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ABSTRACT 
 
The high rates at which digital multimedia is being generated and used makes it 
necessary to develop systems that can process it in an efficient manner. This can be 
achieved by extracting semantics from processing the video’s low-level information. We 
present a novel algorithm which fuses color and motion information, in order to extract 
semantics from the video sequence. The motion estimates are processed statistically to 
give areas of activity in the video. Color segmentation is applied to these areas, and also 
to their complementary regions in each frame, in order to achieve the moving object 
segmentation. The extracted color layers in the activity and background areas are 
compared using the Earth Mover’s Distance (EMD), and a novel method, which we 
introduce, and which is based on a likelihood ratio test (LRT). The segmentation results 
of our LRT-based approach are shown to be more robust than the EMD results, and both 
methods are shown to be more accurate than existing combined color-motion 
approaches. Furthermore, the LRT method allows the retrieval of additional semantics, 
namely of “maps” that indicate with what likelihood a pixel belongs to a moving object. 
The areas of activity can be used to retrieve semantics for the kind of activity taking 
place. The color-aided segmentation of the moving entities provides a full description of 
their appearance, so it can be used, for example, to classify the video based on the 
objects in it. Experiments with real sequences show that this method leads to accurate 
results and useful semantics. 
 
 
 
 
 
 
 
 
 



 
 

I. INTRODUCTION 
 

    The extraction of semantics from video has attracted significant attention lately, as the 
increasingly vast amounts of multimedia data that are becoming available are making it 
very difficult to access and manipulate it via traditional methods. The results of image 
and video processing methods, such as motion estimation, feature extraction, and object 
segmentation, can be incorporated into systems that can retrieve semantics from them. 
These higher level concepts (semantics) can be used to extract the main content from the 
video, and can consequently help in its more efficient analysis, interpretation and further 
processing.  
    In certain applications, such as sports, rules of the games have been used to extract 
semantics from the motion and appearance features of a video [1], [2]. For example, in 
sports video semantic analysis [3], the dominant color of the frames helps determine the 
regions where the event is taking place, such as the football field or the tennis court. The 
extraction of additional appearance features, such as the location of the lines in a field or 
a net in a tennis court, also contribute to the extraction of semantics [4]. Motion 
information analysis plays a fundamental role in understanding the events taking place in 
a video, as it shows what kind of action is occurring, and how it evolves with time. Sports 
analysis systems often combine color, texture and motion features in order to analyze the 
video content. For example, the trajectories of objects and their interactions have been 
used to detect events in soccer [5], [6]. However, these methods use manually obtained 
trajectories, and could fail if motion information extracted from the video processing was 
used, since it is likely to be noisy. Other motion based methods [7] rely heavily on rules 
of the game, or prior knowledge about the camera setup. Although these approaches give 
satisfactory results for sports analysis purposes, they suffer from the drawback of being 
too application-oriented. In order to achieve satisfactory player segmentation results and 
activity classification, they rely on rules concerning the specific application (sport) and 
appearance characteristics of the corresponding environment (soccer field, tennis court 
etc). The extraction of semantics from video sequences is also important for surveillance 
applications, where it is often of interest to detect “abnormal” events or activities [8], [9]. 
Commonly used video motion detection (VMD) surveillance systems are based only on 
velocity estimation, and thus often suffer from false alarms, caused by nonmotion events 
(e.g. changes in scene illumination). This has led to the development of surveillance 
systems that can characterize the detected motion in a video, in relation to its context, 
such as scene appearance, or motion history. In these applications, the motion trajectories 
are used to train the system to detect unusual events [10], [11]. These approaches are also 
application-dependent, as they often use prior knowledge about the scene structure in 
order to give meaningful results, and are trained to expect specific types of events. 
Finally, when video processing methods use only the motion information to extract 
semantics, they have been shown to be sensitive to occlusions and inaccuracies in the 
velocity estimates [10]. 
    Various approaches have been developed for the extraction of moving objects from a 
video sequence. In [12], a very effective background removal method is presented, which 
is also able to deal with varying illumination variations, small background motions and 
camera displacements. However, this method is based only on color, and can extract 



