
Optimizing Visual Search with Implicit User Feedback in
Interactive Video Retrieval

Stefanos Vrochidis
Queen Mary University of London

Mile End Road, London, UK /
Informatics and Telematics Institute

Thermi, Thessaloniki, Greece

+302311257754

stefanos@iti.gr

Ioannis Kompatsiaris
Informatics and Telematics Institute

Thermi, Thessaloniki, Greece
+302311257774

ikom@iti.gr

Ioannis Patras
Queen Mary University of London

Mile End Road, London, UK
+442078827523

I.Patras@elec.qmul.ac.uk

ABSTRACT

This paper describes an approach to optimize query by visual

example results, by combining visual features and implicit user

feedback in interactive video retrieval. To this end, we propose a

framework, in which video processing is performed by employing

well established techniques, while implicit user feedback analysis

is realized with a graph based approach that processes the user

actions and navigation patterns during a search session, in order to

initiate semantic relations between the video segments. To

combine the visual and implicit feedback information, we train a

support vector machine classifier with positive and negative

examples generated from the graph structured past user interaction

data. Then, the classifier reranks the results of visual search that

were initially based on visual features. This framework is

embedded in an interactive video search engine and evaluated by

conducting a user experiment in two phases: first, we record the

user actions during typical retrieval sessions and then, we evaluate

the reranking of the results of visual query by example. The

evaluation and the results demonstrate that the proposed approach

provides an improved ranking in most of the evaluated queries.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information Search

and Retrieval – relevance feedback, retrieval models, search

process.

General Terms

Algorithms, Performance, Experimentation.

Keywords

Implicit feedback, machine learning, search engine, interactive,

video retrieval.

1. INTRODUCTION
Nowadays, due to the rapid progress in network technologies and

the enormous storage capabilities of computers, very large

amounts of audiovisual content have become available worldwide.

The availability of such content places the demand for advanced

multimedia search engines; therefore video retrieval remains one

of the most challenging tasks of research. Despite the significant

advances in this area recently, further advancements in multiple

fields of video retrieval are required to improve the performance

of video search engines. One of the recent techniques applied, in

order to improve the results of search engines, attempts to exploit

the implicit feedback provided by the users [1] of a video search

engine. We consider as implicit user feedback any action or

navigation behavior of the user during the interactive query

session, including mouse movements and clicks, as well as

keyboard inputs and keystrokes. The main advantage of using

implicit techniques is that they do not require any explicit

feedback from the user side. Although implicit information is in

general thought to be less accurate than explicit [2], large

quantities of implicit data (e.g. log files in web search engines)

can be gathered at no extra effort to the user. Recent approaches

in interactive video retrieval analyze and process past user

interaction data either for performing retrieval [1], or for

complementing existing content based search modalities [3]. In

this context, this paper proposes a novel approach for combining

implicit user feedback with visual features, in order to improve

the results of query by visual example. Motivated by the fact that

content-based search, which relies only on visual features, could

yield results that resemble the query image only in terms of color

or texture but without having any semantic resemblance with it,

this paper argues that taking into account the implicit user

feedback to rerank these results, would improve the performance

of the system and add a semantic flavor in the visual search.

To this end, we design a video indexing and retrieval framework,

in which, this heterogeneously extracted information (i.e. implicit

feedback and visual features) is combined by employing machine

learning methods. Video processing is performed with well

established techniques techniques, including video to shot

segmentation, keyframe extraction and generation of visual

features. Then, we exploit the implicit user feedback, in order to

initiate semantic relations between the video segments and define

positive and negative examples for a given visual query. This is

realized with the following methodology. First, the user actions

such as mouse clicks and keyboard inputs are recorded and an

action graph that describes the navigation of the user during the

search process is constructed, considering as nodes the queries

and the segmented video shots and as links the user actions.

