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ABSTRACT  

In this paper we present the Qimera segmentation 
platform and describe the different approaches to 
segmentation that have been implemented in the system 
to date. Analysis techniques have been implemented for 
both region-based and object-based segmentation. The 
region-based segmentation algorithms include: a colour 
segmentation algorithm based on a modified Recursive 
Shortest Spanning Tree (RSST) approach, an 
implementation of a colour image segmentation 
algorithm based on the K-Means-with-Connectivity-
Constraint (KMCC) algorithm and an approach based on 
the Expectation Maximization (EM) algorithm applied in 
a 6D colour/texture space. A semi-automatic approach to 
object segmentation that uses the modified RSST 
approach is outlined. An automatic object segmentation 
approach via snake propagation within a level-set 
framework is also described. Illustrative segmentation 
results are presented in all cases. Plans for future 
research within the Qimera project are also discussed. 

1. INTRODUCTION  

The Qimera initiative is a pan-European collaborative 
voluntary research project. Its objective is to develop a 
flexible modular software architecture for video object 
segmentation and tracking which can be used as a vehicle 
and test-bed for collaborative algorithm development. 
The background to the project and the structure of the 
very first version of the system developed is described in 
[1]. Since the version described in [1], a number of 
analysis tools, developed by Qimera partners, have been 
integrated into the system. In this paper, we describe each 
analysis technique integrated to date and present some 
illustrative results in each case. A comparison of the 
performance of the different techniques is not presented 
here, since this is the subject of an ongoing work item 
within the project and will be reported upon in a 
subsequent publication. The analysis techniques that have 

been developed can be loosely categorised as either 
region-based or object-based approaches to 
segmentation. The region-based approaches are described 
in Section 2 of this paper. The object-based approaches 
are described in Section 3. The future work planned 
within Qimera is briefly outlined in Section 4.  

2. REGION-BASED SEGMENTATION TOOLS 

2.1. Modified RSST  

This approach is based on a straightforward extension of 
the well known Recursive Shortest Spanning Tree (RSST) 
algorithm [2]. The algorithm is explained in detail in [1] 
and is only briefly described here.  We modify the 
original algorithm to avoid merging regions with very 
different colours. To this end, we carry out the RSST in 
the HSV colour space and add a second merging stage in 
which we do not penalize large regions. 

2.1.1. Results  

Illustrative results of the modified algorithm versus the 
standard RSST for images from the Foreman and Table 
Tennis sequences are  presented in Figure 1. 

2.2. Region-based segmentation via KMCC  

The segmentation scheme presented in this section is 
based on combining a novel segmentation algorithm and a 
procedure for accelerating its execution. The 
segmentation algorithm is based on a variant of the K-
Means-with-connectivity-constraint algorithm (KMCC) 
[3], to produce connected regions. The acceleration 
procedure is based on using properly reduced versions of 
the original images as input and performing partial pixel 
reclassification after the convergence of the KMCC-
based algorithm. The overview of the proposed scheme is 
presented in Fig. 2. 
 



 
Figure 1: RSST (left) vs. modified RSST (right)  

The KMCC-based segmentation algorithm is made 
of four steps. The first step is the estimation of the color 
and texture features to be used for pixel classification. 
The color feature vector of pixel ][ yx pp=p  is made of 
the three intensity coordinates of the CIE L*a*b* color 
space: ( ) ( ) ( ) ( )[ ]ppppI baL III= . In order to calculate a 
texture feature vector ( )pT  for pixel p , the 2D fast 
iterative scheme for performing the Discrete Wavelet 
Frames (DWF) decomposition is used, based on the low-
pass Haar filter. 

The feature estimation is followed by an initial 
clustering procedure, in order to compute the initial 
values required by the KMCC algorithm. For that, the 
image is broken down into square non-overlapping blocks 
of dimension f  and intensity and texture feature vectors 
are assigned to each block. The number of regions of the 
image is initially estimated by applying a variant of the 
maximin algorithm to the blocks, followed by the 
application of a simple K-Means algorithm. Using the 
output of the K-Means and a recursive component-
labeling algorithm, a total of K ′  connected regions ks  
are identified. Their intensity, texture and spatial centers, 

kI , kT  and kS  respectively, are then calculated as the 
mean values of the features of the pixels belonging to the 
blocks assigned to each region. 

