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ABSTRACT
In this paper, a learning approach coupling Support Vector
Machines (SVMs) and a Genetic Algorithm (GA) is pre-
sented for knowledge-assisted semantic image analysis in
specific domains. Explicitly defined domain knowledge un-
der the proposed approach includes objects of the domain
of interest and their spatial relations. SVMs are employed
using low-level features to extract implicit information for
each object of interest via training in order to provide an
initial annotation of the image regions based solely on vi-
sual features. To account for the inherent visual information
ambiguity, fuzzy spatial relations along with the previously
computed initial annotations are supplied to a genetic algo-
rithm, which decides on the globally most plausible annota-
tion. Experiments with images of the beach vacation domain
demonstrate the performance of the proposed approach.

Categories and Subject Descriptors
E.2 [Data]: Data Storage Representations; I.2.6 [Artificial
Intelligence]: Learning; I.2.10 [Artificial Intelligence]:
Vision and Scene Understanding; I.4.8 [Image Processing
And Computer Vision]: Scene Analysis

General Terms
Algorithms, Experimentation, Performance

Keywords
Semantic Image Analysis, Support Vector Machines (SVMs),
Genetic Algorithms (GAs), Fuzzy Directional Relations, On-
tologies, Object Recognition

1. INTRODUCTION
Recent advances in both hardware and software technologies
have resulted in an enormous increase of the images that are
available in multimedia databases or over the internet. As
a consequence, the need for techniques and tools supporting
their effective and efficient manipulation has emerged. To
this end, several approaches have been proposed in the liter-
ature regarding the tasks of indexing, searching and retrieval
of images [1][2].

The very first attempts to address these issues concentrated
on visual similarity assessment via the definition of appro-
priate quantitative image descriptions, which could be au-
tomatically extracted, and suitable metrics in the resulting
feature space. Coming one step closer to treating images
the way humans do, these were later adapted to a finer
granularity level, making use of the output of segmentation
techniques applied to the image [1]. Whilst low-level de-
scriptors, metrics and segmentation tools are fundamental
building blocks of any image manipulation technique, they
evidently fail to fully capture by themselves the semantics of
the visual medium; achieving the latter is a prerequisite for
reaching the desired level of efficiency in image manipula-
tion. To this end, research efforts have concentrated on the
semantic analysis of images, combining the aforementioned
techniques with a priori domain specific knowledge, so as to
result in a high-level representation of images [2]. Domain
specific knowledge is utilized for guiding low-level feature
extraction, higher-level descriptor derivation and symbolic
inference.

Depending on the adopted knowledge acquisition and rep-
resentation process, two types of approaches can be identi-
fied in the relevant literature: implicit, realized by machine
learning methods, and explicit, realized by model-based ap-
proaches. The usage of machine learning techniques has
proven to be a robust methodology for discovering complex
relationships and interdependencies between numerical im-
age data and the perceptually higher-level concepts. More-
over, these elegantly handle problems of high dimension-
ality. Among the most commonly adopted machine learn-



ing techniques are Neural Networks (NNs), Hidden Markov
Models (HMMs), Bayesian Networks (BNs), Support Vec-
tor Machines (SVMs) and Genetic Algorithms (GAs) [4][5].
On the other hand, model-based image analysis approaches
make use of prior knowledge in the form of explicitly de-
fined facts, models and rules, i.e. they provide a coherent
semantic domain model to support “visual” inference in the
specified context [6][7].

In this paper, a semantic image analysis approach is pro-
posed that combines two types of learning algorithms, namely
SVMs and GAs, with explicitly defined knowledge in the
form of an ontology that specifies domain objects and fuzzy
spatial relations. SVMs are employed for performing an
initial mapping between low-level visual features and the
domain objects in the ontology (i.e. generating an initial
hypothesis set for every image region) at the region level,
whereas a GA is subsequently used to optimize this map-
ping over the entire image, while taking into account spatial
relations. Application of the proposed approach to images of
the specified domain results in the generation of fine gran-
ularity semantic representations, i.e. a segmentation map
with semantic labels attached to each segment, by employ-
ing high level reasoning techniques. These initial labels can
be used to infer additional knowledge.

