table 1, quantitative performance measures are given in terms of precision
and recall for both approaches to fuzzy spatial constraints verification. Table 1
makes evident the superiority of the first out of the two approaches to fitness
evaluation. It must be noted that for the numerical evaluation, any object present
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Fig. 4. Indicative results for the outdoor images domain

Table 1. Numerical evaluation for the outdoor images domain

Initial Hypothesis Final interpretation 1 Final interpretation 2

Object precision recall precision recall precision recall

Sky 93.33% 76.36% 93.33% 83.17% 93.33% 76.36%

Water 58.54% 42.86% 63.42% 52% 56.10% 46.0%

Building 81.72% 94.95% 87.83% 93.52% 81.74% 94.95%

Rock 61.11% 40.74% 83.33% 57.69% 72.22% 56.52%

Ground 56.52% 61.90% 78.26% 43.90% 69.57% 44.44%

Vegetation 42.47% 65.96% 39.73% 85.29% 41.10% 71.43%

Total precision 71.39 % 75.83 % 72.22 %

in the examined image test set that was not included in the domain ontology
concept definitions, e.g. umbrella, was not taken into account.

After a careful observation of the presented results, we can confirm the good
generalization ability of SVMs, regardless of the usage of a limited training set.
Furthermore, we can justify the choice of using a genetic algorithm to reach an
optimal image interpretation given degrees of confidence for visual similarity and
spatial consistency against the domain definitions.
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8 Conclusions

In this paper, an approach to knowledge-assisted semantic image analysis that
couples Support Vector Machines (SVMs) with a Genetic Algorithm (GA) is pre-
sented. The proposed system was tested with outdoor photographs and produced
satisfactory results. Furthermore, the system can be easily applied to additional
domains, given the fact that an appropriate domain ontology is defined and the
corresponding training sets are formed.
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