In the conditional filtering step, a moving average 
filter alters the intensity features in those parts of the 
image where intensity fluctuations are particularly 
pronounced. The decision of whether the filter should be 
applied to a particular pixel p  is made by evaluating the 
norm of its texture feature vector ( )pT ; the filter is not 
applied if that norm is below a threshold thT . The output 
of the conditional filtering module can be expressed as: 
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where maxT  is the maximum value of the norm ( )pT  in 
the image. Region intensity centers calculated using 
these filtered intensities are denoted kJ . 

In the final step of the proposed segmentation 
algorithm, the pixels are classified into regions by a 
variant of the KMCC algorithm, using a distance of a 
pixel p  from a region ks  defined as: 

( ) ( ) ( ) k
k

kkk A
A

sD SpTpTJpJp −+−+−= λ,  

where ( ) kJpJ − , ( ) kTpT −  and kSp −  are the 

Euclidean distances of the intensity, texture and spatial 
feature vectors respectively, kA  is the area of region ks , 

A  is the average area of all regions and λ  is a 
regularization parameter. The KMCC algorithm performs 
splitting of non-connected regions and merging of 
neighboring regions with similar intensity or texture 
centers. The region centers are recalculated in every 
iteration and centers corresponding to regions that fall 
below a size threshold %75.0=sizeth  of the image area, 
are omitted.  

In order to accelerate the completion of the 
segmentation process, the above-presented segmentation 
algorithm is applied to properly reduced images, where 
each pixel corresponds to a RR × square block of the 
original image. The value of R  is chosen so that even 
undesirable regions (falling below the size threshold 

sizeth ) are detectible in the reduced image. This technique 
improves the time efficiency of the segmentation 
process; however, edges between objects are crudely 
approximated by piecewise linear segments, thus 
lowering the perceptual quality of the result [4]. To 
alleviate this problem, the subsequent reclassification of 
pixels belonging to blocks on edges between regions is 
proposed. If a block, assigned to one region, is 
neighboring to blocks of Γ  other regions, 0≠Γ , the 
assignments of all pixels of the original image 
represented by that block must be re-evaluated, since 
each of them may belong to any one of the possible 1+Γ  
regions. The reclassification of these disputed pixels is 
performed using their intensity values in the CIE L*a*b 
color space and a Bayes classifier. This process is 
illustrated in Fig. 2. 
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Figure 2: Overview of the KMCC-based segmentation scheme.

 
 

   
 

   
 

   
Figure 3: Results of the KMCC-based segmentation scheme on still images. 



2.2.1. Results  

Some results of the application of the aforementioned 
scheme to still images are presented in Fig. 3 (region 
boundaries and corresponding segmentation masks). It 
can be seen that the proposed segmentation scheme has 
succeeded is creating meaningful regions without blocky 
contours. 

2.3. Region-based segmentation via the EM 
algorithm 

In this approach, we assume that the spatial distribution of 
colour and texture primitives in the video frames can be 
modelled as a mixture of Gaussians. We use six features 
for segmentation, three colour and three texture 
components. The three colour components are computed 
from the well-known CIE L*a*b* colour space, where L* 
encodes luminance and a* and b* denote the range from 
red to green and range from yellow to blue, respectively. 
The other three texture components are defined in terms 
of anisotropy, contrast and orientation primitives 
extracted from second order statistics σM  of the pixels 
in small neighbourhoods.  

The σM  for each pixel is defined as  
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The result of σM  is a 2x2 symmetric positive 

semidefinite matrix which provides three pieces of 
information about each pixel’s orientations along the x , 
y  and xy  dimensions. We compute each pixel’s 

anisotropy, contrast and orientation, represented as a , c  
and θ  respectively, using the following equations: 
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where 1λ  and 2λ  are the first and second eigenvalues of 

σM . Since the matrix σM  is symmetric positive 

semidefinite, the eigenvalues can be computed easily 
from the equation 
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with 21 λλ ≥ . 
Once the features are extracted from the image, the 

Expectation Maximization (EM) algorithm is used to 
determine the maximum likelihood parameters of a 
mixture of K  Gaussians in the feature space as described 
in [4]. The feature vectors are modelled as a mixture of 
Gaussian distributions of the form: 
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is the probability density function for cluster j , 

),( jjj Σ= µθ  is the set of parameters for density 

function )( jij Xf θ , jµ  is the mean of cluster j , jπ  

is the mixing proportion of cluster j  subject to the 

condition 0≥jπ  and ∑ =
=

k
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1π  where K  is the 

number of components. iX  is a 6-dimensional feature 

vector, ).....,,.....,( 2121 kk θθθπππ=Φ  is the set of 

all parameters, and )( ΦiXf  is the probability density 

function of our observed data point iX  given parameters 

Φ .  