Subsequently, this graph is converted to a weighted graph by

translating the actions into weights. During a query by visual

example, this graph is utilized in order to define positive and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

CIVR'10, July 5-7, Xi’an, China
Copyright © 2010 ACM 978-1-4503-0117-6/10/07... $10.00

http://www.acm.org/class/1998/H.3.html
http://www.acm.org/class/1998/H.3.3.html
http://www.acm.org/class/1998/H.3.3.html

negative samples by employing a distance-based algorithm. The

latter are merged with a set of visually similar and dissimilar

examples based on visual features, in order construct a final

training set, which is used to train a Support Vector Machine

(SVM) classifier that reranks the results of the visual search. This

framework is embedded in an interactive video search engine,

which supports basic retrieval functionalities including text, visual

and temporal search. The evaluation of the system is performed

by conducting a user experiment in two phases: in the first part,

the users are searching for 6 different topics and their actions are

being recorded, while in the second phase, different users are

recruited to evaluate the reranking of the proposed approach. The

main contribution of this work is the methodology for combining

visual features with implicit user feedback, which adds a semantic

flavor to visual search. To the best of the authors’ knowledge this

is the first attempt of improving visual search in video retrieval by

combining visual features with graph structured implicit user

feedback expressed as clickthrough data.

This paper is structured as follows: section 2 presents the related

work, while in section 3 we introduce the SVMs employed in this

approach. The video indexing and retrieval framework is

presented in section 4, while section 5 deals with the video

content analysis. Section 6 describes the processing of user

implicit actions based on a graph approach and section 7 presents

the methodology for combining visual features with graph

structured implicit user feedback. Section 8 describes the

experimental results and the evaluation and finally, section 9

concludes the paper.

2. RELATED WORK
Implicit feedback approaches have been effective in textual

retrieval, where they were mostly employed for query expansion,

in order to retrieve, filter and recommend items of interest [4].

The “Implicit Interest Indicators” were introduced in [5] as a

definition of specific user actions that can be considered as

meaningful implicit feedback. In [6], the authors performed a

comparison between an explicit and an implicit feedback system

concluding that there were not significant differences between

these two systems and that substituting the former with the latter

could be feasible. In another interesting work, in which text

information was combined with user implicit feedback, the query-

logs of a search engine were utilized to learn retrieval functions

with the aid of machine learning [7]. More specifically the

clickthrough data are translated into ranking user preferences and

then they are used to train a retrieval function with a SVM

approach. In [8] the authors propose to detect query chains (i.e. a

sequence of queries) and then learn a retrieval function with

SVM.

Implicit feedback techniques have not been fully explored in the

multimedia domain [9]. In text retrieval, the usual implicit

information that can be taken into account is the user selection

(i.e. the user clicks on an interesting link or textual description to

view the complete document), while in video retrieval we have

multiple interactions between the user and the system, which

could be utilized to provide meaningful feedback. The main idea

to exploit the user feedback during video retrieval interactive

sessions, is to extend the idea of “query chains” [8] and construct

a graph that describes a series of user actions. Such a graph is

transformed to a weighted graph by aggregating the links between

the same nodes and weights are introduced based on the different

actions taken into account. Some recent works [1], [10] employ

the aforementioned technique to deal with user clicks. More

specifically, in [1] a video retrieval system, which is based on

Okapi BM25 retrieval model supporting text queries and

enhanced by a recommendation generator utilizing the weighted

graph structure, is evaluated. In [10] the authors evaluate 4

different algorithms that can be applied on such weighted graphs

to provide recommendations. However, these works consider only

textual queries, while basic video retrieval options as visual and

temporal based search are ignored. In addition, fusion or

combination of implicit feedback data with the content-based

approaches is not attempted.

In another work [3], a video retrieval system is presented, which

employs relevance feedback and multimodal fusion of different

sources (textual, visual and click-through data), in order to

generate recommendations for the user. In this approach the

textual, visual and aural data of the video shots are processed

separately and compared with the video document clicked. Then,

these results are fused. A further adjustment of the fusion weights

is performed with the aid of the click through data, which denote

the interest of the user to a specific document based on the time

she watched the video shot. The approach of fusing content

analysis information with the implicit feedback seems to be very

interesting and promising, however in this specific work the

implicit information is not very deeply exploited as no sequence

of query actions are taken into account, failing in that way to

semantically connect subsequent queries and shots. In comparison

to the proposed approach, this work employs implicit user

feedback for adjusting weights, in order to fuse efficiently the

results from different search modalities (e.g. text, visual) and not

for improving the results of a specific retrieval module (i.e. in this

case visual search).

