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In this article, we propose Multi-Entity Bayesian Networks (MEBNs) as the probabilistic ontological framework for the anal-

ysis of the Tsamiko and Salsa dances. More specifically, our analysis has the objective of the dancer assessment with respect

to both choreography execution accuracy and the synchronization of the dance movements with the musical rhythm. For

this task, we make use of the explicit, expert-provided knowledge on dance movements and their relations to the musical

beat. Due to the complexity of this knowledge, the MEBNs were used as the probabilistic ontological framework in which the

knowledge is formalized. The reason we opt for MEBNs for this task is that they combine Bayesian and formal (first-order)

logic into a single model. In this way, the Bayesian probabilistic part of MEBNs was used to capture, using example data

and training, the implicit part of the expert knowledge about dances, i.e., this part of the knowledge that cannot be formal-

ized and explicitly defined accurately enough, while the logical maintains the explicit knowledge representation in the same

way ontologies do. Moreover, we present in detail the MEBN models we built for Tsamiko and Salsa, using expert-provided

explicit knowledge. Last, we conduct experiments that demonstrate the effectiveness of the proposed MEBN-based method-

ology we employ to achieve our analysis objectives. The results of the experiments demonstrate the superiority of MEBNs

to conventional models, such as BNs, in terms of the dancer assessment accuracy.
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1 INTRODUCTION

In the cultural heritage (CH) domain, multimedia analysis has been extensively used in the past de cades for
safeguarding and treasuring intangible cultural heritage (ICH) activities and practices (Vecco 2010), via, for
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example, automatic indexing for convenient access and training new ICH practitioners and students. The analysis
of multimedia content is a necessity that grows fast these days considering the popularity of digitizing cultural
content for safeguarding both tangible and intangible resources. When it comes to ICH, the task of semantic
analysis becomes even more challenging and complex than the tangible case (Vecco 2010), since the significance
of intangible heritage artifacts is implied in their context, and the scope of the preservation extends also to the
preservation of the background knowledge that puts these artifacts in proper perspective. These intangible assets
may, for instance, be derived from performing arts (e.g., singing and dancing). Thus, semantic multimedia analy-
sis is essential for mapping the low-level features originating from the signal of the utilized sensors (e.g., sound,
image, and Electroencephalography (EEG)) to important aspects that define the examined art (e.g., singing or
dancing style).

Semantic analysis, applied on multimedia content (e.g., audiovisual), aims at imitating the cognitive human
ability of detecting and recognizing entities, e.g., objects, persons, sounds, or even more abstract concepts, such
as relations between entities and activities that are manifested in the content. In general, semantic analysis is
achieved either through trained models or models that explicitly represent the domain knowledge. In the latter
case, the knowledge is explicitly provided by human experts. In the former case, knowledge is implicit and it is
captured through training the model using example data. Last, there are semantic analysis methods that combine
the characteristics and thus the benefits of both aforementioned approaches, such as the approach proposed
in this work. More specifically, we aim to perform analysis of dance performances based on information in a
more abstract level than plain dancer trajectories. We note, however, that while we deal with the analysis of
multimedia content, our aim is to solve a problem that could be proven very useful when dealing with the more
general problem of ICH contextualization and documentation.

One of the most prominent class of models that falls into the category of explicit knowledge representation
are ontologies (Chandrasekaran et al. 1999). They use description logic, a variant of the first-order logic (FOL),
to perform reasoning based on the modeled knowledge. However, since ontologies rely on FOL, they can only
express knowledge under absolute certainty, which is a serious drawback when there is uncertainty in this
knowledge. Thus, other models are needed to overcome this limitation, i.e., to model both kinds of knowledge.
In general, there are two types of uncertainty, epistemic and stochastic (Aloulou et al. 2015). The first type is due
to, for example, the dancer’s subjective way of following the predetermined dance movements, and the latter
due to the inaccuracy of any step classifier used for recognizing the dancer’s moves. In any case, all uncertainty
sources can be modeled efficiently in a common probabilistic framework, in which the degree of uncertainty is
expressed by probability.

In this work, we propose Multi-Entity Bayesian Networks (MEBNs) (Laskey 2008; Park et al. 2013) as a model
alternative to ontologies to overcome their aforementioned shortcomings when we particularly deal with the
problem of semantically analyzing ICH audiovisual content. More specifically, we deal with the analysis of Greek
Tsamiko (GreekBoston 2017) and Salsa dance performances and particularly with the assessment of the dancer
with respect to his/her ability to properly execute the choreography in a synchronized manner. This methodology
takes as input the attribute values of the elementary dance concepts (i.e., medium-level features that are extracted
in a pre-processing stage, along with their temporal information). The elementary concepts found in Tsamiko
and Salsa dance performances are essentially the body movements of the dancer (i.e., steps) and the beats of
the accompanying music. Then, abstract concepts belonging in a higher level of the feature semantic hierarchy
are detected in the performances, such as the dance style, to further be used for the assessment task. In other
words, we exploit the inherent characteristic of the dance, which is that the dance movements occur according
to a rhythmical pattern that is the same with the music accompanying the dance. Last, note that, although
our purpose is not to solve the general problem of contextualization and documentation in every different ICH
domain, the style information, extracted as a by-product of the assessment method, can be used in an ICH
preservation environment, where sophisticated storing, indexing, and information presentation is necessary.
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From a Bayesian modeling perspective, MEBNs are first-order BNs (FOBNs) (Laskey 2008; Park et al. 2013),
since they can construct BNs with a customized structure depending on the situation. From the knowledge
representation perspective, MEBNs are a probabilistic, ontological framework that, because of the BN construc-
tion ability, falls into the Knowledge Base Model Construction (KBMC) category (Braz et al. 2008). Thus, we opt
for MEBNs to combine the advantages of Bayesian networks (BNs) (Pearl 2003) and FOL (Russell and Norvig
1995; Sowa 1999), since MEBNS are capable of representing explicit domain knowledge, through FOL, and mod-
eling implicit and uncertain knowledge through BNs. The fact that MEBNs rely on FOL renders them a natural
extension of ontologies. This means one can use an existing ontology and built a MEBN as its probabilistic coun-
terpart. Last, with this work, we extend our previous works found in Chantas et al. (2014a, 2014b). The main large
difference with them is that the they deal with a much simpler, unimodal problem, while the present problem is
multimodal.

As stated previously, the analysis in MEBNs goes through a custom Bayesian network, constructed for the
specific situation, i.e., a situation specific BN (SSBN). Among others, the construction entails the assignment of
specific values to the local conditional probabilities residing at the SSBN nodes. Since these values may not be
known (e.g., provided by the expert knowledge), as in the present case, we derive the Expectation Maximization
(EM) (Bishop 2006; Dempster et al. 1977) algorithm, designed and employed for MEBN training. The use of EM
has been favored due to its inherent ability in handling missing (incomplete) training data. By “incomplete,”
we refer to data that have missing values, or, in other words, we do not know the values for some variables.
Moreover, our contribution comes to complement the very limited amount of works for MEBN training. The
most representative example of such a work is Park et al. (2013), where the authors use an algorithm for learning
both the structure and the parameters of an arbitrary MEBN model by utilizing complete (i.e., without missing
values) training data. However, the herein proposed EM algorithm can work with incomplete data (i.e., some
data have missing values), in contrast with the work in Park et al. (2013).

The rest of this document is organized as follows. In Section 2, we present the related work. In Section 3, we first
define the multimodal aspect of the problem that we have to solve and then provide the MEBN-based formulation
of our semantic analysis problem. In Section 4, we derive the EM algorithm for learning the MEBN parameters.
In Section 5, experiments demonstrate the efficiency of the MEBN-based methodology in respect to the analysis
of the dance performances. In the last section, conclusions and directions for future work are discussed.

2 RELATED WORK

As already mentioned, the proposed approach combines implicit and explicit knowledge towards analysing the
multimedia content. In this respect, it can be considered to relate with different aspects dealing with domain
knowledge representation, multi-modal analysis, and analysis through Bayesian inference and first-order logic.
In the following, we review the existing literature in relation to each of these aspects.

2.1 ICH Domain Knowledge Representation

Ontologies (Chandrasekaran et al. 1999) act as knowledge representation models that have been successfully
applied to numerous domains of knowledge. This is mainly because they provide a convenient and expressive
formal language, i.e., (variants of) description logic (DL) (Baader 2003), which practically shares with FOL the
same expressive power (Sowa 1999). Indeed, a very important application of ontologies for safeguarding the ICH
are platforms that, via indexing and categorization along with efficient searching and content presentation tools,
manage to aggregate content of various CH domains in a large-scale database and provide convenient access to
that data (Staab and Studer 2013a). Thus, ontologies have been applied to a vast and diverse range of domains,
including CH (Staab and Studer 2013a). A notable example is the CIDOC Conceptual Reference Model (CRM)
(Doerr 2003) implemented as an extensible ontology for representing heterogeneous CH domain knowledge,
and works using this model, as, for example, those in Hu et al. (2014), Le Boeuf (2012), Kettula and Hyvönen
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(2012), and Tan et al. (2009). Another important example falling into the knowledge representation category is
the Europeana data model (EDM) (Europeana 2017). This model, which was developed for the implementation
of the Europeana digital library (Europeana 2017), was designed with the purpose to enforce interoperability
between various content providers and the library. Also, an interesting work undertaken in the context of the
ECLAP project is that described in Bellini and Nesi (2015). In this article, the European Collected Library of
Artistic Performance (ECLAP) semantic model is presented, which is specifically defined for aggregating ICH
content coming from heterogeneous providers. ECLAP has the role of content aggregation for Europeana. The
article also presents the mapping of the ECLAP model to Europeana Data Model (EDM). Last, it is worthwhile to
refer the reader to the comparative study found in Hug and Gonzalez-Perez (2012) of knowledge representation
models for the domain of cultural heritage.