The maximization is performed by the following 
iteration.  
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where [ ]ijzE  is the expected value of the probability that 

the data belongs to cluster j  and [ ]∑ =

N

i ijzE
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 is the 

estimated number of data points in class j . At each 
iteration, the model parameters are re-estimated to 
maximize the model log-likelihood, )(log ΦXf , until 

convergence. If the initial parameters are good 
approximations the iteration converges to the true 
solutions. We initialise the mean vectors by randomly 
choosing from data points with some Gaussian noises and 
constrain the initial covariances to be proportional to the 
identity matrix. Finally we choose K  to be ranged from 
2 to 6 and use the MDL [6][7] principle to select the 
optimal number of mixture components automatically. 

After running the EM algorithm, each image pixel is 
labelled with the cluster for which it attains the highest 
likelihood. A 3X3 max-vote filter is then applied to 
smooth the image and a connected-component algorithm 
is performed to produce a set of homogeneous image 
regions.  

2.3.1. Results  

Some results of using the EM segmentation algorithm are 
illustrated in Figure 4. 

3. OBJECT-BASED SEGMENTATION TOOLS 

3.1. Semi-automatic object segmentation  

In this approach user interaction is performed in order to 
define what objects are to be segmented within an initial 
image in the sequence [1]. The result of user interaction 
is then used in an automatic segmentation process. It is 
desirable that user interaction be easily and quickly 
performed. To this end, we allow the user to mark objects 
to be segmented via a simple mouse drag over each 
object. The interface provided and an example of user 
interaction is presented in Fig. 5(a). The results of the 
automatic segmentation process based on this interaction 
are also presented to the used within the interface. The 
automatic process uses the result of the algorithm 
described in Section 2.1. Regions coincident with an 
object’s mouse drag are added to that object. Unclassified 
objects are assigned to competing objects using a 
normalized distance criterion similar to that used in the 
modified RSST algorithm. For complex objects, user 
interaction (and the subsequent automatic process) can be 
iteratively applied in order to refine the segmentation 
result. 
 

 
  

 
(a) 

 
(b) 

Figure 5: Semi -automatic object segmentation 
results 

 
 

Figure 4: Segmentation results (right) on some 
test images (left). 



3.1.1. Object Tracking 

In order to track segmented objects, motion estimation is 
carried out and regions in the current image are back 
projected onto the previous segmentation mask. A set of 
rules are then applied in order to assign each region to an 
object [1].  

The results of segmenting a selection of objects  
from well known test sequences are presented in Fig 5(a). 
The result of tracking objects from one sequence (Table 
Tennis) are presented in Fig. 5(b). 
 

3.2. Automatic object segmentation  

This approach focuses on object segmentation over 
video sequences. An automatic snake segmentation tool 
has been implemented within a level-set framework 
following the work presented in [9]. The partial 
differential equation (PDE) modelling the surface 
evolution includes a unified boundary term and a region 
information term.  

3.2.1. Level-set based snake segmentation 

Following the work of M. Kass et al. who 
introduced snakes  as energy-based active contours, 
Caselles et al proved the equivalence between the snake 
model and the geodesic active contour formulation. In 
[9], Paragios et al. extended this concept to the geodesic 
active regions. In his approach Paragios unifies both 
region and boundary information in a level set framework. 
Using the work of Osher and Sethian snakes can be 
implemented as the zero level set of a higher dimensional 
surface ϕ  such that { }0)),(( =ttCϕ . This can be better 
visualized in Fig. 6. 

 
Figure 6: Level set of an embedding functionϕ for a 

closed curve C in R2. 

This approach to snake segmentation can handle 
topological changes of the objects under analysis. The 
snakes at the zero level set can split in order to 
accommodate unconnected components of the object, 
while the overall connectivity is imposed by a single 
evolving surface. Moreover the curve representation is 
implicit, parameter-free and intrinsic. The surface 
evolution is driven by internal and external forces. 
Internal forces are associated to the snake  model, 

whereas the external forces are related to the visual 
properties of the object such as contour and luminance 
homogeneity. The contribution of each force term can be 
balanced by using a coefficient a as shown in expression 
(1). 

( ) BoundaryRegion FFF αα −+= 1          (1) 

This unified framework aims at obtaining a robust 
snake evolution less sensitive to noise. The block 
diagram of the implemented system is presented in Fig. 7. 
The segmentation process starts with a filtering step. 
Then a model of the image based on the luminance 
histogram is used to calculate the external forces driving 
the surface evolution. Finally one surface is evolved for 
every object in the image and included in the resulting 
mask. 