3. SUPPORT VECTOR MACHINES
Support vector machines constitute a set of supervised learning

methods used for classification and regression. When a set of

training positive and negative examples is available, a SVM

training algorithm builds a model that predicts in which category a

new example falls into. To achieve that, a support vector machine

constructs a hyperplane or set of hyperplanes in a high or infinite

dimensional space. It general, it is assumed that the best

separation is achieved by the hyperplane that has the largest

distance from the nearest training datapoints of any class.

In this approach, we employ a SVM implementation that realizes

the alternative structural formulation of the SVM optimization

problem for conventional binary classification with error rate

described in [11]. For a given training set

with and , training this binary

classification SVM solves the following optimization problem,

which was proposed for predicting structured outputs and

optimizing multivariate performance measures like F1-Score or

the Precision/Recall Break-Event Point [12].

 (1)

subject to: (2)

where is the capacity constant and a parameter vector. This

approach has constraints, one for each possible vector

 and it has only one slack variable that is

shared across all constraints. The algorithm that is employed to

solve the aforementioned classification SVM optimization

problem is an adaptation of the Cutting-Plane Algorithm. This

algorithm iteratively constructs a sufficient subset of the set of

constraints. Starting with an empty set of constraints , in each

iteration, it first computes the optimum over the current working

set (i.e. and in the first iteration) and then it finds

the most violated constraint in the optimization problem and adds

it to the working set [11].

The reason for selecting this specific SVM in this approach, was

the very fast performance it demonstrates, which was important

for performing the ranking optimization at real time during the

query process, with an adequate training set.

4. VIDEO RETRIEVAL FRAMEWORK
The overall video indexing and retrieval framework employed in

this work, is illustrated in Figure 1. At the bottom part, standard

video analysis is performed, including video segmentation to

shots, textual analysis of recorded audio and visual processing of

extracted keyframes. On the top part of the framework, implicit

feedback is captured in log files and analyzed. The outputs of

these two parts are combined in a separate component, which

employs training of a SVM classifier, in order to rerank the results

of visual search. Processing of implicit information and video

content based analysis take place off line, while the combination

of visual and implicit information is realized on the fly (i.e. in real

time when a new query is submitted). In the next sections these

parts will be described in detail.

Figure 1. Video Indexing and Retrieval Framework

5. VIDEO ANALYSIS
The role of video analysis is to process the initial video source and

create multiple indexing structures that can be utilized for

retrieval. Indexing is performed according to the following

heterogeneous information:

• Temporal information

• Textual description

• Visual characteristics

5.1 Temporal Indexing
In order to index the initial video source according to temporal

information, the video is split into shots by performing shot

boundaries detection and shot segmentation. Shot detection is

achieved by thresholding the distance between color histograms

corresponding to two consecutive frames in a video [13]. Then

each video is segmented into smaller shots the middle keyframe

for each shot, which is considered as the representative one, is

extracted. In that way a temporal indexing is constructed, so each

video can be represented by a sequence of images (i.e. one image

per video shot).

5.2 Keyword Indexing
Indexing of video shots according to the associated textual

information is realized following the approach of [14]. The audio

information is processed off-line with the application of

Automatic Speech Recognition (ASR) to the initial video, so that

specific sets of keywords can be assigned to each shot. Indexing

and query functions are implemented utilizing the KinoSearch

full-text search engine library [15]. First, stopwords are removed

from keyword files followed by the application of the Porter

stemming algorithm [16]. Then, term weights for each keyword

are computed utilizing the BM25 text algorithm [17].

5.3 Visual Similarity Indexing
Indexing of shots according to visual similarity is performed by

extracting low level descriptors following the approach of [17]. In

this case five MPEG-7 descriptors namely Color Layout, Color

Structure, Scalable Color, Edge Histogram, Homogeneous

Texture are generated from the representative keyframe of each

video shot [18]. By concatenating these descriptors, a feature

vector is formulated to compactly represent each image in the

multidimensional space. An empirical evaluation of the system

performance using different combinations of the aforementioned

descriptors, advocated the choice of one MPEG-7 based scheme,

which relies on color and texture (i.e., ColorLayout and

EdgeHistogram are concatenated) [14]. Distance calculation

between the descriptors of two shots is performed by employing

the functions proposed in the MPEG eXperimentation Model [19].