The paper is organized as follows: Section 2 presents the
overall system architecture. Sections 3 and 4 describe the
employed low- and high-level knowledge respectively. Sec-
tions 5 and 6 detail individual system components. Experi-
mental results for the beach vacation domain are presented
in Section 7 and conclusion are drawn in Section 8.

2. SYSTEM OVERVIEW
The overall architecture of the proposed system for seman-
tic image analysis is illustrated in Figure 1. Initially, a seg-
mentation algorithm is applied in order to divide the given
image into regions, which are likely to represent meaningful
semantic objects. Then, for every resulting segment, low-
level descriptions and spatial relations are estimated, the
latter according to the relations supported by the domain
ontology.

Estimated low-level descriptions for each region are employed
for generating initial hypotheses regarding the region’s se-
mantic label. This is realized by evaluating the compound
low-level descriptor vector by a set of SVMs, each trained to
identify instances of a single concept defined in the ontology.
SVMs were selected for this task due to their generalization
ability and their efficiency in solving high-dimensionality
pattern recognition problems [8][9].

The generated hypothesis sets for each region with the asso-
ciated degrees of confidence for each hypothesis along with
the spatial relations computed for every image segment, are
subsequently employed for selecting a globally optimal set of
semantic labels for the image regions by introducing them to
a genetic algorithm. The choice of a GA for this task is based
on its extensive use in a wide variety of global optimization
problems [10], where they have been shown to outperform
traditional methods, and is further endorsed by the authors
previous experience [11], which showed promising results.
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Figure 1: System Architecture

3. LOW-LEVEL VISUAL INFORMATION
PROCESSING

3.1 Segmentation and feature extraction
In order to implement the initial hypothesis generation pro-
cedure, the examined image has to be segmented into regions
and suitable low-level descriptions have to be extracted for
every resulting segment. In the current implementation, an
extension of the Recursive Shortest Spanning Tree (RSST)
algorithm has been used for segmenting the image [12].

Considering low-level descriptions, specific descriptors of the
MPEG-7 standard have been selected, namely the Scalable
Color, Homogeneous Texture, Region Shape and Edge His-
togram descriptors. Their extraction is performed according
to the guidelines provided by the MPEG-7 eXperimentation
Model (XM) [13]. The above descriptors are extracted for
every computed image segment and are combined in a sin-
gle feature vector. This vector constitutes the input to the
SVMs framework which computes the initial hypothesis set
for every segment, as will be described in Section 5.

3.2 Fuzzy spatial relations extraction
Exploiting domain-specific spatial knowledge in image ana-
lysis tasks is a common practice among the object recogni-
tion community. It is generally observed that objects tend
to be present in a scene within a particular spatial con-
text and thus spatial information can substantially assist
in discrimina-ting between objects exhibiting similar visual
characteristics. Among the most commonly adopted spatial
relations, directional ones have received particular interest.
They are used to denote the order of objects in space. In the
present analysis framework, eight fuzzy directional relations
are supported, namely North (N), East (E), South (S), West
(W), South-East (SE), South-West (SW), North-East (NE)
and North-West (NW).

Fuzzy directional relations extraction in the proposed anal-
ysis approach builds on the principles of projection- and
angle- based methodologies [14][15] and consists of the fol-
lowing steps. First, a reduced box is computed from the
ground object’s (the object used as reference and is pointed
in dark grey in Figure 2) Minimum Bounding Rectangle
(MBR) so as to include the object in a more representa-
tive way. The computation of this reduced box is performed
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Figure 2: Fuzzy directional relations definition

in terms of the MBR compactness value c, which is defined
as the value of the fraction of the objects’s area to the area
of the respective MBR: If the initially computed c is be-
low a threshold T, the ground objects’s MBR is reduced
repeatedly until the desired threshold is satisfied. Then,
eight cone-shaped regions are formed on top of this reduced
box, as illustrated in Figure 2, each corresponding to one
of the defined directional relations. The percentage of the
figure object (whose relative position is to be estimated and
is pointed in light grey in Figure 2) points that are included
in each of the cone-shaped regions determines the degree to
which the corresponding directional relation is satisfied. Af-
ter extensive experimentations, the value of threshold T was
set equal to 0.85.