color homogeneous foreground regions, which introduce the need for “heuristics” for the 
detection of moving persons (a person is formed when two homogeneous color blobs are 
located one above the other). This limits the applicability of that approach, which would 
fail when applied to videos of other kinds of motion (not only humans moving), as in our 
work. Several methods have been developed in the literature for the combination of 
motion and color, in order to reliably segment moving objects. In [13], [14], [15], color 
clusters are formed in a video, and are then compared in order to detect motion between 
regions of similar color. Regions with similar color and location [13], [14], or motion 
[15], are clustered together, as they are considered to belong to the same moving object. 
These methods lead to good segmentation results when the color contrast between static 
and moving areas is high, but can encounter difficulties if the initial color segmentation is 
not accurate, as they will be searching for motion in incorrectly segmented frame regions. 
The method of [13] explicitly focuses on the case of rigid object motions, as it is assumed 
that image motion across a color-homogeneous cluster can be approximated by the 
motion of its centroid. Nonrigid motion is analyzed by focusing on the tracking of 
homogeneous color-blobs [14]. However these methods are still expected to encounter 
problems, such as false alarms, introduced by oversegmenting the video sequence. Also, 
they are based on clustering pixels with simultaneously similar color and location or 
motion [14], [15], so they cannot deal with differently colored objects, with differently 
moving parts, which may appear in very different locations in each frame (e.g. the leg 
and arm of a tennis player).  
    In this paper, we propose a system that can be used for the extraction of video 
semantics in more general applications, by integrating motion and color information. 
Contrary to existing methods, it does not limit its use of motion to the object trajectories, 
but extracts areas of activity by accumulating motion information over all frame pixels, 
and over several frames. For the case of a moving camera, its motion is first compensated 
for in a global motion estimation stage, which is applied to a pyramid of input images 
(video frames), as in [16]. Our method is then applied to the resulting video, where a 
pyramidal representation of the video frames is also used for the local motion estimation 
[17]. It should be noted that it is assumed that the video has been previously segmented 
into shots, so it is realistic to assume that the camera motion can be compensated for, 
since there will not be completely new frames during the sequence (as would be the case, 
e.g., after a hard cut in a video). Thus, after camera motion compensation, the (local) 
velocities in the video are estimated and are processed using higher order statistics, in 
order to determine which pixels undergo motion. This leads to the derivation of areas of 
activity, which are essentially the signatures of the activities taking place over the frames 
being examined. The activity areas are a good source of information for the type of 
events in the video, but they do not localize the moving entity with accuracy. They also 
do not contain any information about the appearance of the scene, which can be a rich 
source of semantics.  
    For this reason, we propose to take advantage of the color in the video sequence, and 
fuse it appropriately with the extracted activity areas, in order to use the data available in 
all domains and extract a richer set of semantics. Thus, at a second stage we perform 
color processing of the video, in order to describe its appearance and extract the moving 
entities. The background and the areas of activity are segmented based on their color, 
using mean shift segmentation. The resulting color layers in each area are compared, to 