Also, there are narrower domain specific ontologies, as, for example, that in El Raheb and Ioannidis (2011) and
Aristidou et al. (2015), which encodes traditional dances (the former encodes Tsamiko among others) by making
use of the Laban motion analysis principles. Other works that use Laban motion analysis for folk dances are
Aristidou and Chrysanthou (2013), which focuses on emotion recognition through dancing, and Kapadia et al.
(2013), which achieves fast and efficient indexing and retrieval of human motion captured based in an efficient
mapping from key sequences to motions. Another motion indexing and retrieval methodology that is based on
semantic analysis is that presented in Müller et al. (2005), where the temporal and spatial features are extracted
to this end.

An ontology for representing musical knowledge, where the focus is on the representation of chord sequences,
is introduced in Wissmann (2012). In Mallik et al. (2011), an ontology is proposed for the preservation of Indian
traditional dances. As a last example, an ontology framework is proposed in Lombardo et al. (2016) for safeguard-
ing and enabling convenient access to drama, which is widely considered an ICH practice. Tangible cultural her-
itage ontologies also exist, such as that in Isemann and Ahmad (2014), which is used for facilitating the access
to a digital repository of three-dimensional (3D) cultural heritage items, that in Grieser et al. (2011) are used for
museum exhibits. The Benesh movement notation has also been used, as, for example, in De Beul et al. (2012), to
semantically annotate human motion in videos. To this end, an ontology model and semantic concept classifiers
are employed, based on this notation and using Ontology Web Language (OWL) (Staab and Studer 2013b).

However, standard ontologies have a reasoning capability confined by the expressiveness limitations of DL on
which they are based. This is due to the incapability of DL to express uncertain knowledge, since it is grounded
in a deterministic, logical framework. For example, as stated in the study (Chen and Nugent 2009), ontologies
should be extended so as to be applicable to domains with inherent uncertainty, which holds also for our case.

There were many efforts towards a consistent probabilistic ontological framework that combines determin-
istic with probabilistic modeling tools, see the survey in Braz et al. (2008). One major category mentioned in
Braz et al. (2008) is the Knowledge Based Model Construction (KBMC) category, to which MEBNs belong,
where the standard ontology-based reasoning is replaced with (Bayesian) inference. This inference is applied
on a custom probabilistic (Bayesian) model that is constructed on demand. Notably, although all models of this
category share many similarities, MEBNs are recognized as the richest of the KBMC approaches. This was a
major motivation for us to opt for MEBNs as a model that we employ to face the challenges posed in this
work.

Apart from KBMC-based approaches, another attempt to utilize BNs in such a way is the object-oriented BN
(OOBN) (Koller and Pfeffer 1997) that allows the encoding of the modeled entities by treating them as objects (in
the same spirit with object-oriented programming languages). Moreover, Probabilistic Relational Models (PRMs)
(Pfeffer and Koller 2000) extend relational knowledge bases (i.e., databases) to model probabilistic relations. As
in the KBMC approach, in PRMs, a BN that expresses the joint probability distribution over these random vari-
ables is constructed. For a more extended discussion about the similarities and differences of these models with
MEBNs, see Laskey (2008). So far, to the best of our knowledge, MEBN remains the richest model available for
our modeling and analysis goals.
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2.2 Multimodal Analysis

Next, we refer to works analyzing ICH (dance) performances with a focus mostly on works that follow an analysis
in a multimodal fashion. In Drémeau and Essid (2013), a probabilistic multimodal method for aligning two dances,
i.e., an expert and a learner performance, is proposed to correct the learner by indicating the deviations of his/her
performance with respect to that of the expert. In Naveda and Leman (2008), a method for the analysis of body
movement in Samba dances using information of the musical meter is proposed. More specifically, a multi-modal
approach is adopted that recognizes spatial patterns existing in repetitive movement of different moving body
parts. To achieve that, a search for periodicities is applied, steered by the knowledge of the musical meter. Last,
there is a multimodal corpus of Salsa dance recordings described in Essid et al. (2013). Using this dataset, in
Essid and Richard (2012), Alexiadis and Daras (2014), and (Essid et al. 2012), Salsa dance analysis methods are
presented that classify the Salsa steps. Shiratori et al. (2006) present a work that achieves to provide an animation
of a human that dances in synchronization with the rhythmic of an arbitrary input music by modeling efficiently
the relation of musical rhythm with that of human motion. Also, in Shapiro et al. (2006), a method that, although
not multimodal, is closely related to the human motion analysis performed in our work is presented that identifies
human motion styles and, using this information, can alter the motion style of an animated human avatar. Last,
in Chan et al. (2011), virtual reality system with automated dancer scoring is presented, which based on motion
tracking and matching.

For some of the most well-known and ubiquitously used probabilistic models, applied for multimodal analysis,
see the survey in Bahador et al. (2013). One of the most well-studied and applied probabilistic types of model is
the BN (Pearl 2003). More specifically, BNs are acyclic and directed probabilistic graphical models that achieve a
balanced tradeoff between inference in a reasonable time and sufficient modeling complexity. For this reason, BNs
have been applied successfully to many problems of diverse fields, as well as to multimodal analysis problems,
since they can naturally model multimodal data.

An important work that employs BNs in the context of the motion analysis and human action recognition
(HAR), which is based the Laban motion annotating system, is proposed in Rett et al. (2010). This method uses
BNs to model the relationship between low-level motion features and Laban-based motion concepts (i.e., mid-
level features). Bayesian inference using this BN achieves the analysis of the motion and the inference of the
action taken by the subject of the analysis. However, there is main drawback in this method, which is that the
Bayesian network is designed once and kept fixed like this in every situation.

Dynamic Bayesian networks (Ghahramani 1998) extend Hidden Markov Models (HMMs) by unrolling a BN
of arbitrary number of nodes and structure instead of a two-node BN, as in HMMs. Thus, a DBN comes with
a BN construction mechanism that uses (a) a standard Bayesian Network as a template for building the whole
DBN just by concatenating copies of it repeatedly to make a chain of the BN copies, (b) a standard BN as the
first element of the chain, and (c) a set of BN arcs for connecting the nodes of the nodes of two subsequent BN
copies. HMMs (Rabiner and Juang 1986) are also well-known models that are can be seen as a special case of
DBNs, since they have a two node BN as a repetitive basic element (Rabiner and Juang 1986).

We have to note at this point that the structure of BNs either of a standard BN or the BN that unrolls in
HMMs and DBNs is designed a priori either by an expert user or an automated procedure. Examples of the latter
approach, i.e., automatic learning of the BN structure, can be found in Park et al. (2013). Thus, HMMs and DBNs,
although drastically augmented, still suffer from serious modeling limitations, which is the fixed structure of
the unrolling BN. However, probabilistic models falling into the KBMC category, such as MEBNs, are flexible
enough to adjust their structure according to the needs of virtually every possible situation.

3 RHYTHM-BASED MULTIMODAL ANALYSIS USING MEBNS

In this section, we present our work in applying MEBNs to the problem of the analysis of Tsamiko and Salsa
dances. Initially, we present the multimodal aspect of the problem we aim to tackle, the FOL theory for modeling

ACM Journal on Computing and Cultural Heritage, Vol. 11, No. 3, Article 12. Publication date: August 2018.



12:6 • G. Chantas et al.

Table 1. Description of the Multimodal Nature

The name of an event (e.g., Step, Beat) is produced by the concatenation of the modality

name and an increment

the synchronization between different modalities. Finally, we describe the MEBN models that are based on this
theory to facilitate the analysis of Tsamiko and Salsa dances, respectively. For more information about the theory
and mechanism behind MEBNs, see Laskey (2008).

3.1 Dealing with Multimodality

In our multimodal analysis framework, there are two modalities in the Tsamiko and Salsa recordings that we have
at our disposal: the visual in which the basic body movements are manifested and the audio in which the music
beats are manifested. Before the main analysis, we apply a pre-processing step, which entails the extraction of
the information about the prominent events occurring in each modality; see Section 5 for more details.

Next, we describe how we deal with multimodality for a general case. Suppose that we have N modalities, as
depicted in Table 1, named A, B, C, . . . , and so on. In this table, the horizontal line denotes the time axis. This
implies that the closer the projection of two events to this axis, the smallest their temporal difference is. Also,
each event belongs to a class and all events of the same class have the same feature values. Thus, the fact that the
event class, for a specific modality, recurs periodically means that the event features recur also with this period.

Based on the above, one can see that the key idea here is the abstract concept of rhythm, which can be seen
as a periodic process during which the Ri events occur in regular intervals where their class recurs periodically.
From a more technical point of view, by applying the above framework in the present problem, we can model the
rhythmic structure of Tsamiko and Salsa. More specifically, our model evaluates the synchronization between
two modalities by checking how accurately they correlate with rhythm events rather than directly with each
other. Indeed, knowing the rhythmic structure and the frequency of the rhythm events, it is feasible to define
implicitly the correct timing of an event by indicating which rhythm event(s) should be close in time, as well as
the degree of closeness. This approach allow us to tackle the problem at the level of aligning events rather than
aligning whole sequences with each other, something that facilitates the employment of expert knowledge in
our MEBN-based analysis task. Moreover, since this is done in a probabilistic setting, we manage to also model
the degree of uncertainty in our measurements of the event timings.

3.2 First-Order Bayesian Logic

FOBL is the probabilistic logic that plays the role of the theoretical foundation of MEBNs. FOBL extends
FOL with the ability to model with probabilistic tools the inherent uncertainty existing in the knowledge
of the attribute values, which knowledge can be either come from measurements or expert knowledge. In FOL,
the basic logical elements are the functions and predicates. Predicates are in essence functions that return either
the “true” or “false” constant; for this reason, when using the “function” term in what follows, we will refer to both
functions and predicates. Last, apart from functions, in FOL there are logical rules that define which constants the
functions are valid to return, for every possible input, which can be constants and/or other functions. Moreover,

ACM Journal on Computing and Cultural Heritage, Vol. 11, No. 3, Article 12. Publication date: August 2018.