4. KNOWLEDGE INFRASTRUCTURE
Among the possible domain knowledge representations, on-
tologies [16] present a number of advantages, the most im-
portant being that they provide a formal framework for sup-
porting explicit, machine-processable semantics definition
and they enable the derivation of new knowledge through
automated inference. Thus, ontologies are suitable for ex-
pressing multimedia content semantics so that automatic
semantic analysis and further processing of the extracted
semantic descriptions is allowed. Following these considera-
tions, a domain ontology was developed for representing the
knowledge components that need to be explicitly defined
under the proposed approach. This contains the semantic
concepts that are of interest in the examined domain (e.g.
in the beach vacation domain: Sea, Sand, Person, etc.), as
well as their spatial relations. The values of the latter for the
concepts of the given domain, as opposed to concepts them-
selves that are manually defined, are estimated according to
the following ontology population procedure:

Let S = {si , i = 1, ..., N} denote the set of regions pro-
duced for an image by segmentation, O = {oj , j = 1, ...}
denote the set of objects defined in the employed domain
ontology and

R = {rk, k = 1, ..., K} = (1)

= { N, NW, NE, S, SW, SE, W, E}, (2)

denote the set of supported spatial relations. Then, the
degree to which si satisfies relation rk with respect to sj

can be denoted as Irk(si, sj), where the values of function

Irk are estimated according to the procedure of Section 3.2
and belong to [0, 1]. To populate the ontology, this function
needs to be evaluated over a set of segmented images with
ground truth annotations, that serves as a training set. More
specifically, the mean values, Irkmean, of Irk are estimated,
for every k over all region pairs of segments assigned to
objects (oi, oj), i �= j, and are stored in the ontology. These
constitute the constraints input to the optimization problem
which is solved by the genetic algorithm, as will be described
in Section 6.

5. INITIAL HYPOTHESIS GENERATION
As already described in Section 2, a Support Vector Ma-
chines (SVMs) structure is utilized to compute the initial
hypothesis set for every image segment. Specifically, an in-
dividual SVM is introduced for every defined concept of the
employed domain ontology, to detect the corresponding in-
stances. Each SVM is trained under the ‘one-against-all’
approach. For that purpose, the training set assembled in
Section 4 is employed and the combined region feature vec-
tor, as defined in Section 3.1, constitutes the input to each
SVM. For the purpose of initial hypothesis generation, ev-
ery SVM returns a numerical value in the range [0, 1] which
denotes the degree of confidence to which the correspond-
ing segment is assigned to the concept associated with the
particular SVM. The metric adopted is defined as follows:
For every input feature vector the distance D from the cor-
responding SVM’s separating hyperplane is initially calcu-
lated. This distance is positive in case of correct classifica-
tion and negative otherwise. Then, a sigmoid function [17]
is employed to compute the degree of confidence, DOC, as
follows:

DOC =
1

1 + e−mD
, (3)

where the slope parameter m is experimentally set. The
pairs of all domain concepts and their respective degree
of confidence comprise each segment’s hypothesis set. The
above SVM structure was realized using the SVM software
libraries of [18].

6. HYPOTHESIS REFINEMENT
As outlined in Section 2, after the initial set of hypotheses
is generated (Section 5), based solely on visual features, and
the fuzzy spatial relations are computed for every pair of
image segments (Section 3.2), a genetic algorithm (GA) is
introduced to decide on the optimal image interpretation.
The GA is employed to solve a global optimization prob-
lem, while exploiting the available domain spatial knowl-
edge, and thus overcoming the inherent visual information
ambiguity. Spatial knowledge is obtained as described in
Section 4 and the resulting learnt fuzzy spatial relations
serve as constraints denoting the “allowed” domain objects
spatial topology.

Fuzzy spatial constraints verification factor.

Let

IM (gij) ≡ DOCij , (4)



denote the degree to which the visual descriptors extracted
for segment si match the ones of object oj , where gij rep-
resents the particular assignment of oj to si. Thus, IM (gij)
gives the degree of confidence, DOCij , associated with each
hypothesis and takes values in the interval [0, 1].

