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Abstract—In this paper, a procedure is described for the segmen-
tation, content-based coding, and visualization of videoconference
image sequences. First, image sequence analysis is used to estimate
the shape and motion parameters of the person facing the camera.
A spatiotemporal filter, taking into account the intensity differ-
ences between consequent frames, is applied, in order to separate
the moving person from the static background. The foreground is
segmented in a number of regions in order to identify the face. For
this purpose, we propose the novel procedure of K-Means with con-
nectivity constraint algorithm as a general segmentation algorithm
combining several types of information including intensity, motion
and compactness. In this algorithm, the use ofspatiotemporal re-
gions is introduced since a number of frames are analyzed simul-
taneousl,y and as a result, the same region is present in consequent
frames. Based on this information, a 3-D ellipsoid is adapted to the
person’s face using an efficient and robust algorithm. The rigid 3-D
motion is estimated next using a least median of squares approach.
Finally, a Virtual Reality Modeling Language (VRML) file is cre-
ated containing all the above information; this file may be viewed
by using any VRML 2.0 compliant browser.

Index Terms—Model-based image sequence analysis, spatiotem-
poral image sequence segmentation, VRML.

I. INTRODUCTION

D IGITAL VIDEO is an integral part of many newly
emerging multimedia applications. New video coding

standards, such as MPEG-4 and MPEG-7, do not concentrate
only on efficient compression methods, but also on providing
better ways to represent, integrate and exchange visual in-
formation [1]–[3]. These efforts aim to provide the user with
greater flexibility for “content-based” access and manipulation
of multimedia data.

In order to obtain a model-based representation, an input
video sequence must first be segmented into an appropriate set
of arbitrarily shaped objects (termed thevideo object planes
in the MPEG-4 Verification Model), where each of the objects
may represent a particular meaningful content of the video
stream [4]. The features of each object such as shape, motion,
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and texture information can subsequently be coded into the
so-calledvideo object layerfor transmission or storage. Al-
though the standards will provide the needed functionalities in
order to compose, manipulate and transmit the “object-based”
information, the production of these objects is out of the scope
of the standards and is left to the content developer. Thus,
the success of any object-based approach depends largely on
the segmentation of the scene based on its image contents.
In a videophone-type application, for example, an accurate
segmentation of the face object can serve two purposes: 1) it
can allow the encoder to place more emphasis on the facial area
since this area (the eyes and mouth and particular) is the focus
of attention of the human visual system and 2) it can also be
used to extract features so that higher level descriptions can be
generated (e.g., personal characteristics, facial expressions, and
composition information). In a similar fashion, the contents of a
video database can be segmented into individual objects, where
the following features can be supported: 1) sophisticated query
and retrieval operations; 2) advanced editing and composition;
and 3) better compression ratios. These issues and objectives
are currently addressed within the framework of the upcoming
MPEG-4 and future MPEG-7 standards [2].

Segmentation methods for 2-D images may be divided pri-
marily into region- and boundary-based methods [5]–[8]. Re-
gion-based approaches [9], [10] rely on the homogeneity of spa-
tially localized features such as gray-level intensity, texture, mo-
tion [11], and other pixel statistics. Region growing and split and
merge techniques also belong to the same category. On the other
hand, boundary-based methods use primarily gradient informa-
tion to locate object boundaries. Deformable whole boundary
methods [12], [13] rely on the gradient features of parts of an
image near an object boundary.

Other techniques include the segmentation by anisotropic dif-
fusion [14] introduced by Perona and Malik [15]. Anisotropic
diffusion can be seen as a robust procedure which estimates a
piecewise smooth image from a noisy input image. The “edge-
stopping” function in the anisotropic diffusion equation, allows
the preservation of edges while diffusing the rest of the image.
Mathematical morphology [16], [17] methods have been also
used for segmentation. In particular, the watershed transforma-
tion [18] has received considerable attention in use for image
segmentation. This transformation determines the minima of the
gradient of the image to be segmented, and associates a seg-
ment to each minimum. Conventional gradient operators gen-
erally produce many local minima which are caused by noise
or quantization errors, and hence, the watershed transformation
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with a conventional gradient operator usually results in over-
segmentation. To alleviate this problem, the use of multiscale
morphological gradient operators has been proposed. Methods
for the segmentation of image sequences have been presented
in, among others, [19]–[22]. In most of these methods, region
growing and merging techniques are used, depending on the ho-
mogeneity of the 2-D or 3-D motion. When advanced multiview
setups are available, 3-D models of the scene can be created
and the segmentation may be applied at the triangle level of the
3-D model using several characteristics such as intensity, mo-
tion, and depth [23].