find which pixels inside the activity areas belong to a moving object and which belong to 
the background. We present two different methods for comparing the color layers of the 
activity and background areas. The first method uses the Earth Mover’s Distance (EMD) 
to compare the histograms of the color layers, and matches those (layers) that have the 
smallest distance between them. The second method is a novel approach, which is based 
on the statistical modeling of the colors in each layer. An appropriate probability density 
is fit to the colors of the activity and background areas, and a likelihood ratio test is 
formed to compare the respective probability densities. This creates a mask for each 
pixel, which contains its likelihood of belogning to the corresponding background layer. 
By thresholding this mask we can extract the moving object from the video frames.  
    The information extracted at this stage can be used itself to infer semantics concerning 
the video. For example, a tennis court can be identified based on color alone, or the place 
where the event is taking place can also be determined from its appearance, extracted 
during the color processing stage. The fusion of the motion with the color information 
leads to the segmentation of the moving objects, which gives the most complete 
description of their appearance, and can consequently result in the corresponding 
semantics, such as who is participating in the video. The likelihood maps show the 
likelihood ratio values comparing a pixel’s color to that of the moving or static areas. 
This increases our system’s flexibility, as we can choose to keep only pixels with high 
likelihood in the segmented objects, or also include the pixels with low probability.  
    This paper is organized as follows. The motion processing stage used to find the 
activity areas from the video is described in Section II. The color analysis method 
employed for the color segmentation of each frame is presented in Section III. The EMD 
and the LRT based methods that are employed for the comparison of the color layers are 
analyzed in Section IV. Experiments with real video sequences are presented in Section 
V. A quantitative comparison of the proposed methods with other combined color-motion 
approaches is provided in Section VI. Finally, conclusions and plans for future work are 
drawn in Section VII. 
 

II. MOTION ANALYSIS: ACTIVITY AREA EXTRACTION FROM OPTICAL FLOW 
     
    Optical flow techniques compute the illumination variations between pairs of frames, 
and attribute the changes in luminance to motion in the corresponding pixels [17], [18], 
under the constant illumination assumption. In this paper, the motion estimation is based 
on the estimation of the velocities between pairs of frames using a multi-resolution 
extension of local optical flow estimation methods, namely the Lucas-Kanade optical 
flow algorithm [19]. Local optical flow methods, which search for changes in 
illumination over local search windows, rather than entire video frames, are preferred in 
this work over global techniques, such as the Horn Schunck [20] method and extensions 
of it [21], [22], as they are more robust to noise [23], [24], and more efficient 
computationally. However, the success of Lucas-Kanade flow estimation is highly 
dependent on the size of the local search window used, and can fail in the case of large 
displacements. These limitations are overcome by resorting to a multi-scale 
implementation, which leads to improved accuracy in the flow fields. A coarse-to-fine 
approach can handle large displacements [25], because they are essentially translated to 
small displacements in the sub-sampled video frames. Indeed, usage of pyramids has 



been documented to provide much more accurate optical flow in areas of large 
displacements. Multi-resolution Lucas Kanade also achieves sub-pixel accuracy, through 
bilinear interpolation, thus all ranges of displacements are estimated reliably. 
    Although the resulting flow estimates are significantly improved, in comparison to 
nonpyramidal local flow estimation methods, they still provide more reliable results in 
textured areas of motion, whereas outliers appear at moving object boundaries, where the 
brightness constancy assumption is clearly violated. This drawback will be accounted for 
and overcome by our method, by accumulating flow estimates throughout video 
subsequences, to create “activity areas”. The outlier flow values at object boundaries are 
incorporated in the activity areas, so these areas also contain pixels that did not actually 
move, but were at object boundaries. However, these pixels will be removed along with 
all static pixels in each frame, in a color processing stage, which refines the results of the 
optical flow processing (Sec. III, V). 
    The constant illumination assumption of the optical flow approach is well known to be 
unrealistic. In real videos, there are slight illumination changes that may be introduced by 
camera instability, non-constant camera exposure, and other sources of measurement 
noise [24]. These illumination variations are often mistaken as motion, so the resulting 
optical flow estimates are noisy. When the flow is accumulated over a sequence of 
frames, some of the estimates are actual motion vectors, and some are measurement 
noise. The measurement noise affects all frame pixels, so a large number of samples of 
this random variable is available. As a consequence, we can satisfactorily model it by a 
Gaussian distribution [26], [27]. However, the inter-frame velocity estimates that are 
indeed caused by motion deviate from the Gaussian model, in most cases significantly, 
since the object motion is quite different from random illumination variations and 
measurement noise. The velocity estimates in frame k then correspond to the following 
two hypotheses: 
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Hypothesis H0 expresses a velocity estimate at pixel r , in frame k, which is introduced 
by measurement noise, and hypothesis H1 corresponds to the case where there is motion 
at pixel r , expressed by the velocity )(ruk , which is also corrupted by additive noise 

