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ABSTRACT 

This paper describes an approach to optimize query by visual 

example results, by combining visual features and implicit user 

feedback in interactive video retrieval. To this end, we propose a 

framework, in which video processing is performed by employing 

well established techniques, while implicit user feedback analysis 

is realized with a graph based approach that processes the user 

actions and navigation patterns during a search session, in order to 

initiate semantic relations between the video segments. To 

combine the visual and implicit feedback information, we train a 

support vector machine classifier with positive and negative 

examples generated from the graph structured past user interaction 

data. Then, the classifier reranks the results of visual search that 

were initially based on visual features. This framework is 

embedded in an interactive video search engine and evaluated by 

conducting a user experiment in two phases: first, we record the 

user actions during typical retrieval sessions and then, we evaluate 

the reranking of the results of visual query by example. The 

evaluation and the results demonstrate that the proposed approach 

provides an improved ranking in most of the evaluated queries. 

Categories and Subject Descriptors 

H.3.3 [Information Storage and Retrieval]: Information Search 

and Retrieval – relevance feedback, retrieval models, search 

process. 

General Terms 

Algorithms, Performance, Experimentation. 

Keywords 

Implicit feedback, machine learning, search engine, interactive, 

video retrieval. 

1. INTRODUCTION 
Nowadays, due to the rapid progress in network technologies and 

the enormous storage capabilities of computers, very large 

amounts of audiovisual content have become available worldwide.  

The availability of such content places the demand for advanced 

multimedia search engines; therefore video retrieval remains one 

of the most challenging tasks of research. Despite the significant 

advances in this area recently, further advancements in multiple 

fields of video retrieval are required to improve the performance 

of video search engines. One of the recent techniques applied, in 

order to improve the results of search engines, attempts to exploit 

the implicit feedback provided by the users [1] of a video search 

engine. We consider as implicit user feedback any action or 

navigation behavior of the user during the interactive query 

session, including mouse movements and clicks, as well as 

keyboard inputs and keystrokes. The main advantage of using 

implicit techniques is that they do not require any explicit 

feedback from the user side. Although implicit information is in 

general thought to be less accurate than explicit [2], large 

quantities of implicit data (e.g. log files in web search engines) 

can be gathered at no extra effort to the user. Recent approaches 

in interactive video retrieval analyze and process past user 

interaction data either for performing retrieval [1], or for 

complementing existing content based search modalities [3]. In 

this context, this paper proposes a novel approach for combining 

implicit user feedback with visual features, in order to improve 

the results of query by visual example. Motivated by the fact that 

content-based search, which relies only on visual features, could 

yield results that resemble the query image only in terms of color 

or texture but without having any semantic resemblance with it, 

this paper argues that taking into account the implicit user 

feedback to rerank these results, would improve the performance 

of the system and add a semantic flavor in the visual search. 

To this end, we design a video indexing and retrieval framework, 

in which, this heterogeneously extracted information (i.e. implicit 

feedback and visual features) is combined by employing machine 

learning methods. Video processing is performed with well 

established techniques techniques, including video to shot 

segmentation, keyframe extraction and generation of visual 

features. Then, we exploit the implicit user feedback, in order to 

initiate semantic relations between the video segments and define 

positive and negative examples for a given visual query. This is 

realized with the following methodology. First, the user actions 

such as mouse clicks and keyboard inputs are recorded and an 

action graph that describes the navigation of the user during the 

search process is constructed, considering as nodes the queries 

and the segmented video shots and as links the user actions. 

Subsequently, this graph is converted to a weighted graph by 

translating the actions into weights. During a query by visual 

example, this graph is utilized in order to define positive and 
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negative samples by employing a distance-based algorithm. The 

latter are merged with a set of visually similar and dissimilar 

examples based on visual features, in order construct a final 

training set, which is used to train a Support Vector Machine 

(SVM) classifier that reranks the results of the visual search. This 

framework is embedded in an interactive video search engine, 

which supports basic retrieval functionalities including text, visual 

and temporal search. The evaluation of the system is performed 

by conducting a user experiment in two phases: in the first part, 

the users are searching for 6 different topics and their actions are 

being recorded, while in the second phase, different users are 

recruited to evaluate the reranking of the proposed approach. The 

main contribution of this work is the methodology for combining 

visual features with implicit user feedback, which adds a semantic 

flavor to visual search. To the best of the authors’ knowledge this 

is the first attempt of improving visual search in video retrieval by 

combining visual features with graph structured implicit user 

feedback expressed as clickthrough data.  