Then, the function IS (gij , gpq) is defined as one that returns
the degree to which the spatial constraint between the gij ,
gpq object to segments mappings is satisfied. IS (gij , gpq) is
set to receive values in the interval [0, 1], where ‘1’ denotes
an allowable relation and ‘0’ denotes an unacceptable one,
based on the learnt spatial constraints. To calculate this
value the following procedure is used:

Let ´Irk(su, sv) denote the degrees to which each spatial
relation is verified for a certain pair of segments su, sv of
the examined image and os, ot denote the domain defined
concepts assigned to them respectively. A normalized eu-
clidean distance d(gus, gvt) is calculated, with respect to the
corresponding spatial constraint, as introduced in Section 4,
based on the following equation:

d(gus, gvt) =

√∑8
k=1(Irkmean(os, ot) − ´Irk(su, sv))2

√
8

, (5)

which receives values in the interval [0, 1]. The function
IS (gus, gvt) is then defined as:

IS (gus, gvt) = 1 − d(gus, gvt) (6)

and takes values in the interval [0, 1] as well.

Implementation of genetic algorithm.

As has already been described, the proposed algorithm uses
as input the initial hypothesis sets (generated by the SVMs
structure), the fuzzy spatial relations extracted between the
examined image segments, and the spatial-related domain
knowledge as produced by the particular training process.
Under the proposed approach, each chromosome represents
a possible solution. Consequently, the number of the genes
comprising each chromosome equals the number N of the
segments si produced by the segmentation algorithm and
each gene assigns a defined domain concept to an image
segment.

A population of 200 chromosomes is employed, and it is
initialized with respect to the input set of hypotheses. An
appropriate fitness function is introduced to provide a quan-
titative measure of each solution fitness, i.e. to determine
the degree to which each interpretation is plausible:

f(C) = λ × FSnorm + (1 − λ) × SCnorm , (7)

where C denotes a particular chromosome, FSnorm refers
to the degree of low-level descriptors matching, and SCnorm

stands for the degree of consistency with respect to the pro-

vided spatial domain knowledge. The variable λ is intro-
duced to adjust the degree to which visual features matching
and spatial relations consistency should affect the final out-
come. After thorough experimentation, λ was set to 0.35,
which points out the importance of spatial context.

The values of SCnorm and FSnorm are computed as follows:

FSnorm =

∑N
i=1 IM (gij) − Imin

Imax − Imin
, (8)

where Imin =
∑N

i=1 minjIm(gij) is the sum of the minimum
degrees of confidence assigned to each region hypotheses set
and Imax =

∑N
i=1 maxjIm(gij) is the sum of the maximum

degrees of confidence values respectively.

SCnorm =

∑W
l=1 ISl(gij , gpq)

W
, (9)

where W denotes the number of the constraints that had to
be examined.

After the population initialization, new generations are iter-
atively produced until the optimal solution is reached. Each
generation results from the current one through the appli-
cation of the following operators.

• Selection: a pair of chromosomes from the current gen-
eration are selected to serve as parents for the next gen-
eration. In the proposed framework, the Tournament
Selection Operator [19], with replacement, is used.

• Crossover: two selected chromosomes serve as parents
for the computation of two new offsprings. Uniform
crossover with probability of 0.7 is used.

• Mutation: every gene of the processed offspring chro-
mosome is likely to be mutated with probability of
0.008. If mutation occurs for a particular gene, then
its corresponding value is modified, while keeping un-
changed the degree of confidence.

To ensure that chromosomes with high fitness will contribute
to the next generation, the overlapping populations approach
was adopted. More specifically, assuming a population of
m chromosomes, ms chromosomes are selected according to
the employed selection method, and by application of the
crossover and mutation operators, ms new chromosomes are
produced. Upon the resulting m+ms chromosomes, the se-
lection operator is applied once again in order to select the
m chromosomes that will comprise the new generation. Af-
ter experimentation, it was shown that choosing ms = 0.4m
resulted in higher performance and faster convergence. The
above iterative procedure continues until the diversity of the
current generation is equal to/less than 0.001 or the number
of generations exceeds 50.