In order to improve the performance of the system in terms of

time response, we employ a multi-dimensional r-tree indexing

structure, which is constructed off line using the feature vectors of

all images. R-tree(s) [20] are structures suitable for indexing

multidimensional objects and known to facilitate fast and efficient

retrieval on large scale. In the query phase, the feature vector of

the query shot (i.e. from the representative keyframe of it) is

extracted and it is submitted to the r-tree indexing structure. The

latter returns a set of not ranked results , which contains the

shots that are found to resemble the query one.

The final visual ranking is performed by calculating the visual

distances between and all shots in , so we have

, where is the visual distance computing

function and . The ranking for a query can be

described as a new ordered set , where

 and the cardinality of

elements is .

6. IMPLICIT FEEDBACK ANALYSIS
This section presents the analysis of implicit user feedback

expressed in mouse clicks and keyboard inputs. First, we define

the implicit interest indicators that we will consider for video

search, then we construct action graphs based on the user

navigation patterns and finally we convert them to a weighted

graph, which can be utilized to generate distances between the

video shots.

6.1 Implicit Interest Indicators
To define implicit interest indicators [5] for interactive video

retrieval, we need to identify the actions of a user that could

declare interest and could convey meaningful information about

his preferences. Based on the search functionalities offered by the

video analysis and indexing modules, we introduce the following

minimum set of user actions that can be considered as the main

implicit interest indicators for video retrieval:

1. Text-based query (TQ): the user inserts a keyword and

submits the query. In this case, we assume that this keyword

satisfies the query of the user with a very high probability.

2. Visual query (VQ): the user submits a visual query by

example. We assume that, when a user selects a keyframe and

searches for visually similar images, then there is also interest in

the example that used.

3. Side-shot query (SQ): the user selects a shot in order to

view the temporally adjacent shots. In that case, the user is very

likely to be interested in the shot he selected.

4. Video-shot query (VSQ): the user selects a shot and

retrieves all the shots of the same video. In such a scenario, we

consider that he is interested in the initial shot to a certain extend.

5. Submit a shot (SS): the user marks a shot as relevant. In

this case, we assume that the user is very interested in this shot. In

a web search system this action could be equivalent with watching

the video shot.

6.2 Action Graph
We exploit implicit feedback information by employing an

extended variation of the graph construction methodology

proposed in [1]. While [1] considers only text-based queries, we

deal with a more complex situation as visual-based and temporal-

based queries are also included. We define as “search session” the

time period that a certain user spends on searching. To construct

such a graph, we exploit the properties of the involved user

actions. First, we introduce the property of “transitivity”, which

characterizes an action according to its output. More specifically,

we consider an action as “transitive”, when it generates an output

(i.e.). On the other hand, when an

action does not provide any output, (i.e.) it is

characterized as “intransitive”. During a search session it is

possible to have a series of transitive actions, where part of the

output of one action is the input for another (e.g. a result from a

text search is the input for a visual search). Consequently, to

create a link between two nodes of an action graph, we need to

have a sequence of two actions, where at least the first one has to

be transitive.

Figure 2. Search session and subsessions.

In addition, we classify the query actions into two main categories

based on their dependency on previous actions: a) the autonomous

queries, which do not depend on previous results and b) the

dependent queries, which take as input results from previous

search actions. During a search session, the user may search for a

specific topic, however it is possible to perform search having a

very broad or complex topic in mind or decide to change the

search topic during the session. Assuming that every autonomous

query could initiate a different topic search, we divide the search

sessions into “search subsessions” using as break points the

autonomous queries. We consider the “search subsession” as the

time periods, in which a certain user spends searching for a

specific topic. Taking into account the corresponding

functionalities of the introduced implicit interest indicators, only

the text-based search can be denoted as autonomous query, while

the other queries are considered as dependent.

Figure 3. Actions classification

In such a case the text-based query is utilized as a break point

between the subsessions as illustrated in the example of Figure 2.

The overall classification of these functionalities can be visualized

in the two different axes of transitivity and dependency as

illustrated in Figure 3.

Figure 4. Action graph after user interaction.