This paper is structured as follows: section 2 presents the related 

work, while in section 3 we introduce the SVMs employed in this 

approach. The video indexing and retrieval framework is 

presented in section 4, while section 5 deals with the video 

content analysis. Section 6 describes the processing of user 

implicit actions based on a graph approach and section 7 presents 

the methodology for combining visual features with graph 

structured implicit user feedback. Section 8 describes the 

experimental results and the evaluation and finally, section 9 

concludes the paper.   

2. RELATED WORK  
Implicit feedback approaches have been effective in textual 

retrieval, where they were mostly employed for query expansion, 

in order to retrieve, filter and recommend items of interest [4]. 

The “Implicit Interest Indicators” were introduced in [5] as a 

definition of specific user actions that can be considered as 

meaningful implicit feedback. In [6], the authors performed a 

comparison between an explicit and an implicit feedback system 

concluding that there were not significant differences between 

these two systems and that substituting the former with the latter 

could be feasible. In another interesting work, in which text 

information was combined with user implicit feedback, the query-

logs of a search engine were utilized to learn retrieval functions 

with the aid of machine learning [7]. More specifically the 

clickthrough data are translated into ranking user preferences and 

then they are used to train a retrieval function with a SVM 

approach. In [8] the authors propose to detect query chains (i.e. a 

sequence of queries) and then learn a retrieval function with 

SVM.  

Implicit feedback techniques have not been fully explored in the 

multimedia domain [9]. In text retrieval, the usual implicit 

information that can be taken into account is the user selection 

(i.e. the user clicks on an interesting link or textual description to 

view the complete document), while in video retrieval we have 

multiple interactions between the user and the system, which 

could be utilized to provide meaningful feedback. The main idea 

to exploit the user feedback during video retrieval interactive 

sessions, is to extend the idea of “query chains” [8] and construct 

a graph that describes a series of user actions. Such a graph is 

transformed to a weighted graph by aggregating the links between 

the same nodes and weights are introduced based on the different 

actions taken into account. Some recent works [1], [10] employ 

the aforementioned technique to deal with user clicks. More 

specifically, in [1] a video retrieval system, which is based on 

Okapi BM25 retrieval model supporting text queries and 

enhanced by a recommendation generator utilizing the weighted 

graph structure, is evaluated. In [10] the authors evaluate 4 

different algorithms that can be applied on such weighted graphs 

to provide recommendations. However, these works consider only 

textual queries, while basic video retrieval options as visual and 

temporal based search are ignored. In addition, fusion or 

combination of implicit feedback data with the content-based 

approaches is not attempted.  

In another work [3], a video retrieval system is presented, which 

employs relevance feedback and multimodal fusion of different 

sources (textual, visual and click-through data), in order to 

generate recommendations for the user. In this approach the 

textual, visual and aural data of the video shots are processed 

separately and compared with the video document clicked.  Then, 

these results are fused. A further adjustment of the fusion weights 

is performed with the aid of the click through data, which denote 

the interest of the user to a specific document based on the time 

she watched the video shot. The approach of fusing content 

analysis information with the implicit feedback seems to be very 

interesting and promising, however in this specific work the 

implicit information is not very deeply exploited as no sequence 

of query actions are taken into account, failing in that way to 

semantically connect subsequent queries and shots. In comparison 

to the proposed approach, this work employs implicit user 

feedback for adjusting weights, in order to fuse efficiently the 

results from different search modalities (e.g. text, visual) and not 

for improving the results of a specific retrieval module (i.e. in this 

case visual search). 

3. SUPPORT VECTOR MACHINES 
Support vector machines constitute a set of supervised learning 

methods used for classification and regression. When a set of 

training positive and negative examples is available, a SVM 

training algorithm builds a model that predicts in which category a 

new example falls into. To achieve that, a support vector machine 

constructs a hyperplane or set of hyperplanes in a high or infinite 

dimensional space. It general, it is assumed that the best 

separation is achieved by the hyperplane that has the largest 

distance from the nearest training datapoints of any class. 