In the sequel, the term “region” is used to describe an area of
the frame which is homogeneous in characteristics such as grey
level, texture, motion, or their combinations. The term “object”
is used to describe regions or combinations of regions which
have a semantic meaning, e.g., the head object. Finally, the facial
region is identical to the face object.

In this paper a novel procedure for the segmentation of
image sequences using both spatial and temporal information
is presented. As a basis for the segmentation algorithm, the
K-Means algorithm is used, modified so as to take into account
the coherence of the regions. The regularization parameters of
the K-Means with Connectivity Constraint (KMC) algorithm
are evaluated automatically using the min–max criterion [24].
The algorithm is extended so as to separate and track regions
appearing in consequent frames of an image sequence. The
methodology proposed here is similar to that proposed in [25],
and thus differs significantly from that most common in the
literature, where an image is first separated into regions which
are then tracked through time [26]. In the proposed approach,
a number of consequent frames of the image sequence are
analyzedsimultaneouslyin order to segment the images into
regions. Thishigher order segmentationimplicitly solves the
problem of correspondence of objects between consequent
frames. Following region separation, and depending on the
application, knowledge-based methods may be used to decide
whether a separated region corresponds to a specific semantic
object (e.g., the head or face in a videoconference image
sequence).

A direct application of the segmentation into regions which
may correspond to meaningful objects is the coding and visual-
ization of these objects. Model-based methods have been used
to enable these functionalities. The ability of model-based tech-
niques to describe a scene in a structural way has opened up
new areas of applications. Very low bitrate coding, video pro-
duction, realistic computer graphics, multimedia interfaces, and
databases and medical visualization are some of the applica-
tions that may benefit by exploiting the potential of model-based
schemes [27]–[30].

In this paper, a robust and very efficient method is adopted
for fitting a 3-D ellipse to the facial region based on initial 2-D
data. The available 3-D model may be used to estimate the rigid
3-D motion and use the small set of rigid 3-D motion parame-
ters in order to update the model in the next time instance and
also reconstruct the next frame using only information from the
previous one.

These extracted parameters are converted into Virtual Re-
ality Modeling Language (VRML) format so that a moving 3-D

representation of the image sequence may be viewed by any
VRML compliant browser [31]. The visualization offers en-
hanced telepresence to the viewer, since a 3-D representation of
the scene is created. Furthermore, the user of the VRML browser
may interact with the scene; for example the user may rotate the
3-D model in order to see an object from the side. Once the 3-D
representation derived from the real image data is available, an
environment is created in which it is very easy to integrate syn-
thetic objects. For example, a new background may be added to
replace the old one; such a background may be entirely synthetic
or extracted from another real image. Also several characteris-
tics of the virtualized environment, such as lighting, may be di-
rectly controlled through VRML nodes. This also solves a major
problem facing model-based schemes, which is the problem
of interportability: since for each model-based scheme, a dif-
ferent specific decoder and viewer is required, the usefulness
of such schemes is limited. By adopting VRML, a standardized
file format and a general-purpose viewer can be used.

The paper is organized as follows. In the following section,
the foreground/background separation procedure and the KMC
algorithm are described. In Section III, the min–max criterion
is used for the automatic evaluation of the segmentation reg-
ularization parameters The final spatiotemporal segmentation
algorithm is presented in Section IV. The 3-D ellipsoid adap-
tation procedure to the person’s face is described in Section V.
In Section VI, the 3-D model is used for rigid 3-D motion esti-
mation. The visualization process using VRML is described in
Section VII-A. Experimental results evaluating the performance
of the algorithm are given in Section VIII. Finally, conclusions
are drawn in Section IX.