Assuming that the image is composed of a set of 
luminance homogeneous components, a statistical image 
model is generated from the histogram. Under this 
assumption the histogram can be decomposed as a 
mixture of Gaussians,   
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The Minimum Description Length (MDL) principle 
is used to automatically estimate the number of 
histogram classes (N) while the Maximum Likelihood 
estimation provides the Gaussian parameters {(ak, µ k, 
σ k), k=1,2…N}, see equation (2). A cost function is 
iteratively computed combining in the same expression 
the likelihood ( il ) of the model and the number of 
classes (Gi) needed for the mixture. In order not to over-
segment the image the process stops when the first 
minima of the cost function is reached. Expression (3) 
includes the weighting coefficients α and β, 

NiGMDL iii ...1 ,)log( =+= βα l              (3) 
Given an image model, the forces driving the surface 
evolution are calculated. Since snake propagation subject 
to the image gradient is very noise sensitive, a region 
force (FRegion), which corresponds to the object included 
in the evolving surface, has also been included in the 
PDE. This force can be directly derived from the 
statistical image model. Thus for a pixel s the associated 
region force is as follows, 

ϕκ ∇
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where 
outsideRP and 

insideRP  are the outer and inner region 

probabilities for the object being segmented. When the 
pixel is assumed to be inside the object, the force tends 



to shrink the surface, whereas the opposite behaviour 
appears when the pixel does not belong to the object. 

Based on a probabilistic boundary estimation, a 
density function image is calculated where each pixel of 
this image represents the probability of that pixel being a 
boundary pixel.  

Using the Gaussian mixture decomposition, every 
local neighborhood can be associated to a region model 
according to its luminance average. The Bayes theorem is 
used to derive the expression in (5) from the boundary 
probability (Bi) given a pixel luminance neighborhood 
(I(N(s))). 
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The boundary-based force is presented in equation 
(6). For every object the boundary density distribution 
can be represented as an image. Figs. 8(a), 8(b) and 8(c) 
show the resulting boundary distribution images 
calculated from the original image shown in Fig. 8(d), 
whose histogram has been modeled with N=3 classes.  
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For every object, a different surface is initialized and 
evolves. The surface evolution is modeled by a PDE 
which includes the region and the boundary information 
terms. 

3.2.2. Object tracking 

The above framework presented for still image 
segmentation can be extended to video sequences. Since 
level-sets deal with topological changes in the objects, a 
straightforward video segmentation can be implemented 
by projecting the final surface obtained for a given frame 
into the next frame. After re-initialization, the surface 
will naturally evolve driven by the forces computed for 
the present frame. Assuming small object motion, the 
number of iterations can be radically decreased speeding 
up the segmentation process while maintaining accuracy 
in the results. 

3.2.3. Results 

Fig. 8(e) shows the final image partition with N=3 
regions. It is important to notice that, while regions 
belonging to the same object correspond to a single 
volume inside the evolving surface, they might not be 
connected as single regions at the zero level-set. 
Therefore, this level-set implementation allows 
topological changes for the segmented object. 

4. CONCLUSION AND FUTURE WORK  

In the short term, work in the Qimera project will focus 
on an evaluation of the analysis techniques reported here. 
In this context, we will consider criteria such as accuracy 
(e.g. contour localisation), under/over segmentation, 
temporal coherency and even factors such as module 
execution speed. We will evaluate segmentation results 
against the ground truth segmentations available for 
commonly used test sequences. For objective evaluation 
metrics, we will investigate the use of those proposed 
within the Cost 211 project [10] and explore the actual 
usefulness of these metrics. We also explore other 
existing metrics and develop our own metrics where 
appropriate.  

We will also continue to work towards a longer-
term research goal of collaboratively developing a set of 
Inference Engines [1]. The term Inference Engine (IE) is 
given to the module within the Qimera system that will 
eventually combine the results of a number of different 
analysis techniques in order to produce a final object 
segmentation. It is envisaged that a number of different 
IEs, targeting different types of segmentation problems, 
will be developed and evaluated. 
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Figure 7: Block diagram of the snake segmentation module. 
 

 

 
a) 

 
b) 

 
c) 

Figure 8:  Images a, b and c 
are probability density 
functions of object 
boundaries with N= 3.  
In the lower row, we show 
the original input image (d) 
and the resulting 
segmentation mask (e). 
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