In this approach, we employ a SVM implementation that realizes 

the alternative structural formulation of the SVM optimization 

problem for conventional binary classification with error rate 

described in [11]. For a given training set  

with  and , training this binary 

classification SVM solves the following optimization problem, 

which was proposed for predicting structured outputs and 

optimizing multivariate performance measures like F1-Score or 

the Precision/Recall Break-Event Point [12]. 

            (1) 

subject to:    (2) 

where  is the capacity constant and  a parameter vector. This 

approach has  constraints, one for each possible vector 

 and it has only one slack variable  that is 

shared across all constraints. The algorithm that is employed to 

solve the aforementioned classification SVM optimization 

problem is an adaptation of the Cutting-Plane Algorithm. This 



algorithm iteratively constructs a sufficient subset  of the set of 

constraints. Starting with an empty set of constraints , in each 

iteration, it first computes the optimum over the current working 

set  (i.e.  and  in the first iteration) and then it finds 

the most violated constraint in the optimization problem and adds 

it to the working set  [11]. 

The reason for selecting this specific SVM in this approach, was 

the very fast performance it demonstrates, which was important 

for performing the ranking optimization at real time during the 

query process, with an adequate training set.  

4. VIDEO RETRIEVAL FRAMEWORK 
The overall video indexing and retrieval framework employed in 

this work, is illustrated in Figure 1. At the bottom part, standard 

video analysis is performed, including video segmentation to 

shots, textual analysis of recorded audio and visual processing of 

extracted keyframes. On the top part of the framework, implicit 

feedback is captured in log files and analyzed. The outputs of 

these two parts are combined in a separate component, which 

employs training of a SVM classifier, in order to rerank the results 

of visual search. Processing of implicit information and video 

content based analysis take place off line, while the combination 

of visual and implicit information is realized on the fly (i.e. in real 

time when a new query is submitted). In the next sections these 

parts will be described in detail.  

 

Figure 1. Video Indexing and Retrieval Framework 

5. VIDEO ANALYSIS  
The role of video analysis is to process the initial video source and 

create multiple indexing structures that can be utilized for 

retrieval. Indexing is performed according to the following 

heterogeneous information: 

• Temporal information 

• Textual description  

• Visual characteristics  

5.1 Temporal Indexing 
In order to index the initial video source according to temporal 

information, the video is split into shots by performing shot 

boundaries detection and shot segmentation. Shot detection is 

achieved by thresholding the distance between color histograms 

corresponding to two consecutive frames in a video [13]. Then 

each video is segmented into smaller shots the middle keyframe 

for each shot, which is considered as the representative one, is 

extracted. In that way a temporal indexing is constructed, so each 

video can be represented by a sequence of images (i.e. one image 

per video shot).  

5.2 Keyword Indexing 
Indexing of video shots according to the associated textual 

information is realized following the approach of [14]. The audio 

information is processed off-line with the application of 

Automatic Speech Recognition (ASR) to the initial video, so that 

specific sets of keywords can be assigned to each shot. Indexing 

and query functions are implemented utilizing the KinoSearch 

full-text search engine library [15]. First, stopwords are removed 

from keyword files followed by the application of the Porter 

stemming algorithm [16]. Then, term weights for each keyword 

are computed utilizing the BM25 text algorithm [17].  

5.3 Visual Similarity Indexing 
Indexing of shots according to visual similarity is performed by 

extracting low level descriptors following the approach of [17]. In 

this case five MPEG-7 descriptors namely Color Layout, Color 

Structure, Scalable Color, Edge Histogram, Homogeneous 

Texture are generated from the representative keyframe of each 

video shot [18]. By concatenating these descriptors, a feature 

vector is formulated to compactly represent each image in the 

multidimensional space. An empirical evaluation of the system 

performance using different combinations of the aforementioned 

descriptors, advocated the choice of one MPEG-7 based scheme, 

which relies on color and texture (i.e., ColorLayout and 

EdgeHistogram are concatenated) [14]. Distance calculation 

between the descriptors of two shots is performed by employing 

the functions proposed in the MPEG eXperimentation Model [19]. 

In order to improve the performance of the system in terms of 

time response, we employ a multi-dimensional r-tree indexing 

structure, which is constructed off line using the feature vectors of 

all images. R-tree(s) [20] are structures suitable for indexing 

multidimensional objects and known to facilitate fast and efficient 

retrieval on large scale. In the query phase, the feature vector of 

the query shot (i.e. from the representative keyframe of it)  is 

extracted and it is submitted to the r-tree indexing structure. The 

latter returns a set of not ranked  results , which contains the 

shots  that are found to resemble the query one. 