A Probabilistic, Ontological Framework for Safeguarding the Intangible Cultural Heritage • 12:7

FOBL retains these deterministic elements of FOL, while in parallel uses probabilistic extensions of them. Based
on both the deterministic and probabilistic elements, in FOBL analysis is performed by generating an SSBN.

Next, we describe the core mechanism of MEBNs that generates an SSBN using FOBL. First, there are blueprints
that create the r.v.’s of an SSBN according to the needs of an arbitrary modeling situation that arises; these
are a key element of MEBNs. These “blueprints” are called lifted random variables (LRVs), because they are
abstract random variables that act as templates to produce regular random variables. Also, there are probabilistic
rules (i.e., extended logical rules), which define dependencies between LRVs. More specifically, they define the
dependencies of the regular random variables produced by the LRVs that created them. In FOBL, there can be
both logical functions and lifted random variables as well as logical and probabilistic rules. In the next two
paragraphs, the above modeling elements are formally defined and explained in detail.

Logical functions and rules: A function is defined as follows:

funca (n1,n2, . . . ), (1)

where the input arguments enclosed by the parentheses are logical variables that take constant values. Also
the function returns a constant that depends on the input. The logical rules (see next) define which returned
constants are valid given the input, while there can be only one such a constant. An example of a logical rule
that defines a valid constant of the above function given other functions is the following:

funca (n1,n2, . . . ) = Consta ← funcb (k1,k2, . . . ) = Constb , funcc (m1,m2, . . . ) = Constc , . . . . (2)

An example of defining the returned constant of a function is the following:

funca (Const1,Const2, . . . ) = Consta , (3)

which must comply with the rule given in Equation (2). In the above example, the returned constant of funca (i.e.,
Consta ) is deterministically defined by the constants Constb , Constc , . . . . In other words, the left arrow denotes
that the constants of the right-hand functions imply the constant of the left-hand term. Last, it is important to
explain the arguments that the functions take. These are logical variables that can be assigned with (or else be
instantiated to) a constant value, which value belongs in a specific set. This set is normally predefined by other
logical rules that, in essence, declare which values are valid to replace the logical variables. Also, it is worthwhile
to mention that, in the above example, it is implied that the rule holds for all valid logical variable replacements
(instantiations). The same holds also for the logical rules in the rest of the article.

Lifted random variables and probabilistic rules: A lifted random variable (LRV) is a “blueprint” used to create
regular r.v.’s. An LRV returns a constant randomly chosen from a finite set of constants and with a specific prob-
ability. Also, the probabilistic rules define lifted probabilistic dependencies between the lifted random variables.
This means that the regular random variables produced by the lifted ones have dependencies with each other
as defined by these rules. Thus, a probabilistic rule is in essence an extension of a logical rule. To explain this
further, consider the next general example of a probabilistic rule,

lrva (n1,n2, . . . ) ←P (lrva |lrvb , lrvc , ... ), lrvb (k1,k2, . . . ), lrvc (m1,m2, . . . ), . . . , (4)

where the left- and right-hand terms are LRVs. The rule declares that the r.v.’s produced by the left-hand LRV
having a specific constant as state has a probability that depends on the states of (some of) the r.v.’s produced
by that on the left. This probability is placed as a “subscript” to the right of the arrow, which arrow denotes the
lifted dependency. Last, it is important to note that the arguments placed in parentheses are logical variables, as
in logical functions, that can be instantiated to constant values as dictated by logical rules. The key point here
is that an r.v. is created from the left-hand LRV for each possible instantiation of all the logical variables acting
as its arguments. The rule also defines which r.v.’s are its parents, i.e., these r.v.’s coming from the right LRVs.
Note also that there can be also other logical rules that force the logical variable instantiations to conform to the
potential logical rules that contain these logical variables.
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Fig. 1. MEBN model for analyzing Tsamiko dances.

Finally, there are also abstract elements in MEBNs that exist and used in conjunction with these mentioned
above:

• MEBN Fragments (MFrags): an MFrag is a container that groups logical functions, LRVs, and probabilistic
and logical rules. A MEBN consists of multiple MFrags. The purpose of MFrags is to confine the scope of
the logical rules of an MFrag to the logical variables placed as arguments in the LRVs and in the logical
rules existing also in this MFrag. Also, MFrags help us to categorize the MEBN elements (LRVs, logical
rules, etc.) into groups to be easily understandable and readable.

• Input MFrag nodes and recursion: To declare probabilistic rules across LRVs belonging in different MFrags,
one can add in the MFrag in which the child LRV resides the parent LRVs as input nodes. Then, the logical
rules of this MFrag apply also to the arguments of the input LRV. An input node/LRV in an MFrag can
come also from the very same MFrag, even being the same LRV. In the latter case, we have the case
of recursion, which provides us with the flexibility to built r.v. chains coming from the same LRV of
arbitrary size. Note that recursion is supported also in DBNs and HMMs. In MEBNs, when used with the
aforementioned modeling tools and elements, recursions boost dramatically the modeling flexibility and,
as a result, the inference efficiency of MEBNs. MEBN software at the moment supports only first-order
recursion. Fortunately, however, this suffices for our modeling needs in the present work.

• MEBN probability definition function: The probability distribution residing at the left arrow of proba-
bilistic rules, such as that in Equation (4), provides the local conditional probability of the regular r.v.’s
coming from the left-hand LRV given its parents. In MEBNs, this distribution is lifted, in the same sense
that the LRVs are lifted r.v.’s, and it is in practice a function that takes as input the parent r.v. states and
returns the probability for each potential state of the child r.v. This probability is calculated internally in
the probability function using parameters that have predetermined, constant values. In this work, how-
ever, we explicitly set the probability, e.g., P (lrv|lrvb , lrvc , . . . ), to be directly equal to a specific parameter,

i.e., P (lrva |lrvb , lrvc , . . . ) = θ
lrvb , lrvc , ...
lrva

. Estimating the appropriate values of the probability distribution

parameters of all rules is an important contribution of this work, as we shall see in Section 4.

3.2.1 Tsamiko MEBN. In Figure 1, the MEBN model for the Tsamiko dance case is depicted. The green nodes
are the logical rules, the small letters denote logical variables, while the big ones denote constants. Also, the
light blue are LRVs and the brown-grey are input LRVs. The MEBN depicted in this figure encompasses all the
information about Tsamiko conveyed in Tables 2 and 3. More specifically, the explicit information imbued in
the model are feature values and relations between events and features that are defined in Tables 2 and 3. Each
feature is an LRV while the relations are represented by lifted dependencies that are denoted by directed arrows.
Next, we describe the MEBN in details using the FOBL terminology.

Logical FOBL elements:

a. Definition of logical variables: isA(s, stepEvent ), isA(sprv, stepEvent ): s denotes an arbitrary Tsamiko
step (event), while sprv is the previous step of s . The stepEvent is the set of constants from which s and sprv takes
values, i.e., s ∈ stepEvent = {S1, S2, S3, . . . }.
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Table 2. Tsamiko Step Cycle (10-step Sequence): Modalities and Events
(Entities) and Their Indices

Rhythm Visual Audio
rhythmIndex rhythmClass stepIndex stepClass beatIndex beatClass
R1 RA S1 SA B1 BA
R2 RB B2 BB
R3 RB S2 SB B3 BC
R4 RA S3 SC B4 BA
R5 RB B5 BB
R6 RB S4 SD B6 BC
R7 RA S5 SE B7 BA
R8 RB B8 BB
R9 RB S6 SF B9 BC
R10 RA S7 SG B10 BA
R11 RB B11 BB
R12 RC S8 SH B12 BC
R13 RA S9 SI B13 BA
R14 RB S10 SJ B14 BB
R15 RC B15 BC

Table 3. Class and Style Depended Values of the Tsamiko Step Features

Feature Name Value Classes

hasDirection
RightD SA, SB, SC, SD, SE, SF
LeftD SG, SH, SI, SJ

foot
Right SA, SC, SE, SH, SJ
Left SB, SD, SF, SG, SI

isDouble
True SB, SD, SI and stepStyle is “Double”
False otherwise

isHigh
True SF, SJ and genderStyle is “Female”
False otherwise

isA(r, rhythmEvent ), isA(rprv, rhythmEvent ): r denotes a rhythm event, while rprv is the rhythm event
previous to r . The rhythmEvent is the set of constants from which r and rprv takes values, i.e., r ∈ {R1,R2,R3, . . . }.

b. Logical rule: closeStep(r, s )=True or False: The rhythm r and step s events are enough close with each
other so that their temporal difference must be taken into account (see syncStep below).