Table 1: Numerical evaluation for the beach vacation domain
Proposed Approach Method proposed in [3]

Initial Hypothesis Final Interpretation Final Interpretation

Object precision recall precision recall precision recall

Sky 58.73% 92.50% 81.25% 97.50% 56.34% 98.92%

Sea 89.47% 53.13% 92.06% 60.42% 92.75% 66.67%

Sand 76.79% 97.73% 87.76% 97.73% 85.42% 93.18%

Person 72.34% 82.92% 70.91% 95.12% 78.38% 70.73%

Accuracy 75.95% 83.20% 77.48%

7. EXPERIMENTAL RESULTS
In this section, we present experimental results from testing
the proposed approach in the domain of beach vacation im-
ages. First, a domain ontology had to be developed to repre-
sent the domain objects of interest and their relations. Four
concepts are currently supported, namely Sky, Sea, Sand
and Person.

Then, a set of 40 randomly selected images belonging to
the beach vacation domain were used to assemble a training
set for the low-level implicit knowledge acquisition (SVMs
training) and computation of the fuzzy spatial constraints.
A corresponding set of 400 images was similarly formed to
serve as a test set for the evaluation of the proposed system
performance. Each image of the training/test set was manu-
ally annotated according to the domain ontology definitions.

According to the SVMs training process, a set of instances
were selected for every defined domain concept from the
assembled training image set. The Gaussian radial basis fun-
ction was used as a kernel function by each SVM, to allow
for nonlinear discrimination of the samples. The low-level
combined feature vector, as described in detail in Section
3.1, is composed of 433 values, normalized in the interval
[−1, 1]. On the other hand, for the acquisition of the fuzzy
spatial constraints, the procedure described in Section 4 was
followed for each possible combination of the defined domain
objects that were present in the employed image training set.

Based on the trained SVMs structure, initial hypotheses are
generated for each image segment as described in Section 5,
which are then passed in the genetic algorithm along with
the fuzzy spatial constraints in order to determine the glob-
ally optimal interpretation. In Figure 3 indicative results
are given showing the input image, the annotation result-
ing from the initial hypotheses set, considering for each im-
age segment the hypothesis with the highest degree of con-
fidence, and the final interpretation after the application of
the genetic algorithm.

In Table 1, quantitative performance measures are given in
terms of precision and recall. We compared the performance
of our method with the method described in [3]. It must be
noted that for the numerical evaluation, any object present
in the examined image test set that was not included in the
domain ontology concept definitions, e.g. umbrella, was not
taken into account.

After a careful observation of the presented results, we can
confirm the good generalization ability of SVMs, regardless

Input image Initial hypotheses Final interpretation

Figure 3: Exemplar results for the beach domain

of the usage of a limited training set. Furthermore, we can
justify the choice of using a genetic algorithm to reach an
optimal image interpretation given degrees of confidence for
visual similarity and spatial consistency against the domain
definitions.

8. CONCLUSIONS
In this paper, an approach to knowledge-assisted seman-
tic image analysis that couples Support Vector Machines
(SVMs) with a Genetic Algorithm (GA) is presented. The
proposed system was tested for the beach vacation domain
and produced satisfactory results. Furthermore, the system
can be easily applied to additional domains, given the fact
that an appropriate domain ontology is defined and the cor-
responding training sets are formed.

9. ACKNOWLEDGMENT
The work presented in this paper was partially supported
by the European Commission under contracts FP6-001765
aceMedia, FP6-027026 K-Space and COST 292 action.

10. ADDITIONAL AUTHORS
Additional authors: V. Mezaris (Informatics and Telema-
tics Institute, email: bmezaris@iti.gr) and I. Kompatsiaris



(Informatics and Telematics Institute, email: ikom@iti.gr).

11. REFERENCES
[1] A. W. M. Smeulders, M. Worring, S. Santini, A.

Gupta and R. Jain, “Content-based image retrieval at
the end of the early years”, IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 22, iss.
12, pp. 1349-1380,2000.

[2] W. Al-Khatib, Y. F. Day, A. Ghafoor, P. B. Berra,
“Semantic Annotation of Images and Videos for
Multimedia Analysis”, 2nd European Semantic Web
Conference (ESWC), Herakleion, Greece, 2005.