The final visual ranking is performed by calculating the visual 

distances  between  and all shots in , so we have 

, where  is the visual distance computing 

function and .  The ranking for a query  can be 

described as a new ordered set , where 

 and the cardinality of  

elements is . 

6. IMPLICIT FEEDBACK ANALYSIS 
This section presents the analysis of implicit user feedback 

expressed in mouse clicks and keyboard inputs. First, we define 

the implicit interest indicators that we will consider for video 

search, then we construct action graphs based on the user 

navigation patterns and finally we convert them to a weighted 

graph, which can be utilized to generate distances between the 

video shots.  

6.1 Implicit Interest Indicators 
To define implicit interest indicators [5] for interactive video 

retrieval, we need to identify the actions of a user that could 



declare interest and could convey meaningful information about 

his preferences. Based on the search functionalities offered by the 

video analysis and indexing modules, we introduce the following 

minimum set of user actions that can be considered as the main 

implicit interest indicators for video retrieval:  

1. Text-based query (TQ): the user inserts a keyword and 

submits the query. In this case, we assume that this keyword 

satisfies the query of the user with a very high probability. 

2. Visual query (VQ): the user submits a visual query by 

example. We assume that, when a user selects a keyframe and 

searches for visually similar images, then there is also interest in 

the example that used. 

3. Side-shot query (SQ): the user selects a shot in order to 

view the temporally adjacent shots. In that case, the user is very 

likely to be interested in the shot he selected. 

4. Video-shot query (VSQ): the user selects a shot and 

retrieves all the shots of the same video. In such a scenario, we 

consider that he is interested in the initial shot to a certain extend. 

5. Submit a shot (SS): the user marks a shot as relevant. In 

this case, we assume that the user is very interested in this shot. In 

a web search system this action could be equivalent with watching 

the video shot.  

6.2 Action Graph 
We exploit implicit feedback information by employing an 

extended variation of the graph construction methodology 

proposed in [1]. While [1] considers only text-based queries, we 

deal with a more complex situation as visual-based and temporal-

based queries are also included. We define as “search session” the 

time period that a certain user spends on searching. To construct 

such a graph, we exploit the properties of the involved user 

actions. First, we introduce the property of “transitivity”, which 

characterizes an action according to its output. More specifically, 

we consider an action as “transitive”, when it generates an output 

(i.e. ). On the other hand, when an 

action does not provide any output, (i.e. ) it is 

characterized as “intransitive”. During a search session it is 

possible to have a series of transitive actions, where part of the 

output of one action is the input for another (e.g. a result from a 

text search is the input for a visual search). Consequently, to 

create a link between two nodes of an action graph, we need to 

have a sequence of two actions, where at least the first one has to 

be transitive. 

 
 

Figure 2. Search session and subsessions. 

In addition, we classify the query actions into two main categories 

based on their dependency on previous actions: a) the autonomous 

queries, which do not depend on previous results and b) the 

dependent queries, which take as input results from previous 

search actions. During a search session, the user may search for a 

specific topic, however it is possible to perform search having a 

very broad or complex topic in mind or decide to change the 

search topic during the session. Assuming that every autonomous 

query could initiate a different topic search, we divide the search 

sessions into “search subsessions” using as break points the 

autonomous queries. We consider the “search subsession” as the 

time periods, in which a certain user spends searching for a 

specific topic. Taking into account the corresponding 

functionalities of the introduced implicit interest indicators, only 

the text-based search can be denoted as autonomous query, while 

the other queries are considered as dependent. 

 

Figure 3. Actions classification 

In such a case the text-based query is utilized as a break point 

between the subsessions as illustrated in the example of Figure 2. 

The overall classification of these functionalities can be visualized 

in the two different axes of transitivity and dependency as 

illustrated in Figure 3.  

 

 

Figure 4. Action graph after user interaction. 