In the general case, a search subsession consists of a set of

actions that includes one autonomous and a number of

dependent query actions. The proposed subgraph is comprised

by a set of nodes (i.e. shots and keywords that represent inputs

and outputs of a set of actions) and links that represent the

corresponding actions , where and is the

cardinality of the elements of . These are illustrated in the

example of Figure 4, where an action graph for a search session is

presented. Here, the user is searching for shots, in which people

are sitting in a table talking are depicted. We observe that the

three keywords that were used to start the search (i.e. talk, sit and

dialogue) were considered as the parents for new subgraphs. Then

we construct a single action graph aggregating the action graphs

from the different user sessions. More specifically, all the nodes

from the individual action graphs are mapped to single action

graph, and then all the action edges are mapped onto the same

graph, generating in that way multiple links between the nodes.

Although the implicit user feedback is considered noisy (i.e. it can

contain irrelevant information), we assume that by aggregating

inputs from different users, we are able to minimize the

introduced error.

6.3 Weighted Graph
After the construction of a single action graph, we generate the

weighted graph by a) linking the relevant results to the parent

query, transforming in that way the intransitive actions into

transitive, b) collapsing the multiple links between the same nodes

into one and c) translating actions into weights.

The final normalized weight (with a range of values between 0

and 1) for a link between two nodes and is given by the

formula:

 (3)

where is the sum of weights of each action that

interconnects nodes and . This sum is expressed as:

 (4)

where is a function that maps each action to an implicit weight

and is an action that belongs to the set of actions that

comprise the different links between the nodes and [1].

Following the analysis in section 6.1, we assign indicative values

(between 0 and 10) that quantify the level of interest associated to

the introduced implicit interest indicators (Table 1). In that way

for instance, we incorporate to the graph the assumption that the

shot selected for a visual query by example is more of interest to

the user compared to a shot selected for viewing its temporally

adjacent shots. Figure 5 illustrates the weighted graph that is

produced after processing the action graph of Figure 4.

Figure 5. Weighted graph after processing the action graph of

Figure 4.

In order to calculate distances between two different nodes in this

graph, we apply the Dijkstra algorithm [21], which computes the

shorter path between two nodes. As this distance is based on

implicit information but it reveals semantic relations, we name it

“implicit semantic distance”. Hence, based on the shorter path

approach, we can calculate the implicit semantic distance of each

shot that is represented as a node in the graph, with the rest of

the shots included in the graph. Formally, we compute

, where is the implicit distance computing function,

, is the set of shots that are interconnected through

links with the query shot and . The ranking for query

 can be described as a new ordered set ,

where with a cardinality of

elements.

Table 1. Assign weights for each action

7. COMBINING VISUAL AND IMPLICIT

FEEDBACK INFORMATION
The objective of this part, is to rerank the initial results of visual

search by exploiting the weighted graph. Although the results

obtained based on visual descriptors are usually quite satisfactory,

there are cases, in which visual search fails to fetch results of the

same semantic meaning confused by similar colors or textures of

irrelevant depictions. As discussed in section 5.3, visual search is

performed in two steps: i) by submitting the query descriptors to

the R-tree structure and ii) by ranking the results returned utilizing

the distances between visual descriptors. The idea is to replace the

ranking function of the second step with a classifier, which is

trained with semantically positive and negative shots, in order to

emphasize more on the specific visual features that can be of

importance for each query. More specifically, we train a classifier

for each visual example query by utilizing as training set a

combination of visually similar and dissimilar examples, as well

as positive and negative samples generated by implicit feedback

information, in order to rerank the initial visual results. In Figure

6 the overall algorithm of the proposed approach is presented.

Figure 6. Algorithm to combine visual features and implicit

user feedback

As shown in the diagram, when a query by shot example is

submitted, we produce the following ranked datasets of results:

two sets and using the weighted graph that is obtained

utilizing the user implicit feedback and one set using the r-tree

structure that includes visually related shots according to the

Text-based query (TQ) 8 Visual query (VQ) 8

Side-shot query (SQ) 7 Submit a shot (SS) 9

Video-shot query (VSQ) 6

extracted visual features. Subsequently these sets are merged, in

order to construct a training set and then train a support vector

machine classifier utilizing as features the visual descriptors.