Probabilistic (FOBL) rules and LRVs:

sclass(s ) ←P (sclass(s ) |sclass(sprv )) sclass(sprv ) : A Tsamiko step (s) class takes 1 of 10 class values, i.e.,
sclass(s ) = SA, SB, . . . , or SJ, according to the probability P (sclass(s ) |sclass(sprv )) that is conditioned on the
previous step (sprv ) class sclass(sprv ). The exception to this rule is the first Tsamiko step (s = S1), whose class is
independent of any other step. Note that this is a recursive definition.

bclass(b) ←P (bclass(b ) |bclass(bprv )) bclass(bprv ): The beat b is one of the BA, BB, and BC classes, i.e.,

bclass(b) = BA, BB, or BC. The probability P (bclass(b)‖bclass(bprv )) the beat b to take a certain class depends
on the previous beat (bprv ) class (bclass(bprv )).
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Fig. 2. Range discretization to degrees of closeness (in seconds).

rclass(r ) ←P (rclass(r ) |rclass(rprv )) rclass(rprv ): The rhythm event r belongs in one of the RA, RB and RC
classes, i.e., rclass(r ) = RA, RB, or RC. The probability P (rclass(r ) |rclass(rprv )) the rhythm event r to take a
certain class depends on the previous (rprv ) class (rclass(rprv )).

synced(s ) ←P (synced(s )) : When the dancer executes a step (s) in synchronization with the rhythm then
synced(s ) =True, otherwise, the value is False. Note also that there are no dependencies with other LRVs. The
synced LRV is a parent of the syncWStp LRV, and, depending on its state, the latter takes values accordingly.
Note also that synced does not contain r as an argument, which means that the r.v.’s produced by synced for a
specific s will be a parent of all the r.v.’s produced by syncWStp for this specific s and all r that pair with r (see
syncWStp’s definition).

syncWStp(r, s )←P (syncWStp(r ,s ) |sclass(s ),rclass(s ),synced(s )) sclass(s ), rclass(r ), synced(s ): syncWStp denotes
“synchronization weight for step.” This rule applies to a pair of a rhythm event (r ) and a Tsamiko step (s ),
given that closeStep(r , s )=True, i.e., their temporal difference is small enough. More specifically, only pairs for
which their temporal difference falls inside a finite continuous and symmetric around zero range of values, are
considered close (closeStep(r , s )=True). In our experiments, this range is set to be [−1, 1], and we discretize it to
nine values: {veryClose,+/− close ,+/−mid,+/− f ar ,+/−veryFar }, as shown in Figure 2. Then, syncWStp(r , s ),
which can be seen as the “weight of closeness” between the step and the rhythm event takes one of these values
with a probability, which depends on the step class and whether the dancer is synchronized in general with the
rhythm. In other words, this LRV models the temporal relation of a step with a rhythm event by characterizing
the closeness with each other, and it is conditioned on the event types and whether the dancer manages to be in
synchronization with the rhythm (i.e., synced(s ) =True).

syncWBt(r, s )←P (syncWBt(r ,s ) |bclass(s ),rclass(s )) sclass(s ), rclass(r ): This denotes “synchronization weight
for beat.” This rule is similar to syncWStp, except that it applies to a pair of a rhythm event (r ) and a beat (b).
The same discretization with that used for syncWSt is employed.

hasDirection(s ) ←P (hasDirection(s ) |sclass(s )) sclass(s ): a Tsamiko step (s) goes either to the right or left direc-
tion (hasDirection(s ) =RightD or LeftD, respectively), with P (hasDirection(s ) |sclass(s )), which depends on the
step class (sclass(s )).

foot(s ) ←P (foot(s ) |sclass(s )) sclass(s ): A Tsamiko step (s) is executed either with the right or left foot (foot(s ) =
RightF or LeftF, respectively), with P (foot(s ) |sclass(s )), which depends on the step class (sclass(s )).

isDouble(s ) ←P (isDouble(s ) |sclass(s ),stepStyle(s )) sclass(s ), stepStyle(s ) : A Tsamiko step (s) is executed ei-
ther as a double or single step (isDouble(s ) = Double or Single, respectively), with probability P (isDouble(s ) |
sclass(s ), stepStyle(s ))), which depends on the step class(sclass(s )) and the dance style (stepStyle(s ) = Double or
Single).

isFootHigh(s ) ←P (isFootHigh(s ) |sclass(s ),genderStyle(s )) sclass(s ), genderStyle(s ) : A Tsamiko step (s) is exe-
cuted with the foot high with probability P (isFootHigh(s ) |sclass(s ), genderStyle(s )), which depends on the step
class(sclass(s )) and the dance style (genderStyle(s )=Male or Female).

stepStyle(s ) ←P (stepStyle(s ) |stepStyle(sprv )) stepStyle(sprv ): A Tsamiko step s is executed with stepStyle being

double or single (stepStyle(s ) =Double or Single, respectively), with probability P (stepStyle(s ) |stepStyle(sprv )),
which depends on the stepStyle of the previous step (sprv ). The stepStyle LRV models that which we call the
“style” of the dance regarding the variation of the dance where there is a double step or not. When stepStyle
is Double, then the second, fourth, and eighth steps of the cycle are executed as double steps and single
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Table 4. Tsamiko Dance Performance Example, Given with FOBL Terminology

Events/features Extraction method Description
isA(S1, stepEvent ), . . . ,
isA(SN , stepEvent )

step detection S1, S2, . . . , SN are N step events,
ordered by their index.

isA(B1,beatEvent ), . . . ,
isA(B,beatEvent )

beat detection B1,B2, . . . ,BM are M step events
ordered by their index.

isA(R1, rhythmEvent ), . . . ,
isA(RM, rhythmEvent )

expert knowledge R1, R2, . . . , RM are M rhythm
events ordered by their index.

closeStep(R1, S1),
closeStep(R2, S2), . . . ,
closeStep(RM, SN )

absolute temporal difference
< threshold

Tsamiko step-rhythm events pairs
that are close, i.e., with sufficiently
small temporal differences.

syncWStp(R1, S1)=VeryClose,
syncWStp(R2, S2)=VeryClose, . . . ,
syncStep(RM, SN ) =VeryClose

discretization of temporal
difference

The (discretized) degree of
closeness between Tsamiko step
and rhythm events that are close.

closeBeat(R1,B1),
closeBeat(R3,B3), . . . ,
closeBeat(RM,BM )

absolute temporal difference
< threshold

beat-rhythm events pairs that are
close.

syncWBt(R1,B1)=VeryClose, . . . ,
syncWBt(RM, SN ) =VeryClose

discretization of temporal
difference

The (discretized) degree of
closeness between beat and
rhythm events (see closeBeat
input).

isDouble(S1)=True/False, . . . ,
isDouble(SN )= . . .

classification the isDouble medium-level
features, assigned with certain
values.

isFootHigh(S1)=True/False, . . . ,
isFootHigh(SN )=True/False

classification the isFootHigh medium-level
features, assigned with certain
values.

foot(S1)=Right, . . . ,
foot(SN )=RightF/LeftF

classification the foot medium-level features,
assigned with certain values.

hasDirection(S1)=RightD, . . . ,
hasDirection(SN )=RightD/LeftD

classification the hasDirection medium-level
features, assigned with certain
values.

otherwise. Even though there is no formal definition about what is a dance style in general, according to
Kaeppler (2001), we use this term to denote the variations of a specific dance. When we want to declare the style
of a Tsamiko dance, we give both kinds of style (i.e., stepStyle/genderStyle) separated by a backslash, e.g., male/
single.

genderStyle(s ) ←P (genderStyle(s ) |genderStyle(sprv )) genderStyle(sprv ): A Tsamiko step s is executed

with genderStyle being male or female (genderStyle(s ) =Male or Female, respectively), with probability
P (genderStyle(s ) |genderStyle(sprv )), which depends on the genderStyle of the previous step (sprv ). When gen-
derStyle is true, then the 6th and 10th step of the cycle are executed by having the foot raised (i.e., high) and not
raised otherwise.

In Table 4, we provide the general form of the input provided to the MEBN, derived from the pre-processing
stage of an arbitrary Tsamiko step sequence of N steps, executed in parallel with an M beat sequence. We use
the terminology and notation used also above.
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Fig. 3. A part of the SSBN that has been produced by the Tsamiko MEBN model presented in Figure 1. The letters A and B
denote the MEBN fragment from which the nodes originate and the numbers denote the ordering of the nodes. Blue nodes
are known random variables and orange are considered unknown.

Table 5. Types of Salsa Steps Performed by the Dancers in Our Salsa Dance Dataset

No. Name # No. Name # No. Name
C1 forward-basic 143 C2 backward-basic 71 C3 right-turn 1
C4 cross-body 1 C5 preSuzieQ 24 C6 suzie-q-a 28
C7 suzie-q-b 28 C8 preDoubleCross 24 C9 double-cross-a 25
C10 double-cross-b 26 C11 pachanga-tap-a 9 C12 pachanga-tap-b 9
C13 swivel-tap-a 9 C14 swivel-tap-b 7 C15 cross-body-a 9
C16 cross-body-b 9 C17 turn-call 14 C18 girl-turn 14
C19 turn-hand-switch 12 C20 girl-turn 12 C21 cross-body-c 9
C22 cross-body-d 10

Based on the input described in Table 4, the resulting SSBN has a form that is explained in Figure 3, where the
r.v.’s created by the LRVs (depicted as nodes) and the parent–child relationships of the nodes (depicted as arcs).
Moreover, the MFrag from which they originate and their temporal ordering are explained.

3.2.2 Salsa MEBN. In the case of Salsa dances, the MEBN model that has been used in our analysis is similar to
that of Tsamiko, with the main difference being the step having only one feature, i.e., the class. More specifically,
as with Tsamiko, there are three modalities, the visual, the audio, and the rhythm modality. In the visual and
audio modalities, the steps of the dancer and the musical beats are manifested as events. Moreover, in this case,
there are 22 types of Salsa steps (classes), shown in Table 5.

Moreover, in our experimental dataset, a dancer executes one of three choreographies, each one uniquely
predefined by a sequence of 12 steps, where each step is of a specific type. Note that some step types can appear
more than once in a choreography, while some others in none.

Figure 4 depicts the MEBN that has been used in the analysis of Salsa dances. More specifically, the uti-
lized MEBN model consists of two MFrags. Moreover, the following list provides information for each MFrag of
Figure 4.

Logical FOBL elements: the same with the Tsamiko MEBN case.
Probabilistic (FOBL) rules and LRVs:
sclass(s ) ←P (sclass(s ) |sclass(sprv ),choreo(s )) sclass(sprv ): A Salsa step (s) class takes 1 of 12 class values, i.e.,

sclass(s ) = SA, SB, . . . ,SK, SL according to the probability P (sclass(s )‖sclass(sprv )) that is conditioned on the
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Table 6. 12 Steps in a Salsa Dance in the Three Choreographies and Their
Corresponding Type of Executed Steps

Step Choreography Rhythm Beat
index type 1 2 3 Event Class Event Class
S1 Step1 C1 C1 C1 R1 RA B1 BB
S2 Step2 C2 C2 C2 R2 RB B2 BC
S3 Step3 C1 C1 C15 R3 RC B3 BA
S4 Step4 C5 C11 C16 R4 RA B4 BB
S5 Step5 C6 C12 C17 R5 RB B5 BC
S6 Step6 C7 C2 C18 R6 RC B6 BA
S7 Step7 C1 C1 C19 R7 RA B7 BB
S8 Step8 C8 C2 C20 R8 RB B8 BC
S9 Step9 C9 C13 C21 R9 RC B9 BA
S10 Step10 C10 C14 C22 R10 RA B10 BB
S11 Step11 C1 C1 C1 R11 RB B11 BC
S12 Step12 C2 C2 C2 R12 RC B12 BA

The classes C1, C2,. . . , C22, indicate the step class, as they are defined in Table 5.