In the general case, a search subsession  consists of a set of 

actions  that includes one autonomous and a number of 

dependent query actions. The proposed subgraph  is comprised 

by a set of nodes (i.e. shots and keywords that represent inputs 

and outputs of a set of actions ) and links that represent the 

corresponding actions , where and  is the 

cardinality of the elements of . These are illustrated in the 

example of Figure 4, where an action graph for a search session is 

presented. Here, the user is searching for shots, in which people 

are sitting in a table talking are depicted. We observe that the 

three keywords that were used to start the search (i.e. talk, sit and 

dialogue) were considered as the parents for new subgraphs. Then 

we construct a single action graph aggregating the action graphs 



from the different user sessions. More specifically, all the nodes 

from the individual action graphs are mapped to single action 

graph, and then all the action edges are mapped onto the same 

graph, generating in that way multiple links between the nodes. 

Although the implicit user feedback is considered noisy (i.e. it can 

contain irrelevant information), we assume that by aggregating 

inputs from different users, we are able to minimize the 

introduced error. 

6.3 Weighted Graph 
After the construction of a single action graph, we generate the 

weighted graph by a) linking the relevant results to the parent 

query, transforming in that way the intransitive actions into 

transitive, b) collapsing the multiple links between the same nodes 

into one and c) translating actions into weights.  

The final normalized weight  (with a range of values between 0 

and 1) for a link  between two nodes  and  is given by the 

formula: 

   (3) 

where   is the sum of weights of each action that 

interconnects nodes  and . This sum is expressed as: 

  (4) 

where  is a function that maps each action to an implicit weight 

and  is an action that belongs to the set of actions  that 

comprise the different links between the nodes   and  [1]. 

Following the analysis in section 6.1, we assign indicative values 

(between 0 and 10) that quantify the level of interest associated to 

the introduced implicit interest indicators (Table 1). In that way 

for instance, we incorporate to the graph the assumption that the 

shot selected for a visual query by example is more of interest to 

the user compared to a shot selected for viewing its temporally 

adjacent shots. Figure 5 illustrates the weighted graph that is 

produced after processing the action graph of Figure 4. 

 

 

Figure 5. Weighted graph after processing the action graph of 

Figure 4. 

In order to calculate distances between two different nodes in this 

graph, we apply the Dijkstra algorithm [21], which computes the 

shorter path between two nodes. As this distance is based on 

implicit information but it reveals semantic relations, we name it 

“implicit semantic distance”. Hence, based on the shorter path 

approach, we can calculate the implicit semantic distance of each 

shot  that is represented as a node in the graph, with the rest of 

the shots included in the graph. Formally, we compute 

, where  is the implicit distance computing function, 

, is the set of  shots that are interconnected through 

links with the query shot  and . The ranking for query 

 can be described as a new ordered set , 

where  with a cardinality of  

elements. 

Table 1. Assign weights for each action 

 

7. COMBINING VISUAL AND IMPLICIT 

FEEDBACK INFORMATION 
The objective of this part, is to rerank the initial results of visual 

search by exploiting the weighted graph. Although the results 

obtained based on visual descriptors are usually quite satisfactory, 

there are cases, in which visual search fails to fetch results of the 

same semantic meaning confused by similar colors or textures of 

irrelevant depictions. As discussed in section 5.3, visual search is 

performed in two steps: i) by submitting the query descriptors to 

the R-tree structure and ii) by ranking the results returned utilizing 

the distances between visual descriptors. The idea is to replace the 

ranking function of the second step with a classifier, which is 

trained with semantically positive and negative shots, in order to 

emphasize more on the specific visual features that can be of 

importance for each query. More specifically, we train a classifier 

for each visual example query by utilizing as training set a 

combination of visually similar and dissimilar examples, as well 

as positive and negative samples generated by implicit feedback 

information, in order to rerank the initial visual results. In Figure 

6 the overall algorithm of the proposed approach is presented. 

 

 

Figure 6. Algorithm to combine visual features and implicit 

user feedback 

As shown in the diagram, when a query by shot example  is 

submitted, we produce the following ranked datasets of results: 

two sets  and  using the weighted graph that is obtained 

utilizing the user implicit feedback and one set  using the r-tree 

structure that includes visually related shots according to the 

    

Text-based query (TQ) 8 Visual query (VQ) 8 

Side-shot query (SQ) 7 Submit a shot (SS) 9 

Video-shot query (VSQ) 6   



extracted visual features. Subsequently these sets are merged, in 

order to construct a training set  and then train a support vector 

machine classifier utilizing as features the visual descriptors. 