II. SHAPE PARAMETER ESTIMATION

A. Foreground/Background Segmentation

For videoconference scenes, it is reasonable to assume that
the moving object is a person in front of a static camera. In order
to extract the motion information needed to separate the fore-
ground from the background, a spatiotemporal filter, similar to
that in [32], is used. The filter takes into account mainly inten-
sity differences between pixels in consequent time instances. In
order to smooth the background/foreground segmentation mask
and to avoid random erroneous changes, the number of changes
of pixel intensity inside a time window is multiplied with a
smoothing function as follows: for each pixel , the
following index is calculated:

(1)

where
pixel intensity at time ;

the last frame used and is an integer multiple of;

a counter incremented by one whenever
.
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Each time a new time window is processed (whenever that is,
is incremented) is set equal to , where . The

function is given by

if
if

As is easily seen, if no more thanchanges of pixel intensity
occur within a time window, they do not contribute to the final
decision, since . A simple thresholding algorithm
suffices in order to obtain the final segmentation mask

foreground if

background if

where is a threshold. Thus, is the background/fore-
ground segmentation mask, indicating whether a pixel belongs
to the foreground (i.e., to the moving person), or to the static
background. All ensuing operations, described in the sections
that follow, are performed only on pixels belonging to the
foreground (i.e., only on pixels with ).

B. The KMC Algorithm

Clustering based on the K-Means algorithm is a widely used
region segmentation method [33]–[35] which, however, tends
to produce unconnected regions. This is due to the propensity
of the classical K-Means algorithm to ignore spatial informa-
tion about the intensity values in an image, since it only takes
into account the global intensity or color information. In order
to alleviate this problem, we propose the use of an extended
K-Means algorithm: the KMC algorithm. In this algorithm, the
spatial proximityof each region is also taken into account by
defining a new center for the K-Means algorithm and by inte-
grating the K-Means with a component labeling procedure.

For the sake of easy reference we shall first describe the tra-
ditional K-Means (KM) algorithm.

Step 1) For every region , random initial
intensity values are chosen for the region intensity
centers .

Step 2) For every pixel , the difference is eval-
uated between and , . If

for all ,
is assigned to region .

Step 3) Following the new subdivision, is recalculated. If
elements are assigned to then

(2)

where , , are the pixels be-
longing to region .

Step 4) If the new are equal with the old then stop, else
gotoStep 2.

The results of the application of the above algorithm are im-
proved using the KMC algorithm, which consists of the fol-
lowing steps.

Step 1) The classical KM algorithm is performed for a small
number of iterations. This result in regions, with

intensity centers , as described above, and spatial
centers ,

(3)

where . The differential motion cen-
ters are defined by

(4)

where , are the pixels of the
th region at time . The area of each region is

defined by

and the mean area of all regions

Step 2) For every pixel , the intensity differences
are evaluated between center and pixel intensities as
well as the distances betweenand and and

. A generalized distance of a pixelfrom a region
is defined as follows:

where is the Euclidean distance, is
now simply defined as ,

are the standard deviations of inten-
sity, motion, and spatial distance, respectively, and

are regularization parameters. Normal-
ization of the spatial distance with the area
of each region is necessary in order to allow
the creation of large connected regions; otherwise,
pixels with similar intensity and motion values with
those of a large region would be assigned to neigh-
boring smaller regions. If
for all , is assigned to region .

Step 3) Based on the above subdivision, an eight connec-
tivity component labeling algorithm is applied. This
algorithm finds all connected components and as-
signs a unique value to all pixels in the same com-
ponent. Regions whose area remains below a pre-
defined threshold are not labeled as separate ones.
The component labeling algorithm producescon-
nected regions. For these connected regions, the in-
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tensity , spatial , and motion centers
are calculated using equations (2)–(4), re-

spectively.
Step 4) If the difference between the new and the old centers

, , and is below a threshold

where is the corresponding center at theth itera-
tion of the algorithm, then stop, else gotoStep 2with

using the new intensity, motion, and spatial
centers.

Through the use of this algorithm, the ambiguity in the selec-
tion of the number of regions, which is another weakness of
the K-Means algorithm, is also resolved. Starting from any,
the component labeling algorithm produces or rejects regions
according to their compactness. In this wayis automatically
adjusted during the segmentation procedure.