Finally, we employ the (i.e. the set of results from visual

search) as the test set, which is ranked according to the degrees of

coefficients that are outputted by the classifier and represent a

similarity metric between each segment of the test set and the

query shot. In the next sections we will provide the details about

the training set construction and the SVM training.

7.1 Training set construction
In order to train a binary support vector machine classifier, we

need to identify a training set , where is the set of

the positive and the set of the negative samples. Utilizing the

weighted graph, we can extract a number of positive samples that

are closer to the query shot and a number of negative samples that

are placed as further as possible in this graph. Hence we create the

set of positive samples , where

 and is an experimentally set threshold. In the

same way we define a set of negative examples by employing

another distance threshold and we consider the

, where . In the best case, these

shots should not be interconnected with the query shot in the

graph (i.e.). Alternatively, we can select a

predefined number of negative and positive samples from the

graph and apply the distance thresholds only if required.

The obvious approach could be to simply train the classifier with

 and . However, due to the fact that implicit feedback is

not always precise, such an approach could rerank the visual

results in non efficient way. On the other hand, visual search is

usually capable of retrieving very similar keyframes, which

demonstrate an almost zero visual distance. So, in order to

minimize such effects and in addition to exploit the results from

visual ranking that are of good quality, we include in the positive

samples set the shots that are visually closer to the query example

by employing an experimentally set threshold. This threshold is

actually tuned in such a way in order to maintain a good precision

(i.e. by including in the training set the almost identical images to

the query example that are retrieved by content based search).

Furthermore, we include in the negative samples some of the

visual results that were very far from the query image taking into

account again a distance threshold. Formally, we construct a new

set of positive samples , where is the set of

results of visual search where,

and is an experimentally set threshold. Subsequently we

define a set of negative samples , where

. These distance thresholds could

either experimentally set to specific values, where always

 or they could be manually adjusted by the

user in a manual assisted combination of implicit information and

visual data according to the user needs. The final training set

would be:

 (5)

7.2 Support Vector Machine Classifier
As the training and the reranking of the results is performed in

real time during the query phase, we need to select a fast SVM

implementation, which can provide quick results. Of course apart

from the implementation, the size of the training dataset is an

important factor that could keep the speed low. As our purpose is

to rerank results, the initial idea was to employ the ranking SVM

of [7], which could be trained by user preferences between two

different shots. However, based on how the weighted graph is

constructed and especially the quantitive assignment of the

actions’ weights, it is clear that the shots that are closer to the

example shots are better to be considered as positive samples

instead of declaration of relative preference.

Hence, we employ the fast performing SVM classifier

implementation described in section 3 utilizing as features of the

positive and negative samples the concatenation of the

EdgeHistogram and ColorLayout descriptor. Assuming that the

concatenated visual descriptor is , then (2) is

transformed into:

 (6)

After having trained the classifier with , we provide as test set

the initial results based on visual descriptors , which is finally

ranked according to the degrees of confidence predicted by the

model.

8. EXPERIMENTS AND EVALUATION
In order to test and evaluate the proposed approach, we have

implemented a video search engine and we performed two

different experiments. A detailed description of the interface of

the implemented search engine that realizes the proposed

framework is illustrated in Figure 7. All the highlighted

functionalities are recorded during the user interaction.

Figure 7. Search Engine Interface

Then, an experiment was conducted, which took place in two

phases. In this experiment, we made use of the test video set of

TRECVID 2008, which includes about 100 hours of Dutch video

(news magazine, news, documentaries, etc.) segmented into about

30.000 shots. The audiovisual information was indexed according

to the methodology described in section 5.

In the first phase, we employed 24 users, who used the system and

searched for 6 different query topics (4 users for each topic).

Examples of topics used, were: “Find shots of people sitting at a

table” and “Find shots of people where a body of water can be

seen”. During this part, the users were free to use all the text and

content-based retrieval functions of the system and their actions

were recorded. Each search session for one topic lasted 15

minutes. By processing the interaction data of this experimental

phase, we have constructed the action and the weighted graph as

explained in section 6. In Table 2 we can see the statistics of the

constructed weighted graph in terms of nodes and links.