Finally, we employ the  (i.e. the set of results from visual 

search) as the test set, which is ranked according to the degrees of 

coefficients that are outputted by the classifier and represent a 

similarity metric between each segment of the test set and the 

query shot. In the next sections we will provide the details about 

the training set construction and the SVM training.  

7.1 Training set construction 
In order to train a binary support vector machine classifier, we 

need to identify a training set , where  is the set of 

the positive and  the set of the negative samples. Utilizing the 

weighted graph, we can extract a number of positive samples that 

are closer to the query shot and a number of negative samples that 

are placed as further as possible in this graph. Hence we create the 

set of positive samples , where 

 and  is an experimentally set threshold. In the 

same way we define a set of negative examples by employing 

another distance threshold  and we consider the 

, where . In the best case, these 

shots should not be interconnected with the query shot in the 

graph (i.e. ). Alternatively, we can select a 

predefined number of negative and positive samples from the 

graph and apply the distance thresholds only if required.  

The obvious approach could be to simply train the classifier with 

 and . However, due to the fact that implicit feedback is 

not always precise, such an approach could rerank the visual 

results in non efficient way. On the other hand, visual search is 

usually capable of retrieving very similar keyframes, which 

demonstrate an almost zero visual distance. So, in order to 

minimize such effects and in addition to exploit the results from 

visual ranking that are of good quality, we include in the positive 

samples set the shots that are visually closer to the query example 

by employing an experimentally set threshold. This threshold is 

actually tuned in such a way in order to maintain a good precision 

(i.e. by including in the training set the almost identical images to 

the query example that are retrieved by content based search). 

Furthermore, we include in the negative samples some of the 

visual results that were very far from the query image taking into 

account again a distance threshold. Formally, we construct a new 

set of positive samples , where  is the set of 

results of visual search where,  

and  is an experimentally set threshold. Subsequently we 

define a set of negative samples , where 

. These distance thresholds could 

either experimentally set to specific values, where always 

 or they could be manually adjusted by the 

user in a manual assisted combination of implicit information and 

visual data according to the user needs. The final training set 

would be: 

    (5) 

7.2 Support Vector Machine Classifier 
As the training and the reranking of the results is performed in 

real time during the query phase, we need to select a fast SVM 

implementation, which can provide quick results. Of course apart 

from the implementation, the size of the training dataset is an 

important factor that could keep the speed low. As our purpose is 

to rerank results, the initial idea was to employ the ranking SVM 

of [7], which could be trained by user preferences between two 

different shots. However, based on how the weighted graph is 

constructed and especially the quantitive assignment of the 

actions’ weights, it is clear that the shots that are closer to the 

example shots are better to be considered as positive samples 

instead of declaration of relative preference.  

Hence, we employ the fast performing SVM classifier 

implementation described in section 3 utilizing as features of the 

positive and negative samples the concatenation of the 

EdgeHistogram and ColorLayout descriptor. Assuming that the 

concatenated visual descriptor is , then (2) is 

transformed into:  

       (6) 

After having trained the classifier with , we provide as test set 

the initial results based on visual descriptors , which is finally 

ranked according to the degrees of confidence predicted by the 

model. 

8. EXPERIMENTS AND EVALUATION 
In order to test and evaluate the proposed approach, we have 

implemented a video search engine and we performed two 

different experiments. A detailed description of the interface of 

the implemented search engine that realizes the proposed 

framework is illustrated in Figure 7. All the highlighted 

functionalities are recorded during the user interaction.  

Figure 7. Search Engine Interface 

Then, an experiment was conducted, which took place in two 

phases. In this experiment, we made use of the test video set of 

TRECVID 2008, which includes about 100 hours of Dutch video 

(news magazine, news, documentaries, etc.) segmented into about 

30.000 shots. The audiovisual information was indexed according 

to the methodology described in section 5. 

In the first phase, we employed 24 users, who used the system and 

searched for 6 different query topics (4 users for each topic). 

Examples of topics used, were: “Find shots of people sitting at a 

table” and “Find shots of people where a body of water can be 

seen”. During this part, the users were free to use all the text and 

content-based retrieval functions of the system and their actions 

were recorded. Each search session for one topic lasted 15 

minutes. By processing the interaction data of this experimental 



phase, we have constructed the action and the weighted graph as 

explained in section 6. In Table 2 we can see the statistics of the 

constructed weighted graph in terms of nodes and links.  