An example of the segmentation procedure is shown in Fig. 1.
Fig. 1(a) shows the original image of the videoconference se-
quence “Claire” of size . Fig. 1(b) shows the result of
the first iteration of the KMC algorithm (result of Step 2 of the
KMC algorithm, for the first iteration). The result of the compo-
nent labeling algorithm (Step 3 of the algorithm) is in Fig. 1(c).
The initial number of regions was set to and the com-
ponent labeling algorithm produced regions. Fig. 1(d)
shows the final segmentation after only four iterations.

After the segmentation procedure, a face-detection algorithm
must be applied in order to identify the region that corresponds
to the facial area. For this purpose, the algorithm presented in
[36] can be used. In [36], the facial area is detected among
other candidate regions using fuzzy functions and information
including relative size and position.

III. SELECTION OF THEREGULARIZATION PARAMETERS

The segmentation procedure described in Section II-B pro-
duces a segmentation by assigning each pixel of the fore-
ground object to one of theregions , . This seg-
mentation minimizes the following energy function [37], [38]

(5)

where

Clearly, the final segmentation depends on the regularization pa-
rameter . In our case, setting emphasizes the im-

(a)

(b)

(c)

(d)

Fig. 1. (a) Original image “Claire.” (b) Result of the KMC algorithm (Step 2,
first iteration). (c) Result of the component labeling algorithm (Step 3). (d) Final
segmentation after only four iterations.

portance of intensity information and encourages the produc-
tion of many unconnected regions. By contrast, setting

, regions with similar motion are created. In both cases, if
the segmentation results in a partition ofcon-

nected regions regardless of the intensity or motion information.
The weight factor must be constrained, because otherwise, as

increases without limit, so does the energy . Thus, we
set

This parameter may be chosen heuristically or by usinga
priori knowledge. Alternately, themin–max criterion[24], [39]
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Fig. 2. Min–max selection of the regularization parameters���.

can be used for automatically evaluating the best. This cri-
terion is based on the assumption that in situations with con-
flicting alternatives, the most rational strategy is the one aiming
to minimize the maximum possible losses. Thus, the function
is minimized over all possible combinations of weight values
and the min–max criterion selects the combination producing
the maximum of these minima.

In this case, the application of the min–max criterion gives
(Fig. 2)

if

if

The resulting min–max segmentation will be seen
to yield very satisfactory results for the segmentation of prac-
tical videoconference sequences.

IV. SPATIOTEMPORAL SEGMENTATION

The segmentation procedure, along with the selection of the
regularization parameters described above, can be easily ex-
tended so as to separate and track regions appearing in conse-
quent frames of an image sequence. The methodology proposed
here differs from that, most common in the literature, where an
image is first separated into regions and then these regions are
tracked through time. In the proposed approach, a number of
consequent frames of the image sequence are analyzedsimulta-
neouslyin order to segment the images into regions.

If a small number of consequent frames is used, it is reason-
able to assume that the region intensities remain substantially
the same and hence that their intensity centersare indepen-
dent of time. In this way, the region is composed of all pixels

from consequent frames. The KMC algorithm presented
in Section II-B can be applied for a number of frames using the
generalized distance and the intensity
centers

where are all pixels belonging to region at time . A
similar assumption of independence of time for the spatial and
motion centers cannot be made, since the region may move or
move with different velocity from frame to frame (Fig. 3). Thus

where only the pixels belonging to regionat frame contribute
to the estimation of the spatial center of subobjectat frame .
Similarly

The energy measure to be minimized becomes

(6)

where

A temporal component labeling algorithm is performed at
Step 3 of the algorithm and the connectivity is now checked in
three dimensions:, , and time . The algorithm produces con-
nected regions appearing in consequent frames.

V. 3-D SHAPE PARAMETER ESTIMATION

A straightforward application of the above spatiotemporal
segmentation algorithm is in the coding of the facial area in
videoconference image sequences. The procedure in [36] is used
to extract the facial area in consequent regions. This procedure
employs a number of fuzzy functions of characteristics such as
color, size and spatial position of the regions in order to de-
tect the face region. The 3-D shape of the face is modeled by a
3-D ellipsoid which best fits the face in each consequent frame.
Then, 3-D motion between each ellipsoid is estimated and fi-
nally only information concerning the first frame and motion
parameters for consequent frames need to be transmitted; the
following frames are obtained from the previous ones using mo-
tion compensation. The use of 3-D ellipse tracking gives better
results than 2-D motion estimation as is also observed in [40].