Fig. 4. MEBN model for analyzing Salsa dances.

previous step (sprv ) class sclass(sprv ) and the choreography (see choreo LRV below). The exception to this rule is
the first Salsa step (s = S1), whose class is independent of any other step. Note that this is a recursive definition.

bclass(b) ←P (bclass(b ) |bclass(bprv )) bclass(bprv ): as with the Tsamiko case, with the difference that there are
four classes: BA, BB, BC, and BD.

rclass(r ) ←P (rclass(r ) |rclass(rprv )) rclass(rprv ): as with the Tsamiko case, with the difference that there are
four classes: RA, RB, RC, and RD.

synced(s ) ←P (synced(s )) : same with the Tsamiko case.
syncWStp(r, s )←P (syncWStp(r ,s ) |sclass(s ),rclass(s ),synced(s )) sclass(s ), rclass(r ), synced(s ): same with the

Tsamiko case.
syncWBt(r, s )←P (syncWBt(r ,s ) |bclass(s ),rclass(s )) bclass(s ), rclass(r ): same with the Tsamiko case.
choreo(s ) ←P (choreo(s ) |choreo(sprv )) choreo(sprv ): There are three choreographies, i.e., choreo(s ) =

Choreography< 1, 2, 3 >. The choreography defines the class of every step of a step sequence.
In Table 6, the steps in a salsa dance in the depending on the choreographies are given. In Table 7, we provide

the general form of the input provided to the MEBN, derived from the pre-processing stage analysis of an arbi-
trary Salsa step sequence and the parallel beat sequence. We use the notation that was also used to define the
above model.
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Table 7. Example of Salsa Dance Performance Pre-processing Results, Given as Input to the MEBN Model

Events/features Extraction method Description
isA(S1, stepEvent ), . . . ,
isA(S12, stepEvent )

step detection S1, S2, . . . , S12 are 12 step events
order by their index.

isA(B1,beatEvent ), . . . ,
isA(B48,beatEvent )

beat detection B1,B2, . . . ,B48 are 48 step events
order by their index.

isA(R1, rhythmEvent ), . . . ,
isA(R48, rhythmEvent )

known by expert knowledge R1, R2, . . . , RM are M rhythm
events order by their index.

closeStep(R1, S1),
closeStep(R5, S2), . . . ,
closeStep(R45, S12)

absolute temporal difference
< threshold

Salsa step-rhythm events pairs that
are close.

syncStep(R1, S1)=VeryClose, . . . ,
syncStep(R12, S12)=VeryClose . . .

discretization of temporal
difference

The (discretized) degree of
closeness between Salsa step and
rhythm events (see closeStep
input).

closeBeat(R1,B1), . . . ,
closeBeat(R48,B48)

absolute temporal difference
< threshold

beat-rhythm events pairs with
sufficiently small temporal
differences.

syncBeat(R1,B1)=VeryClose, . . . ,
syncBeat(R45,B45) =VeryClose

discretization of temporal
difference

As with syncStep.

3.2.3 System Scalability and Time Complexity. At this point, it would be useful to highlight the advantages
and disadvantages of MEBNs. First, MEBNs are based on the production of an SSBN for each situation they are
employed. Thus, regarding scalability, the fact that they produce a BN that suits to each specific case enables
scale well under certain circumstances that hold much more often than not. More specifically, for the present
problem, a MEBN that models a certain type of dance is used as a seed for generating multiple situation-specific
models (i.e., SSBNs) for analyzing dance performances executed in many of its variations. Moreover, the MEBN
models the fundamental characteristics of the dance with respect to dance steps, music beats, and their syn-
chronization, so it can be used to evaluate a dance performance (in terms of synchronization), independently of
its variation, number of steps and accompanying music. In terms of scalability, this is a considerable improve-
ment against straightforward BN approaches that would require the development of a different BN for each
case.

Regarding time complexity, the time needed for our MEBN-based approach to yield a result has two parts: (a)
the derivation of the SSBN from the MEBN seed and (b) the Belief Propagation algorithm. In the former part,
the heavier process relates to the formation of each SSBN node, e.g., their CPTs and links to other nodes. The
formation of each CPT depends on the number of states represented by all nodes and the number of connections
with other nodes. Thus, for a small number of connections (for example, one to three connections, which is
the typical case for the SSBNs generated in our work), we may consider the SSBN creation part to have a close
to linear complexity over the number of nodes. With respect to the latter part, the heavier process is the BP
algorithm that takes place for estimating the target variables, given the observed ones. We know from the BN
literature (Bishop 2006) that if S is the total number of states of nodes in a BN, then the complexity of BP is O (S2).
Note that this complexity does not depend on the number of links between nodes, which is an advantage of this
complexity over the number of nodes. However, this comes together with the disadvantage of taking special
care to properly design the MEBN so as to avoid an oversized number of connections leading to non-linear
complexities when creating the SSBN at the former part mentioned above.
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Fig. 5. A part of the Tsamiko ontology.

3.3 MEBNs and Ontologies

At this point, we discuss the connection of MEBNs with ontologies. As also stated in Laskey (2008), a MEBN
can be seen as a probabilistic extension of an ontology. This means that there is an ontology that is considered
as the deterministic counterpart for each of the MEBNs presented above. We avoid in this work to analyze this
thoroughly and provide theoretical justification for this; however, we can note that the functions given in the
previous section for both the Tsamiko and Salsa MEBNs are the probabilistic counterparts of the classes and
their properties in an ontology (Van Harmelen et al. 2008). Also, the constant values that the logical variables
can take are the counterparts ontology’s individuals (the logical variables and the functions are instantiated to
constants) (Van Harmelen et al. 2008). We also show an ontology for the Tsamiko MEBN and show in Figure 5
a part of the ontology classes (depicted as boxes) and object properties (depicted as arcs). For more information
regarding the methodology followed to transcribe information from an ontology to a MEBN see “Probabilistic
Ontology: Representation and Modeling Methodology” (Carvalho 2011).

In light of the above, in the general case of using a MEBN instead of an ontology, we can also use MEBNs
to encode explicit domain knowledge, as well as merge different MEBNs into a single one or even expand them
with new knowledge. Moreover, we can store the data to be analyzed by MEBNs in files with a specified format,
which enables us to manage conveniently the data in these files by, e.g., merging, copying, and sharing the files.
Moreover, MEBNs come with an application program interface (API) that makes convenient the replacement of
the existing ontologies employed in, e.g., ICH preservation platforms and environments.

4 EXPECTATION MAXIMIZATION FOR MEBN PARAMETER LEARNING

4.1 MEBN Parameter Learning Problem Definition

In this section, we derive the Expectation-Maximization algorithm that we employ for learning the MEBN param-
eters. These parameters, in general, define implicitly the probabilities residing at the probabilistic rules presented
in the previous section, see Equation (4).

When it comes to train a MEBN with the EM algorithm, we use example performances as training data so as to
adjust the MEBN parameters, where an SSBN for each example performance must be produced. Thus, before we
define the problem that we aim to solve with the EM algorithm, it is useful to delve into the details of the SSBN
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construction. In what follows, we shall be using the FOBL terminology and the MEBN concepts described in the
previous section. A MEBN contains lifted random variables (LRV) used for the r.v. creation. More specifically, for
an arbitrary SSBN construction case, an LRV plays the role of the “blueprint” used for the creation of multiple,
regular r.v.’s. Moreover, the probabilistic rules produce probabilistic dependencies, i.e., the parent–child relations
among the r.v.’s. Thus, the above information, as well as the conditional probabilities that are provided for each
r.v. by the relevant MEBN functions, suffice to construct the SSBN.

Let L be the number of r.v.’s of all the SSBNs, constructed by example data and used in the context of an
arbitrary training case. We denote by Xj the jth r.v., where j = 1, . . . ,L. Also, for k = 1, . . . ,K , we denote by Xk

the set of the r.v.’s that originate from the same kth LRV, each r.v. residing either at the same or different SSBN(s).
Thus, for a certain k , it is Xj ∈ Xk , for all j ∈ Sk , where Sk is the set containing all superscripts of the r.v.’s in
Xk . As a result, all r.v.’s in Xk share the same probability values and have the same number and type of parents.
Last, all the parents of all r.v.’s in Xk originate also from the same LRV.

In this work, we assume only discrete r.v.’s, which means that every Xj , for j = 1, . . . ,L, is a random variable
that takes one out of Nj discrete states. This also means that each r.v. is in essence an SSBN node that has a local

conditional probability table (CPT). Moreover, we use the following convention to denote the assignment of one
of the Nj potential states to an r.v. Each Xj r.v. is an Nj × 1 vector and, to denote that the r.v. takes the ith state,
we set Xj (i ) = 1, while all other vector elements are set equal to zero. Last, the conditional probability of Xj ,
which depends on the parent variables Paj , is given by the following equation:

P
(
Xj |Paj

)
=

Nj∏

i=1

(
θk |Paj

i

)x j (i )
. (5)

The right-hand side of the above equation is a categorical distribution, which is a special case of the multino-

mial distribution (Bishop 2006), where there can be only one of multiple outcomes. Also θk |Pak

i , for i = 1, . . . ,Nj ,

are the parameters that define the probability that Xj (i ) = 1, for every j ∈ Sk and for a fixed state configuration

of the parents Pak . These parameters determine the conditional distribution of every Xj = 1 and in an explicit

manner, i.e., each probability P (Xj (i ) |Paj ) is equal to the corresponding parameter θk |Pak

i . Last, denoting by

X̄ = {Xj }j=1, ...,L the set containing all the random variables of all the SSBNs, their joint distribution, based on
Equation (5) and the directed and acyclic properties of BNs, is given by the following product:

P
(
X̄
)
=

L∏

j=1

P
(
Xj |Paj

)
=

L∏

j=1

Nj∏

i=1

(
θk |Pak

i

)x j (i )
. (6)

In what follows, for simplicity we write θk
i , instead of θk |Pak

i .