Table 2. Statistics for the weighted graph 

 

 

Figure 8. Visual ranking of results for the query shot on the 

top left corner 

Then, in order to measure and evaluate the performance of the 

suggested algorithm, we have to compare the two different 

rankings: a) the visual ranking, which is provided by the distances 

of the visual descriptors and b) the hybrid ranking, which is 

generated after the application of the proposed algorithm. To 

compare the aforementioned retrieval functions, we utilize the 

method suggested in [7]. Considering that  is the hybrid 

ranking and  the visual, we construct a combined ranking 

 that includes the top links of both rankings. More 

specifically,  consists of  results, which are actually the  

top results of  and the  of , where . 

This form of presentation leads to a blind statistical test so that the 

user selections, expressed as clicks on the ranked results, 

demonstrate the unbiased user preferences. Such method can be 

considered even more appropriate when applied in query by visual 

example instead of text web search, as in this case, the results are 

not so subjective to what the user has in mind. Figures 8 and 9 

illustrate a visual and a hybrid ranking respectively, while in 

Figure 10, the combined ranking is depicted. 

In the second experimental phase, 8 users were employed to 

identify visually similar results for 100 queries by visual example, 

that were included in the weighted graph. To construct efficiently 

the training set, the thresholds have been experimentally tuned, 

while 30 positive and 30 negative examples were extracted by the 

weighted graph for each query. In tables 3 and 4 we observe the 

statistic results for all the users. It can be seen that for 68% of the 

queries the hybrid ranking is preferred by the user, for 6% of 

queries the two functions seem to perform equally, while for the 

rest 26% of queries the visual ranking outperforms the hybrid. In 

Figure 11, we present the corresponding histogram, which shows 

the frequency of user preference (i.e. selection clicks on hybrid 

ranking minus clicks on visual ranking for a query) for the 

involved queries. We constructed the histogram by considering 

absolute values of the clicks and not normalized (i.e. divided by 

the total clicks in a query), as the actual number of clicks seems to 

be of more importance. For instance, in a case that a user clicks 

and selects only one item more from the one of the rankings, the 

conclusion should be that this ranking is with higher probability 

slightly better than the other. This can be reflected when 

considering the absolute difference of the clicks (e.g. 8-7=1 and 1-

0=1), where the value 1 describes the user preference. However if 

we normalize the metrics according to the total number of 

selections in a query, we could get misleading results (e.g. 12,5% 

and 100% respectively for the previous example). 

 

Figure 9. Hybrid ranking of results for the query shot on the 

top left corner 

 

Figure 10. Combined Ranking of results for the query shot on 

the top left corner 

 

Figure 11. Histogram of the clicks. The horizontal axis stands 

for the number of clicks (positive for hybrid ranking and 

negative for visual), while the vertical for the frequency. 

In this specific case it seems that when retrieval is performed only 

by considering the visual descriptors, low distances are estimated 

also for shots that have similar colors but no semantic 

resemblance with the query. On the other hand, when the hybrid 

 Nodes Shots Keywords Links 

Weighted Graph 1298 1229 69 2659 



ranking is applied, it seems that the implicit user feedback have 

given a semantic flavor to the ranking as the shots that shared only 

common color characteristics were ranked lower. Finally, as can 

be seen from the example in Figures 9 and 10. It is clear that the 

top 10 results of the hybrid approach are much better. 

 

Table 3. Pairwise comparison of the hybrid retrieval function 

with the visual one.  

Total Queries More selections 

on Hybrid 

More selections 

on Visual 

Equal 

selections 

100 68 26 6 

 

Table 4. Clicks on Hybrid and Visual ranking  

Total Clicks Selections on Hybrid 

ranking 

Selections on Visual 

ranking 

1198 1008 190 

9. CONCLUSIONS 
In this paper we described an approach of combining visual 

features with implicit user feedback by employing a SVM 

classifier. From the experimental results it seems that the 

proposed method is capable of improving the visual search results 

in most of the cases. We could conclude that utilizing implicit 

user feedback to optimize content based retrieval seems to insert a 

semantic flavor to the query by visual example results, by ranking 

higher shots that are semantically similar, despite the initial lower 

visual resemblance. Future work could include more extended 

evaluation of the method in order to better observe the behavior of 

this hybrid approach especially in cases that the implicit feedback 

is of lower quality.  
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