The 3-D ellipse calculated must fit to the boundaries of the
face and at the same time provide a unique correspondence re-
lation between 3-D points belonging to the 3-D ellipse and 2-D
pixel locations on the image. The general equation of a 3-D el-
lipsoid is

(7)

where is vector and
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Fig. 3. Spatiotemporal segmentation of two regions.

Fig. 4. Resulting segmentation of the facial region for the first eight frames of the “Claire” sequence.

In [41], a solution for (7) was presented, using the 3-D nodes
of a known wireframe. The method is a generalization of the
extremely efficient method for 2-D ellipse fitting presented in
[42]. In this approach, no 3-D information is available and (7) is
projected to the 2-D image plane, assuming a perspective pro-
jection (Fig. 5)

where represents the camera focal length. Thus, multiplying
(7) by the following equation is obtained:

(8)

where

In the above equation, the unknown parametersare those of
the 3-D ellipsoid. Since for ellipse fitting, only the pixels with
coordinates lying on the boundaries of the head region
are used, it can be assumed that all these points have the same
depth , which can be arbitrarily chosen if only relative depth
is needed. As a result, the ellipse fitting procedure will provide
a relative depth information based on the scale on the-axis.
In this way, the technique in [41] produces 3-D ellipses fitting
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Fig. 5. Perspective camera geometry.

Fig. 6. The resulting ellipse fitting to the facial region for the eight first frames of the “Claire” sequence.

using the 2-D coordinates of the object boundaries, found in the
previous section.

VI. RIGID 3-D MOTION ESTIMATION

The available 3-D model may be used to estimate the rigid
3-D motion, update the model in the next time instance using
also a small set of rigid 3-D motion parameters, and also recon-
struct the next frame using information from the previous one.

The motion of an arbitrary point to its new position
is described by [43]

(9)

where

is a 3-D point in world coordinates and
is the center of the 3-D model

where is the number of 3-D points of the 3-D ellipsoid model.
Setting
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Fig. 7. Different views of the resulting 3-D textured model for “Claire.”

Fig. 8. A sample VRML 2.0 file describing all necessary parameters in order
to represent the videoconference scene in 3-D model-based form.

and

expression (9) reduces to

(10)

The goal of the 3-D motion estimation procedure is to
compute the parameter vector .
The procedure commences with block-based initial 2-D motion
estimation [19], [44], [45].

If are the coordinates of the perspective projection of
the 3-D point on the image plane at time,
then

and (11)

From (10) and (11), the 2-D motion vectors that corre-
spond to the pixels of each object are defined by projec-
tion of the 3-D motion on the 2-D image plane, as follows:

(12)

(13)

Equations (12) and (13) are derived by writing (10) in analyt-
ical form, multiplying with and using (11). Using (12)
and (13) and assuming that initially and equal the initial
block-based motion displacements and , respectively,
the following system for the model parameters is obtained:

(14)

(15)

In the first stage, (14) and (15) are used forof the initially
estimated 2-D vectors, forming a system of equations and
six unknowns. With , this system is overdetermined and
can be solved using least median of squares methods [46]. Thus,
if is the parameter vector,
the parameter estimation problem is of the form

(16)

where is a matrix, is the number of pixels in the
region and is a component vector
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(a) (b)

(c) (d)

Fig. 9. (a) Original image “Claire.” (b) Background / foreground segmentation mask for “Claire.” (c) Original image “Akiyo.” (d) Background/foreground
segmentation mask for “Akiyo.”

where we get (17) and (18), as shown at the bottom of the page,
and

(19)

where is the initial displacement vector at
pixel , and is the corresponding
depth.

For each set of , where , randomly selected
points the following least squares solution is estimated for (16)

(20)

where . The least median of squares solution of
(16) is

med (21)

...
...

...
...

... (17)

...
...

...
...

... (18)
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(a) (b)

(c) (d)

Fig. 10. Segmentation of the: (a) first and (b) eighth frame of the “Claire” sequence and (c) first and (d) eighth frame of the “Akiyo” sequence.