[3] K. Petridis, S. Bloehdorn, C. Saathoff, N. Simou, S.
Dasiopoulou, V. Tzouvaras, S. Handschuh, Y.
Avrithis, I. Kompatsiaris and S. Staab, “Knowledge
Representation and Semantic Annotation of Multimedia
Content”, IEE Proceedings on Vision Image and
Signal Processing, Special issue on Knowledge-Based
Digital Media Processing, Vol. 153, No. 3, pp. 255-262,
June 2006.

[4] J. Assfalg, M. Berlini, A. Del Bimbo, W. Nunziat,
P. Pala, “Soccer Highlights Detection and Recognition
using HMMs”, IEEE International Conference on
Multimedia & Expo (ICME), pp. 825-828, 2005.

[5] L. Zhang, F.Z. Lin, B. Zhang, “Support Vector
Machine Learning for Image Retrieval”, International
Conference on Image Processing, October, 2001.

[6] S. Dasiopoulou, V. Mezaris, V.K. Papastathis, I.
Kompatsiaris, M.G. Strintzis, “Knowledge-Assisted
Semantic Video Object Detection”, IEEE Transactions
on Circuits and Systems for Video Technology, Special
Issue on Analysis and Understanding for Video
Adaptation, vol. 15, no. 10, pp. 1210-1224, 2005.

[7] L. Hollink, S. Little, J. Hunter, “Evaluating the
Application of Semantic Inferencing Rules to Image
Annotation”, 3rd International Conference on
Knowledge Capture (K-CAP05), Banff, Canada, 2005.

[8] K. I. Kim, K. Jung, S. H. Park, and H. J. Kim,
“Support vector machines for texture classification”,
IEEE Trans. on Pattern Analysis and Machine
Intelligence, vol. 24, no. 11, pp. 1542.1550, Nov. 2002.

[9] O. Chapelle, P. Haffner and V. Vapnik, “Support
vector machines for histogram-based image
classification”, IEEE Transactions on Neural
Networks, vol. 10, no. 5, pp. 10551064, September 1999.

[10] M. Mitchell, “An introduction to genetic algorithms”,
MIT Press, 1995.

[11] N. Voisine, S. Dasiopoulou, F. Precioso, V. Mezaris,
I. Kompatsiaris and M.G. Strintzis, “A Genetic
Algorithm-based Approach to Knowledge-assisted Video
Analysis”, Proc. IEEE International Conference on
Image Processing (ICIP 2005), Genova, 2005.

[12] T. Adamek, N. O’Connor, N. Murphy, “Region-based
Segmentation of Images Using Syntactic Visual
Features”, Workshop on Image Analysis for
Multimedia Interactive Services, (WIAMIS), Montreux,
Switzerland, 2005.

[13] “MPEG-7 Visual Experimentation Model (XM)”,
Version 10.0, ISO/IEC/JTC1/SC29/WG11, Doc.
N4062, Mar., 2001.

[14] S. Skiadopoulos, C. Giannoukos, N. Sarkas, P.
Vassiliadis, T. Sellis, M. Koubarakis, “2D topological
and direction relations in the world of minimum
bounding circles”, IEEE Transactions on Knowledge
and Data Engineering, vol. 17, iss. 12, pp. 1610-1623,
2005.

[15] Y. Wang, F. Makedon, J. Ford, L. Shen, D.
Golding, “Generating Fuzzy Semantic Metadata
Describing Spatial Relations from Images using the
R-Histogram”, JCDL ’04, June 7-11, Tucson, Arizona,
USA, 2004.

[16] S. Staab and R. Studer, “Handbook on ontologies”,
in Int. Handbooks on Information Systems. Berlin,
Germany: Springer-Verlag, 2004.

[17] D. Tax and R. Duin, “Using two-class classifiers for
multi-class classification”, in Proc. Int. Conf. Pattern
Recognition, Quebec City, Canada, vol. 2, pp. 124127,
2002.

[18] C.-C. Chang and C.-J. Lin., “LIBSVM: A library for
support vector machines”,
http://www.csie.ntu.edu.tw/ cjlin/libsvm, 2001.

[19] D. Goldberg, K. Deb, “A comparative analysis of
selection schemes used in genetic algorithms”, In
Foundations of Genetic Algorithms, G. Rawlins, 69-93,
1991.