4.2 The Algorithm

In this section, we present the EM algorithm, applied for the MEBN parameter learning task. Following the ML
estimation (MLE) paradigm, the parameter estimation problem is formulated as the following (log-)likelihood
maximization problem:

Θ̂ = argmax
Θ

log P (Z̄; Θ), s.t.

Nk∑

i=1

θk
i = 1, k = 1, . . . ,K , (7)

where Θ is the set of all parameters, i.e., Θ = {θk
i }∀i,k .

Note that maximization of a function is equivalent to the maximization of its logarithm. Also, P (Z̄; Θ) is the
marginal likelihood. To analyze this further, an r.v. can be either an observed or hidden (unknown). Let Ȳ and Z̄ be
the set of the hidden and observed random variables of all SSBNs constructed by the example data, respectively.
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This means that Ȳ ⊂ X̄, Z̄ ⊂ X̄, Ȳ ∪ Z̄ = X̄, and Ȳ ∩ Z̄ = ∅. Thus, the data likelihood in Equation (7) is produced
by marginalizing Ȳ from the joint distribution (complete data likelihood): P (Z̄; Θ) =

∑
Ȳ P (Ȳ, Z̄; Θ), where the

summation runs over all the configurations of Ȳ.
We employ EM to solve the maximization (MLE) problem defined in Equation (7). EM, in essence, is an abstract,

iterative algorithm, which, when applied to a specific optimization problem, provides concise steps to derive an
iterative algorithm that solves MLE problems. Next, we derive the parameter update equations that are used in an
iterative fashion, where at each iteration the likelihood increases. Each iteration has two steps, the expectation
and the maximization step (E-step and M-step, respectively). At each iteration (t ), and specifically at the M-step,
the following lower bound of the marginal log-likelihood in Equation (7):

L
(
Θ,Θ(t−1)

)
= E[P (Ȳ |Z̄;Θ(t−1) )][log P (Ȳ, Z̄; Θ)] −

K∑

k=1

λk

Nk∑

i=1

(
θk

i − 1
)
, (8)

where P (Ȳ|Z̄) is the posterior computed at the (previous of M) E-step, is maximized with respect to the
parameters:

[
Θ(t ),Λ(t )

]
= argmax

Θ,Λ
L
(
Θ,Θ(t−1)

)
, where Λ = [λ1, . . . , λk ]T . (9)

Θ(t ) and Λ(t ) are the parameter and Langrange mutlipliers update equations at step (t ), respectively. Note that
the posterior of Y given Z̄ plays a key role here. Next, we summarize the EM algorithm applied to the present
problem:

• Iteration t=1: Initialize Θ: set Θ(1) to guessed values
• For t = 2, . . . ,Tmax (where Tmax is the maximum number of iterations allowed) or until a convergence

criterion is met (i.e., further increase of the data likelihood is insignificant), perform the E and M steps:

Expectation Step (E-Step): Using Θ(t ) , calculate the posterior of the data:

P
(
Ȳ|Z̄; Θ(t−1)

)
=

P
(
Ȳ, Z̄; Θ(t−1)

)

P
(
Z̄; Θ(t−1)

) . (10)

Maximization Step (M-Step): Find the update of Θ and Λ by solving the maximization problem in Equa-
tion (7) in conjunction with the the posterior calculated in the previous step.

• Denoting by T the last iteration, Θ(T ) are taken as the parameter estimates.

Next, we derive the parameter updates Θ(t ) and Λ(t ) of the above algorithm. The computation of the posterior is
performed in the E-step, for which task we choose the well-known Belief Propagation algorithm, and specifically
an implementation based on the junction trees concept (Jensen and Jensen 1994). However, we have to note that it
is sufficient to calculate with the BP algorithm the values of the marginal probability of each variable conditioned
on the observations. Using the definition of the categorical distribution defined in Equation (5), the expectation
of the log-likelihood with respect to the posterior is as follows:

∑

Ȳ

P (Ȳ|Z̄) log P (Ȳ|Z̄) =
∑

k

∑

j ∈Sk

Nk∑

i=1

P (Yj
i , Paj |Z̄) log

(
θk

i

)yj
i
+
∑

k

∑

j ∈Sk

Nk∑

i=1

log
(
θk

i

)zj
i . (11)

Note that the index k takes values for which θk
i corresponds to a hidden and an observed variable, for the first

and second summation, respectively, although not explicitly mentioned at the boundaries of the summation.
Then, for the case where k corresponds to a hidden variable, we equate the derivative of Equation (8), calculated
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Fig. 6. Tsamiko dance, video Kinect skeleton data, and output of the step event detection algorithm. In the right illustration,
the speed of the dancer’s waist point is plotted. The maximum and minimum points correspond to Tsamiko steps (events),
something that is attributed the nature of the Tsamiko dance.

using Equation (11), with respect to θk
i to zero and solve the resulting equation to find the parameter updates:

(
θk

i

) (t )
=

∑
j ∈Sk

P
(
Y

j
i , Paj |Z̄

)
y

j
i

(
λk
) (t )

, where
(
λk
) (t )
=

Nk∑

i=1

(
θk

i

) (t )
, (12)

ensuring that θk
i sum to one for a fixed k .

Last, the update for the case where the parameter θk
i corresponds to an observed variable is obtained by

taking the derivative of Equation (11) with respect to θk
i , setting it equal to zero, and solving the equation w.r.t.

the parameter as follows:

(
θk

i

) (t )
=

∑
j ∈Sk

z
j
i(

λk
) (t )
, where

(
λk
) (t )
=

Nk∑

i=1

∑

j ∈Sk

z
j
i . (13)

5 EXPERIMENTAL STUDY

5.1 MEBN Training and Inference

Before we proceed to the presentation of the experimental results, we discuss in a consolidated manner the gen-
eral procedure of applying MEBNs for our problems. More specifically, the MEBN-based analysis process consists
of two separate tasks. The first task is the training of the MEBN model with the EM algorithm of Section 4 using
a suitable training dataset. The second task is the analysis of a new/unseen dance performance using the trained
MEBN and the evidence obtained from the elementary concept detectors. We use the classifier in Kitsikidis et al.
(2014) to classify the Tsamiko steps and thus extract their features, see Table 3, and the classification method
in Karavarsamis et al. (2016) for the Salsa step classes, see Table 5. For both Tsamiko and Salsa, we use for the
detection of beats and their classification to classes the work in Dupont et al. (2009). We have to note at this point
that since the features are extracted by Kinect sensors, there can be inaccuracies in the information extracted
by these sensors and, thus, erroneous values to these features. However, we deal with this problem efficiently
by employing MEBNs, i.e., a probabilistic model, which takes into account the possibility of having such er-
rors, when providing a solution. In practice, in MEBNs, feature values coming from classification, as mentioned
above, are modeled as LRVs, which means they are considered to take values randomly, and, thus, they can be
erroneous with a probability. This probability is calculated with the EM algorithm. In Figure 6, a Tsamiko expert
dancer is depicted in various positions, along with the skeleton data captured while dancing. Also, in Figure 7,
the footwork followed by a Salsa dancer when executing the step belonging to the “basic step” class are depicted
(Essid et al. 2013).
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Fig. 7. Steps followed by a Salsa dancer when executing the “basic step”.

The MEBN is trained once, using Tsamiko and Salsa dances as training data. Then, once the MEBN model
has been trained, it can be used for the analysis of any new dance performance. For the training, we use the
algorithm of Section 4, for which we need a training dataset consisting of example dance performances. The
reason we apply the EM algorithm is that there are missing values in our data, i.e., the Tsamiko and Salsa step
classes. All other values are considered known, i.e., either from expert knowledge or classification, see Tables 4
and 7, or by expert-provided annotation, i.e., the dance style(s), e.g., genderStyle, stepStyle, and choreo and
temporal information. This information is taken from ground-truth data found in Kitsikidis et al. (2014), i.e.,
the time of occurrence of Tsamiko steps, and in Essid et al. (2013), i.e., the starting and ending of each Salsa
step. The former source of information, however, is not a product of an expert’s manual annotation, but it is
extracted using a heuristic, as explained also in Figure 6. However, the ground-truth data we use for Salsa, found
in Essid et al. (2013), provide a temporal segmentation of the Salsa performance using the information about the
period of the step occurrence provided by an expert. Note also that, when testing a MEBN, the difference with
training, is that the style and choreo variables are considered unknown. Last, the result of the training process is
the estimation of the MEBN parameter values that best fit to the example performances. Finally, the estimation
of these parameters makes the overall process of training and, next, analyzing the new/unseen performances
efficient and fully automated.

The training sets we use for the Tsamiko and Salsa consist of recorded dance performances, each one coming
either from an expert or an amateur dancer. Particularly for Tsamiko, there are 21 performances, where 8 of
them are from experts. The information dictating whether dancer is an expert or an amateur is provided by
a Tsamiko expert teacher. For Salsa, however, there are 57 performances but without knowing a priori which
dancer is an expert or not. To overcome this shortcoming, we followed an automatic procedure that decides
which performances belong to experts or to amateurs based on a baseline method.