VII. V ISUALIZATION

A. Visualization With VRML 2.0

VRML is a file format for describing 3-D virtual objects and
interactive environments on the World Wide Web1. The first ver-
sion, VRML 1.0, allowed the building static 3-D worlds with
limited interactivity. The 3-D world is described by a scene
graph which consists of nodes representing virtual objects with
their geometry and textures maps and scene descriptors such as
transformations of objects, as well as lighting and shading. The
geometry is defined in a coordinate system, together with
some simple shapes, such as cubes, cones, cylinders, spheres,
and polygon meshes. Transformations allow positioning and
scaling of virtual objects in relation to others. Lighting, shading,
and texturing are used to add realism to the 3-D scene.

The most recent version, VRML 2.0, provides enhanced static
worlds together with interaction, animation and scripting. Ani-
mation can be obtained by nodes called interpolators. Similarly,
the script nodes allow animation of objects through events they
generate. In this work, we used theIndexedFaceSet, Transform,
PositionInterpolator, OrientationInterpolator, TimeSensor,and
Routenodes in order to visualize all the information extracted
from the image sequence analysis. TheIndexedFaceSetnode
is used to describe the geometry of the 3-D model, consisting
of 3-D points and their triangular connections. TheIndexed-
FaceSetnode also contains an image for texture mapping onto
the shape. The texture mapping is controlled by the texture coor-
dinates, which take values in and are specified in the
2-D texture space for each vertex of the shape. The inter-

1Web3D Consortium website, available at: http://www.vrml.org

polator nodes enable incorporating animation into the VRML
2.0 scene. An interpolator node takes a set of key values, and
generates an interpolated value at the specified time instance
using these key values. TheTimeSensor, being a sensor node,
keeps track of time instant and generates events as time passes.
Typically, it is up for animations, periodic utilities, or timed
events. Each of the two objects, head and shoulders, are grouped
under a differentTransformnode, which controls their position
in the 3-D space. The rigid motion parameters of each sub-object
are stored as key values in thePositionInterpolatorandOrien-
tationInterpolatornodes and using theTimeSensornode and the
Routenode, those values are applied at regular intervals to the
head and shoulders objects through theTransformnode. ThePo-
sitionInterpolatornode holds the translation parameters, while
theOrientationInterpolatornode holds the rotation parameters.

All parameters needed in order to represent the videocon-
ference scene in model-based form, 3-D model, motion, and
texture, can be stored and viewed in VRML format, as can be
seen in Fig. 8. This solves a major problem facing model-based
schemes, which is the problem of interportability: since for each
model-based scheme a different specific decoder and viewer is
required, the usefulness of such schemes is limited. By adopting
VRML, a standardized file format and a general-purpose viewer
can be used. Further, the coding of the extracted parameters is
standardized following the expected standard VRML compres-
sion format.

B. Visualization with MPEG-4 BIFS

Alternatively, for the visualization and transmission of all
extracted parameters, the MPEG-4 standard could be used,
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Fig. 11. Segmentation of the facial region for the eight first frames of the “Akiyo” sequence.

Fig. 12. Ellipse fitting to the facial region for the eight first frames of the “Akiyo” sequence.

and more specifically, the scene description format, the BInary
Format for Scene description (BIFS). This scene description is
a result of a common work of MPEG-4 and VRML community
and has a number of added functionalities, including, among
others:

1) efficient data compression (more efficient compression
comparing to binary VRML);

2) 2-D nodes and mixing 2-D and 3-D nodes;
3) encapsulation in streams, making the BIFS suitable for

broadcast environment.

All nodes described and used above could be used with minor
modifications in order to make the visualization MPEG-4 com-
patible.

VIII. E XPERIMENTAL RESULTS

The algorithm described above was used for the segmentation
and coding of two videoconference image sequences, “Claire”
and “Akiyo” of size . The original images are shown
in Fig. 9(a) and (c). The spatiotemporal filter as described in

Section II-A was applied to a number of frames, producing the
foreground/background segmentation mask for each image se-
quence shown in Fig. 9(b) and (d). The KMC algorithm was
applied next in the foreground object. First, the algorithm was
applied to one frame only in order to estimate the regularization
parameters , as described in Section III. The algorithm was
then used for spatiotemporal segmentation (Section IV) pro-
ducing meaningful objects in a number of frames. Among them,
the face—as well as other regions like the hair—could be easily
recognized. No region tracking or region correspondence was
necessary, since the algorithm automatically located the regions
in consequent frames. The segmentation results for the first and
eight frames are shown in Fig. 10(a) and (b) for the “Claire” and
in Fig. 10(c) and (d) for the “Akiyo” sequence. The extracted
face region for the eight frames is shown in Figs. 4 and 11.