)(rzk  [28]. In order to detect which velocity estimates correspond to a pixel that is 
actually moving, we need to examine the non-gaussianity of the accumulated velocity 
estimates [29]. A random variable’s non-gaussianity can be tested using higher order 
statistics, and, specifically, its kurtosis, defined as follows: 

     .         (2) 224 }){(3}{)( yEyEykurt −=
The fourth moment of a Gaussian random variable is , making its 
kurtosis equal to zero. The kurtosis is chosen to detect areas of motion in video 
sequences, as it has been shown to be a more robust detector [15] than simple 
differencing, which can suppress noise from Gaussian, and even non-Gaussian data, as 
shown analytically in [30]. Thus, it can be used in our application even for the cases 
where the noise in the optical flow estimates deviates from the Gaussian model 
assumption. Simple frame (or flow estimate) subtraction leads to noisier estimates for the 
areas of motion, as it cannot eliminate large pixel differences, which are due to heavy-
tailed noise. The kurtosis can handle such problems, as it is a better measure of a 
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distribution’s “peakiness” [30]. This is verified by our experimental results as well, in 
Sec. V. 
    Thus, after collecting the noisy inter-frame velocity estimates of each pixel over 
several video frames, we estimate their kurtosis. We need to select a number of frames 
over which at least one event (motion) has occurred. For this reason, we initially collect a 
fixed number of frames, and with every new frame, we compare the new flow estimates 
with the mean of the previously collected ones. A “significant” amount of activity, i.e. a 
new event, has occurred when the new flow estimate is higher than the standard deviation 
of the previous ones. Then, we can either stop accumulating frames and extract the 
activity area, or we can gather more frames, to extract a region corresponding to 
additional motions. The pixels whose flow has kurtosis above 10% of the mean kurtosis 
are considered to have been displaced and form a mask for the region of each frame 
where motion has occurred. This leads to the formation of “activity areas”, since we 
determine which pixels have moved in the frames that we are examining, but not the 
exact moving object. The activity areas can be useful for the extraction of semantic 
information concerning the sequence being examined, if, for example, they are 
characterized by a shape representative of specific actions.  
    A representative example of a boy playing tennis is shown in Fig. 1(a). Fig. 1(b) shows 
the activity areas extracted from processing frames 10 – 20. In this subsequence the boy 
has hit the ball, so his arm with the racket has moved, and the activity area contains the 
ball trajectory, along with the other areas of the boy’s body that moved during these 
frames. The activity area of Fig. 1(c) has resulted from processing frames 1 – 50, where 
more parts of the player were moving. The trajectory of the ball arriving and leaving after 
being hit is clearly visible. Also, the shape of both activity areas shows the region where 
the tennis racket was moving as the boy hit the ball (the curve on the left of the boy’s 
body before the ball was hit and on the right after the ball is hit). 
 

     
                                                     
       (a)            (b)    (c) 
 
Fig. 1. Boy playing Tennis. (a) Frame 20. Activity areas: (b) frames 10 – 20, (c) frames 1 – 50. 
 
 

III. COLOR SEGMENTATION: MEAN SHIFT 
 
As seen in the previous section, the motion information can indicate what kind of events 
are taking place in a video. However, the extracted activity areas are not sufficient to 
fully characterize a scene, e.g. who is participating in an event, or where it is located. A 
much better understanding of the semantics in a video can be acquired by processing the 