Table 2. Statistics for the weighted graph

Figure 8. Visual ranking of results for the query shot on the

top left corner

Then, in order to measure and evaluate the performance of the

suggested algorithm, we have to compare the two different

rankings: a) the visual ranking, which is provided by the distances

of the visual descriptors and b) the hybrid ranking, which is

generated after the application of the proposed algorithm. To

compare the aforementioned retrieval functions, we utilize the

method suggested in [7]. Considering that is the hybrid

ranking and the visual, we construct a combined ranking

 that includes the top links of both rankings. More

specifically, consists of results, which are actually the

top results of and the of , where .

This form of presentation leads to a blind statistical test so that the

user selections, expressed as clicks on the ranked results,

demonstrate the unbiased user preferences. Such method can be

considered even more appropriate when applied in query by visual

example instead of text web search, as in this case, the results are

not so subjective to what the user has in mind. Figures 8 and 9

illustrate a visual and a hybrid ranking respectively, while in

Figure 10, the combined ranking is depicted.

In the second experimental phase, 8 users were employed to

identify visually similar results for 100 queries by visual example,

that were included in the weighted graph. To construct efficiently

the training set, the thresholds have been experimentally tuned,

while 30 positive and 30 negative examples were extracted by the

weighted graph for each query. In tables 3 and 4 we observe the

statistic results for all the users. It can be seen that for 68% of the

queries the hybrid ranking is preferred by the user, for 6% of

queries the two functions seem to perform equally, while for the

rest 26% of queries the visual ranking outperforms the hybrid. In

Figure 11, we present the corresponding histogram, which shows

the frequency of user preference (i.e. selection clicks on hybrid

ranking minus clicks on visual ranking for a query) for the

involved queries. We constructed the histogram by considering

absolute values of the clicks and not normalized (i.e. divided by

the total clicks in a query), as the actual number of clicks seems to

be of more importance. For instance, in a case that a user clicks

and selects only one item more from the one of the rankings, the

conclusion should be that this ranking is with higher probability

slightly better than the other. This can be reflected when

considering the absolute difference of the clicks (e.g. 8-7=1 and 1-

0=1), where the value 1 describes the user preference. However if

we normalize the metrics according to the total number of

selections in a query, we could get misleading results (e.g. 12,5%

and 100% respectively for the previous example).

Figure 9. Hybrid ranking of results for the query shot on the

top left corner

Figure 10. Combined Ranking of results for the query shot on

the top left corner

Figure 11. Histogram of the clicks. The horizontal axis stands

for the number of clicks (positive for hybrid ranking and

negative for visual), while the vertical for the frequency.

In this specific case it seems that when retrieval is performed only

by considering the visual descriptors, low distances are estimated

also for shots that have similar colors but no semantic

resemblance with the query. On the other hand, when the hybrid

 Nodes Shots Keywords Links

Weighted Graph 1298 1229 69 2659

ranking is applied, it seems that the implicit user feedback have

given a semantic flavor to the ranking as the shots that shared only

common color characteristics were ranked lower. Finally, as can

be seen from the example in Figures 9 and 10. It is clear that the

top 10 results of the hybrid approach are much better.

Table 3. Pairwise comparison of the hybrid retrieval function

with the visual one.

Total Queries More selections

on Hybrid

More selections

on Visual

Equal

selections

100 68 26 6

Table 4. Clicks on Hybrid and Visual ranking

Total Clicks Selections on Hybrid

ranking

Selections on Visual

ranking

1198 1008 190

9. CONCLUSIONS
In this paper we described an approach of combining visual

features with implicit user feedback by employing a SVM

classifier. From the experimental results it seems that the

proposed method is capable of improving the visual search results

in most of the cases. We could conclude that utilizing implicit

user feedback to optimize content based retrieval seems to insert a

semantic flavor to the query by visual example results, by ranking

higher shots that are semantically similar, despite the initial lower

visual resemblance. Future work could include more extended

evaluation of the method in order to better observe the behavior of

this hybrid approach especially in cases that the implicit feedback

is of lower quality.

10. ACKNOWLEDGMENTS
This work was supported by the projects PESCaDO (FP7-248594)

and PetaMedia (FP7-216444).

11. REFERENCES
[1] Hopfgartner, F., Vallet, D., Halvey, M, Jose, J. M. 2008.

Search trails using user feedback to improve video search. In

Proceedings of the ACM Multimedia (Vancouver, Canada,

2008), 339-348.