The 3-D ellipse fitting algorithm based on initial 2-D data was
performed next and the adaptation results are demonstrated in
Figs. 6 and 12. The resulting 3-D textured model for “Claire” is
shown for different views in Fig. 7. As can be seen in Fig. 6, the
ellipse fits accurately the facial area and it follows the rotation
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(a)

(b)

(c)

Fig. 13. Motion estimation results for the “Claire” sequence. (a) Motion compensated frames 1–8. The original can be seen in Fig. 4. (b) Difference between
original consequent frames. (c) Difference between original and motion compensated frames.

of the head in consequent frames. Having the 3-D model avail-
able, the rigid 3-D motion of each object is estimated next as de-
scribed in Section VI. The resulting motion compensated frames
1–8 are shown in Fig. 13(a) while the corresponding original
frames are in Fig. 4. In order to demonstrate the performance
of the rigid 3-D motion estimation algorithm, the original frame
differences between consequent frames [Fig. 13(b)] are com-
pared with the frame differences between original frames and
rigid motion compensated frames in Fig. 13(c).

The algorithm described above was also tested for the seg-
mentation of the more complicated image sequence “foreman”

of size . The original image is shown in Fig. 14(a). In
this sequence, there is also camera motion, and the background
does not remain static. For this reason, the algorithm presented
in Section II-A was not used and the spatiotemporal segmenta-
tion with the connectivity constraint algorithm was rather ap-
plied to the full image. The segmentation result for the first
frame is shown in Fig. 14(b). The extracted face region for the
eight frames is shown in Fig. 15. The 3-D ellipse adaptation re-
sults are shown in Fig. 16.

Finally, using the VRML 2.0 nodes as described in Sec-
tion VII-A, the VRML 2.0 compliant file is created containing
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(a) (b)

Fig. 14. (a) Original image “foreman.” (b) Segmentation for the first frame of “foreman” sequence.

Fig. 15. Segmentation of the facial region for the first eight frames of the “foreman” sequence.

Fig. 16. Ellipse fitting to the facial region for the eight first frames of the “foreman” sequence.

the 3-D model, texture, and different rigid 3-D motion param-
eters for each object. Since the 3-D model is available, it can
be easily adapted into virtual environments or combined with
synthetic humans. In Fig. 17, “Claire” is shown next to a syn-

thetically created desk and background. For this visualization,
the ellipse fitting procedure was applied to one object created
by merging the face and hair region and also the shoulders were
included.
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Fig. 17. “Claire” along a synthetically created desk and background.

IX. CONCLUSION

We have presented an algorithm for the segmentation,
content-based coding and visualization of videoconference
image sequences. For image sequence analysis, a general
segmentation scheme was introduced, that can be used in
any image sequence analysis scheme. The KMC algorithm
is a novel segmentation algorithm combining information of
several types including intensity, motion, and compactness.
A number of frames is processed simultaneously and objects
are detected in this number of frames. Thisbatch approach
implicitly solves the problem of correspondence of objects
between consequent frames. The 3-D model is automatically
created and adapted to the segmented objects using a robust
method whereby 3-D ellipsoids are created from initial 2-D
data. At the same time, complete correspondence between
pixels and 3-D points is established. The rigid 3-D motion
parameters are extracted separately for each object. For vi-
sualization purposes, the VRML 2.0 file format was used in
order to provide compliance with a widespread format. Any
World Wide Web browser may be used in order to download
the file and view the moving scene. The visualization offers
enhanced telepresence to the viewer, since a 3-D represen-
tation of the scene is created. Furthermore, the user can
interact with the scene inside the VRML browser. Synthetic
objects may be easily integrated with the virtualized scene
in order to create synthetic natural hybrid video scenes.
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