In our training experiments, to simulate the distinction between the training and testing set, we employ a
cross-validation methodology (Geisser 1993), where the main idea is to use a subset of the dataset for training
and the rest for testing. Naturally, in our problem, a subset of the expert performances could comprise the train-
ing set, while the rest of the expert and amateur performances would comprise the testing set. However, to fully
exploit the available data, we employ the leave-one-out cross-validation approach (Bishop 2006), which is also
suitably modified so as to conform to the specific nature of our evaluation setting. More specifically, every per-
formance existing in the available dataset, coming either from an expert or amateur dancer, is used for testing.
However, in case of an expert performance, it is tested using a MEBN model that has been trained using all the
expert performances except for the tested performance. However, in the case of an amateur performance, the
model has been trained using all the expert performances. In this way, either we are testing an expert or an
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amateur performance, we are able to simulate the case where we apply the MEBN-based analysis on a
new/unseen performance that has not been used in the training. Moreover, we manage to avoid using amateur
performances as training data, something that would lead to erroneously trained models.

5.2 Analysis Objectives

The MEBN models presented in Section 3 have been built to facilitate the following analysis objectives. More
specifically, our evaluation scheme has the purpose to test the MEBN models in a twofold manner: first, with
respect to their ability to assess the proficiency (expertise) level of the dancer and then his/her synchronization
with the music. The immediate results of the MEBN-based analysis of a dance performance are the inferred
probabilities that can lead to the recognition of the dance style (Tsamiko) or choreography (Salsa). These are
used in a second stage for the assessment of the dancer proficiency level. This assessment is based on the premise
that the higher the classification accuracy, the more advanced the dancer is evaluated. Finally, we also assess the
synchronization of the dancer with the music. For the two aforementioned evaluations objectives, we employ
two metrics that are described and defined in what follows.

Proficiency level assessment (PLA): The objective is to evaluate whether the dance steps in a performance
are executed correctly and in the proper order, according to the style/choreography. Note, however, that our
ultimate goal is not to classify the entire performance with respect to the style. Instead, our goal is to assess the
proficiency level of a dancer, i.e., how skilled (s)he is to execute the dance movements correctly and in proper
order. PLA has two stages. In the first, Bayesian Inference applied on the SSBN, which is produced by the MEBN
and the test data, to obtain the posterior probability of the dance style given the observations. In the second stage,
the PLA metric is calculated using the previously mentioned probabilities, i.e., (a) the stepStyle and genderStyle

for Tsamiko and (b) the choreo node for Salsa. In this way, we assess the proficiency level of a dancer not at the
level of geometrical properties of the dance performance but in terms of more abstract levels that closer to the
human intuition.

More specifically, PLA is calculated by averaging the posterior probabilities of the style nodes. These prob-
abilities indicate the plausibility of the hypothesis that the steps are indeed executed according to the actual
style of the dance. More specifically, let us denote with S = {S1, S2, . . . , SN } the sequence of steps constituting
the dance performance. Let us also denote with T = {T1,T2, . . . ,TK } the set of existing style types. PLA, for the
step sequence S , with respect to the step style Tj , is defined as follows:

PLA(S,Tj ) =
1

N

N∑

i

P (style(Si ) = Tj |Z̄), (14)

where Z̄ are the observations (i.e., elementary concepts). More specifically, Tj takes one of the values given in
Tables 2 and 6 for Tsamiko and Salsa, respectively. Note that, in Tsamiko, not all styles are mutually exclusive
with the others, i.e., a dance has two style types. This means that for a specific Tsamiko performance, there are
two PLA scores that we need to calculate to assess the proficiency level, i.e., that PLA(S,Tj ) for whichTj =Male
or Female and that PLA(S,Tj ) for which Tj = Double or Single.

Synchronization assessment: The objective is to measure and assess the alignment between the executed
dance steps and the beats of the music. In this case, the nodes of interest are those produced by the synced LRV,
for both Tsamiko and Salsa, which denotes the degree of simultaneity between the step and the beat events. Let
S = {S1, S2, . . . , SN } denote the N step events. In the resulting SSBN, there is one synced(S j ) node for each S j

step. Thus, we define the synchronization assessment score (SAS) as follows:

SAS (S ) =
1

N

∑

j

(synced(S j ) = True|Z̄), (15)
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Table 8. Denotations and Styles of the 21 Tsamiko Performances (8 Experts, 13 Amateurs)

Denotation Style Denotation Style Denotation Style
A1 female/single A8 female/double E1 female/single
A2 male/single A9 male/double E3 male/double
A3 male/single/ A10 male/double E4 male/double
A4 male/single A11 male/double E5 male/double
A5 double/female A12 male/double E6 male/double
A6 female/double A13 male/double E7 female/single
A7 male/double E8 male/double

where j runs over the N steps. Higher values for SAS indicate more precise synchronization between the under-
taken steps and music beats.

5.3 Tsamiko Dance Analysis Results

In the Tsamiko dances analyzing experiments, we have used 21 recorded performances, all with the same se-
quence length of 150 steps. Of the 21 recorded performances, 8 were executed by professional dancers (E1–E8),
while the rest (A1–A13) were obtained from amateur-level dancers. All performances were executed with the
same musical piece, and every performance was annotated with its dance style, as depicted in Table 8.

Our purpose in designing the experiments to be conducted for the analysis of Tsamiko dance performances
were the following: (a) Using PLA, compare the MEBN-based model of Figure 1 against a standard Bayesian
network so as to verify the benefit of MEBNs in adopting to the situation at hand and generating situation
specific BNs. (b) Using PLA, compare the performance of an MEBN-based model trained using the learning
algorithm of Section 4 against the performance of the same MEBN-based model with its parameters having been
set manually. (c) Use the PLA score to distinguish the performances undertaken by amateurs and experts, as
presented in Table 8. (d) Verify the ability of our model in assessing the synchronization between the undertaken
dances steps and the music beats by comparing the SAS scores for the performances undertaken by amateurs
and experts, as presented in Table 8. In this case, as in the previous case, our expectation is that our model will
give a high score to the performances undertaken by experts and a lower score to those by apprentices.

5.3.1 MEBNs vs. BNs. To verify the benefit of MEBNs being able to adapt to the situation at hand, we compare
our MEBN-based methodology with a straightforward BN. Since the BN-based model cannot adapt to the volatile
number of the steps, we are forced to use a BN with fixed size. In the present case, we use a 10-step node
BN, which means that the step sequences are being processed by the BN as multiple independent chunks of
10 steps (thus, N /10 chunks in total, where N is the step number) instead of as a whole sequence. Also, the
comparison takes place only for the expert performances. For a fair comparison, the CPTs of the BN are taken
from the trained MEBN network. Figure 8 illustrates the PLA scores obtained in both cases and for all dance
performances of Table 8. We can see that the MEBN-based framework provides a consistently higher PLA score,
(average: 0.90/0.97, st. dev: 0.03/0.03, for the genderStyle/stepStyle cases, respectively) than the BN approach
(average: 0.64/0.82, st. dev: 0.12/0.17). Thus, given that both frameworks incorporate the same information for the
observed variables and both frameworks have been designed and trained based on the same domain knowledge,
it is reasonable to attribute the consistency of the scoring ability of the MEBN-based framework to handle each
performance as a whole and continuous sequence of steps.

5.3.2 EM Training vs. Manually Fixed Parameters. In this experiment, our goal is to verify the efficiency of
the EM algorithm presented in Section 4.2 and the usefulness and generalization capability of a trained MEBN

ACM Journal on Computing and Cultural Heritage, Vol. 11, No. 3, Article 12. Publication date: August 2018.



12:22 • G. Chantas et al.

Fig. 8. PLA scores for MEBN vs. BN comparison for two types of style: (a) stepStyle and (b) genderStyle. The average for
each case is also given.

model. Figure 9 presents the PLA results achieved by the MEBN model trained using the EM algorithm, against
the results of the same MEBN model with its parameters having been set manually to fixed values based on
expert knowledge. Also, the comparison takes place only for the expert performances, as above. We can see that
the MEBN-based framework provides a more consistent and, in parallel, a higher PLA score than the manual case
on average, i.e., EM-trained MEBN average: 0.90/0.97, st. dev: 0.03/0.03, MEBN with manually fixed parameters:
average: 0.83/0.93, st. dev: 0.05/0.04, for the genderStyle/stepStyle cases, respectively. Given that both frameworks
have the same structure but different parameters, it is reasonable to attribute the PLA accuracy and consistency
exhibited by the proposed scoring procedure to capture information that it is difficult to be provided explicitly
by an expert.

5.3.3 Experts vs. Amateurs in Proficiency Level Assessment. Our goal in this experiment is to verify the ability of
our MEBN-based model in assessing the proficiency level by comparing the PLA score between the performances
undertaken by amateurs and experts. Figure 10 presents the PLA scores for the different style combinations by
separating between the amateurs and experts. It is evident from this figure that the PLA scores achieved by the
experts (marked as E.x) are generally higher than the ones achieved by the amateurs (marked as A.x). Indeed,
we can see for the stepStyle the PLA scores achieved by the experts (average score: 0.97, std. dev: 0.03) are
evaluated as almost perfect, while many of those achieved by amateurs (average score: 0.88, std. dev: 0.08) are not
evaluated with a perfect score or, even worse, are evaluated with a very low score, e.g., A1 and A5. The situation
is a bit different in the case of genderStyle, where the expert performances (average score: 0.90, std. dev: 0.03) are
assessed as worse, in terms of PLA, than their counterparts in the stepStyle case, something that holds also for
the amateurs (average score: 0.83, std. dev: 0.12). This outcome can be attributed to the difficulty of the amateur
dancer to perform the male style correctly, which is distinguished from the female style by having the foot high

ACM Journal on Computing and Cultural Heritage, Vol. 11, No. 3, Article 12. Publication date: August 2018.



A Probabilistic, Ontological Framework for Safeguarding the Intangible Cultural Heritage • 12:23

Fig. 9. PLA scores for trained MEBN vs. fixed valued MEBN comparison for two types of style: (a) stepStyle and
(b) genderStyle. The average for each case is also given.