[2] Nichols, D. M., 1997. Implicit ratings and filtering. In

Proceedings of the 5th DELOS Workshop on Filtering and

Collaborative Filtering (Hungary, 1997), 31-36.

[3] Yang, B., Mei, T., Hua, X-S., Yang, L., Yang, S-Q., Li, M.

2007. Online video recommendation based on multimodal

fusion and relevance feedback. In Proceedings of the 6th

ACM international conference on Image and video retrieval,

(Amsterdam, The Netherlands, 2007), 73 – 80.

[4] Kelly, D., and Teevan, J. 2003. Implicit Feedback for

Inferring User Preference: A Bibliography”. SIGIR Forum,

32(2).

[5] Claypool, M., Le, P., Waseda M. and Brown, D. 2001.

Implicit Interest Indicators. In Proceedings of the ACM

Intelligent User Interfaces Conference (Santa Fe, New

Mexico, USA, 2001). IUI’01, 14-17.

[6] White, R., Ruthven, I., Jose, J. M., 2002. The Use of Implicit

Evidence for Relevance Feedback in Web Retrieval. In

Proceedings of the 24th BCS-IRSG European Colloquium on

IR Research: Advances in Information Retrieval (Glasgow,

UK, 2002), 93-109.

[7] Joachims, T. 2002. Optimizing Search Engines Using

Clickthrough Data. In Proceedings of the ACM Conference

on Knowledge Discovery and Data Mining (Edmonton,

Alberta, Canada, 2002). KDD’02.

[8] Radlinski, F. Joachims, T. 2005. Query chains: learning to

rank from implicit feedback. In Proceedings of the eleventh

ACM SIGKDD international conference on Knowledge

discovery in data mining (Chicago, Illinois, USA, 2005), 239

– 248.

[9] Hopfgartner, F. Jose, J. 2007. Evaluating the implicit

feedback models for adaptive video retrieval. In Proceedings

of the International on Multimedia Information Retrieval

(Augsburg, Bavaria, Germany, 2007).

[10] Vallet, D., Hopfgartner, F., Jose, J. M. 2008. Use of Implicit

Graph for Recommending Relevant Videos: A Simulated

Evaluation. In Proceedings of the he annual European

Conference on Information Retrieval (Glasgow, Scotland,

2008). ECIR’08, 199-210.

[11] Joachims, T. 2006. Training Linear SVMs in Linear Time. In

Proceedings of the ACM Conference on Knowledge

Discovery and Data Mining (Philadelphia, USA, 2006).

KDD’06.

[12] Joachims, T. 2005. A Support Vector Method for

Multivariate Performance Measures. In Proceedings of the

International Conference on Machine Learning (Bonn,

Germany, 2005). ICML’05.

[13] Hanjalic, A., Lagendijk R.L. and Biemond, J. 1997. A New

Method for Key Frame based Video Content Representation.

In Image Databases and Multimedia Search, A. Smeulders

and R. Jain, Eds., World Scientific. 97-107.

[14] Zhang, Q., Tolias, G. et. al, 2008. COST292 experimental

framework for TRECVID 2008. In Proceedings of

TRECVID 2008 Workshop (Gaithersburg, MD, USA, 2008).

[15] Kinosearch search engine library.

http://www.rectangular.com/kinosearch/.

[16] Porter, M.F. 1980. An algorithm for suffix stripping.

Program, 14(3), 130-137.

[17] Robertson S.E. and Jones K.S., 1994. Simple, proven

approaches to text retrieval. Technical Report UCAM-CL-

TR-356, University of Cambridge, Computer Laboratory.

[18] Kittler, J., Hatef, M., Duin, R. P. W. and Matas, J. 1998. On

combining classifiers. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 20(3), 226-239.

[19] MPEG-7 XM software,

http://www.lis.ei.tum.de/research/bv/topics/mmdb/e_mpeg7.

html.

[20] Gutmann, A. 1984. R-trees: a dynamic index structure for

spatial searching, In Proceedings of the ACM International

Conference on Management and Data (New York, USA,

1984), SIGMOD’84.

[21] Dijkstra, E. W. 1959. A note on two problems in connexion

with graphs. In Numerische Mathematik, 1, 269–271.