Fig. 10. Comparison of PLA scores between amateurs and experts in Tsamiko dance. Average scores are also depicted.
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Fig. 11. Synchronization assessment scores for amateurs and experts in Tsamiko dance. Average scores are also depicted.

in some steps. More specifically, the genderStyle nodes define whether the value of the isFootHigh feature should
be “true” (for some steps when the style is male) or false (for all steps when the style is female). Given that our
analysis methodology managed to distinguish between the amateurs and experts by testing whether this feature
had the correct value at each step, it is deduced that amateurs find difficult to have the foot risen properly.

5.3.4 Experts vs. Amateurs in Synchronization Assessment. The last of our experiments performed on Tsamiko
dances evaluates the ability of our model in assessing the synchronization between the undertaken steps and
music beats. Figure 11 presents the SAS scores for the Tsamiko dance performances of Table 8, distinguishing
between amateurs (marked with A.x) and experts (marked with E.x). All expert performances provided high
SAS values (with 0.943 average score and 0.039 std. dev), while many amateur performances were assessed with
low scores (with 0.904 average score and 0.055 std. dev). The accuracy of the distinction between experts and
amateurs based on SAS is evident, though this accuracy is less evident in the case of PLA. However, as we will
see next, in the Salsa experiments, this discrimination efficiency is increased in terms of SAS.

5.4 Salsa Dance Analysis Results

For the case of Salsa dance analysis, we adopt the same experimental protocol with Tsamiko and the MEBN
model described in Section 3. The 3DLife (Essid et al. 2013) dataset consists of three choreographies, see Table 6,
and 57 Salsa dance performances. Each performance consists of 12 Salsa steps, which are executed in the way
described in Table 6. Moreover, each dancer executes multiple performances, each one belonging to one of three
choreographies. To assess the dance performances, we need, first, to employ the elementary concept detectors
to (a) classify each of the 12 Salsa dance steps to one of the step types listed in Table 5; (b) classify each one of
the 48 beats, belonging in the audio modality, to one of four types; and (c) identify 48 Rhythm events, which are
not calculated based on data analysis but, instead, from the a priori known value of the tempo (i.e., the beats per
minute rate, bpm), which is 150, 185, and 180 bpm for the first, second, and third choreographies, respectively.

However, in Salsa, we divide the Salsa performances comprising the available dataset, used for training and
testing, based on the dancer evaluation method mentioned in Essid et al. (2012). According to this method, eval-
uation is performed with respect to the dancer’s ability to synchronize with the beat and perform correctly the
choreography and is calculated from the data. For Salsa, we conducted experiments, presented in what follows,
with the following purpose: (a) Verify the ability of our model in correctly recognizing the style followed by each
step by comparing the PLA score between the performances undertaken by amateurs and experts, and (b) verify
the ability of our model in assessing the synchronization between the undertaken dances steps and the music
beats by comparing the SAS scores for the performances undertaken by amateurs and experts.

5.4.1 Experts vs. Amateurs in Proficiency Level Assessment. The objective of this experiment is to assess the
proficiency level of the dancer. In this way, we can provide feedback to an amateur when trying to learn the par-
ticular Salsa steps and choreographies. Figure 12 presents the PLA scores, obtained as described in Equation (14),
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Fig. 12. Proficiency level assessment scores for Salsa dances.

Fig. 13. Synchronization assessment scores for amateurs and experts in Salsa dance.

for style =Choreography< 1, 2, 3 >, for all available performances distinguishing between experts (marked as
E.x) and amateurs (marked as A.x) dancers. Note that we take the dancers of intermediate level as experts for
the training procedure. It is evident that the PLA scores coming from experts (average value is 0.85 and st. dev is
0.21) are, on average, higher than the ones coming amateurs (average value is 0.72 and st. dev is 0.16), advocating
the usefulness of our model in performing proficiency level assessment in Salsa dances.

5.4.2 Experts vs. Amateurs in Synchronization Assessment. Figure 13 presents the SAS scores for the analysed
Salsa performances, distinguishing between experts (marked as E.x) and amateurs (marked as A.x). It is evident
that the SAS scores coming from experts (average score is 0.53, std. dev is 0.12) are, on average, higher than
the ones coming from amateurs (average value is 0.48, std. dev is 0.08), advocating the ability of our model to
effectively assess the synchronization between steps and music beats.

5.5 Comparing with a State-of-the-Art Method in Dance Synchronization

As a last experiment, we compare the performance of the proposed MEBN-based approach in terms of their
synchronization assessment efficiency with a state-of-the art algorithm used in Essid et al. (2012). Both methods
are able to produce a ranking of the examined dance performances, which allows their direct comparison with
each other based on the gold standard ranking provided by the 3DLife dataset (Essid et al. 2013). Next, we further
describe how this comparison is performed.

In the 3DLife dataset, 17 of 57 Salsa dance performances have been scored by experts. Apart from these scores,
we also score them with (a) the SAS methodology and (b) the work in Essid et al. (2012), denoted as Virtual dance
performance evaluator (VDPE). Note that VDPE is modified for our purposes to take into account only the ability
of the dancer to synchronize with the beat. At the same time, we make use of the 17 numerical expert-provided
scores, denoted as ES, that are bundled with the 3DLife dataset. Considering the ground-truth scores in 3DLife
as a gold standard for establishing a comparison, we use the SAS and VDPE scores so as to evaluate which of
these algorithms provides more similar results with the gold-standard ranking.

For the ith performance (of the 17), we denote by SASi , SCi , and ESi the scores provided by the SAS, VDPE
methods and the experts in the 3DLife dataset, respectively. For each of the three scores, namely, SASi , SCi and
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Table 9. The Edit and Hamming Distances of SAS
and VDPE with Respect to ES Scores

A = SAS − s B = VDPE − s
Edit distance E (A,B) 13 16
Hamming distance H (A,B) 15 16

ESi , for i = 1, . . . , 17, we obtain an ordered list of the 17 dance performances, in descending order, and thus
obtain three rankings.

Then, we check the similarity of the ranking results. We formally define as similar these rankings that, when
provided as input to the two distance metrics described below, produce a high value. The distance metrics are (a)
the edit (ED (A,B)) and (b) the Hamming (H (A,B)) distance (Navarro 2001), defined for the strings A and B. ED
is specified as follows. Assuming that each symbol forming the string A and B is drawn from a finite alphabet,
the ED from string A to string B is the minimum number of necessary insertions, deletions, and substitutions of
symbols belonging in the alphabet that turn A into B. Hamming distance relies on a simpler idea, which is that
the distance between the two strings A and B is the count of in-order symbol pairs that differ from each other.

We denote by SAS − s , VDPE − s and ES − s the ranked lists, treated as strings for the comparison purposes,
corresponding to the SAS, VDPE, and ES, respectively. As shown in Table 9, the ranking of the dance perfor-
mances produced by the SAS algorithm has an ED equal to 13, whereas the ranking of the performances produced
by VDPE has an edit distance of 16. In terms of the Hamming distance, SAS − s and ES − s rankings differ by 1
unit. These results advocate the ability of the proposed method in performing the synchronization assessment
of a dance more consistently with the experts view, compared to the algorithm presented in Essid et al. (2012).

6 CONCLUSIONS AND FUTURE WORK

In this article, we have presented and proposed a framework, based on MEBNs, for analyzing manifestations of
ICH practices and dance in particular. The efficiency of the analysis was tested on specific dances, i.e., Tsamiko
and Salsa. The experimental results demonstrated the accuracy of our dancer assessment methodology, both
of his/her ability to execute the moves correctly and be synchronized with the beat of the music. Particularly,
we built a MEBN model for each dance case (Tsamiko and Salsa) and use it for the analysis task. We demon-
strated how the logical part of MEBNs can be used to encode the expert knowledge about the ICH domains
corresponding to the dances. Moreover, we showed that the probabilistic part of MEBNs fosters the capturing of
new, unknown, and implicit knowledge, which was impossible to be rigorously provided and defined by experts.
We also supported the claim that MEBNs can replace and extend the ubiquitous practice of using ontologies and
demonstrated how this can be done. More specifically, we showed that our approach uses MEBNs instead of an
ontology to encode domain explicit knowledge.

Lastly, we trained the MEBNs with the EM algorithm, using annotated dance performances as examples. Train-
ing entailed the automatic selection of the model parameter values according to the ML criterion. We also derived
the EM algorithm used for training. Experiments demonstrated that the PLA and SAS scores, as they are calcu-
lated in our semantic analysis using MEBNs trained with the EM algorithm, are accurate and reliable metrics for
assessing a dancer, in contrast with the cases where the parameters are adjusted manually (i.e., guessed by an
expert) and/or a BN is used instead of a MEBN. Also, in the experiments, it was shown that our methodology
manages to distinguish between expert and amateur dances. In addition, the synchronization assessment method
was shown to be superior to a state-of-the-art method in terms of the accuracy of the SAS scoring procedure.

Also, we believe that the overarching goal demonstrated in our work, i.e., ICH dances learning, is strongly
connected with ICH preservation and the passing of such knowledge to new generations. More specifically,
our priority and overarching goal is to use the proposed methodology in an automatic, digital (hardware and
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software) ICH learning platform dedicated to training ICH practitioners/students. In this platform, the students
can receive corrective feedback about their entire performance or about specific parts. Moreover, we plan to use
the style information in the more general context of ICH preservation and safeguarding and facilitate convenient
access to the recordings via sophisticated indexing.

In the future, we aim to test the dancer assessment methodology on other dance genres or even in singing
scenarios. We also plan to employ our methodology to cases not falling into the ICH category. Moreover, it is
worth testing the EM algorithm to other cases to demonstrate the importance of the MEBN parameter learning
algorithm in even more complex models. Also, a major foreseeable impact of this work is to highlight the benefits
of using not only MEBNs but also the general framework of probabilistic ontologies. With this, we aim to fill the
serious lack of semantic analysis methods applied to the ICH domain that is based on probabilistic knowledge
representation and Bayesian inference.
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