color information available in it. The color alone may provide important information 
about the scene [31], for example a green area in a tennis game indicates a grass court, 
whereas a red one indicates a clay court [32]. By fusing the color with a scene’s activity 
area, we can both segment the moving objects, and also extract additional semantic 
information concerning the video under examination. For example, an object’s 
appearance is fully described after it is segmented, and the background area’s color can 
indicate the place where the scene is being filmed. A significant advantage of the 
proposed method is that the color segmentation takes place on each frame separately, so 
the background modeling, for the extraction of the moving objects, is robust to variations 
in frame illumination. 
    We perform color segmentation on the video frame in order to separate it into regions 
of similar color. An elegant solution for the clustering of colors is provided by the mean 
shift algorithm [33]. The mean shift automatically defines the number of clusters, as it is 
an unsupervised learning algorithm, as opposed to the commonly used K-means [34]. 
Consequently, autonomous color clustering is a natural application for the mean shift 
[35]. The resulting clusters can be arbitrarily shaped, since no constraint is imposed on 
the cluster boundaries. The central idea of the mean shift algorithm is to shift a window 
of fixed size to the mean of the points in it. Mean shift essentially performs mode 
seeking, i.e. it searches for the maxima of the data distribution [36]. In our application, 
the data is appropriately modelled by a density function (Eq. (3)), and we search for this 
density’s maxima (modes) iteratively, by following the direction where its gradient 
increases [33], [37]. This is achieved by iteratively estimating the data’s mean shift vector 
(Eq. (5)), and translating the data window by that quantity, until it converges. It should be 
noted that convergence is guaranteed, as proven in [38]. 
    For color segmentation, we convert the pixel color values to L*u*v* space, as 
distances in this space correspond better to the way humans perceive distances between 
colors [39], [40]. Thus, each pixel is mapped to a feature point, consisting of its L*u*v* 
color components, which we symbolize as x, in d-dimensional Euclidean space dR ,  
where d = 3 corresponds to the three color components. We consider that our data 
(consisting of  3D values x, for a 21 NN × 21 NN ×  video frame) can be modeled by a 
multivariate probability density function, which is expressed via a kernel K(x), and 
window of radius h, given by [36]: 

,1)(ˆ
1

⎟
⎠
⎞

⎜
⎝
⎛ −

= ∑
= h

xxK
nh

xf i
n

i
d             (3) 

where  represent the color values around which the distribution is centered. For the 
case of color segmentation 
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21 NNn ×≤  points  are initially randomly selected from our 
data set. The kernel K of Eq. (3) is chosen to be symmetric (around ) and differentiable, 
so that it can enable the estimation of the pdf’s gradient, and also its modes. The 
Epanechnikov kernel that we use is given by: 
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In [38] it is shown that, for the Epanechnikov kernel, we need to translate the window 
center  by the “sample mean shift”  at every iteration, in order to converge to 
the distribution’s modes. The sample mean shift is given by 
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where  is the number of points contained in each search area . The mean shift 
 points in the direction of gradient increase, so it leads to the pdf maxima (modes) 

of our data.  
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    Thus, in order to obtain the color segmentation of each video frame, we first convert 
the image into L*u*v* space. We randomly choose n image feature points  in this 
space as initial cluster centers, and for each 

ix
ni ,,1K= , we estimate the sample mean shift 

 in a window of radius h around point . The window  is translated 
by , and a new sample mean shift is estimated, until convergence, i.e. until the 
shift vector becomes approximately zero. Finally, the pixels with color values closest to 
the density maxima derived by the mean shift iterations are assigned to those cluster 
centers. 
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IV. FUSION OF ACTIVITY AREAS AND COLOR FOR MOVING OBJECT SEGMENTATION 
 
By applying the mean shift algorithm, each frame is separated into color-homogeneous 
regions, as in [38], [39]. We use this result to segment the objects of similar color in the 
video frames, regardless of their shape. The motion information processing has led to the 
separation of active pixels in the video from the pixels that do not undergo any motion. 
By applying the mean-shift based color segmentation in the areas where no activity 
occurs, we can determine which colors are present in the background. Similarly, the color 
segmentation of the activity areas allows us to separate them in color homogeneous 
regions, that correspond to both the moving object and the background. Consequently, by 
matching each color homogeneous regions of the background to the corresponding 
regions in each frame’s activity area, we can determine which pixels of the activity area 
are background. 
    In Fig. 2 we show the mean shift color segmentation of frame 36 (Fig, 1(a)), where it is 
clear that the boy’s colors have been separated from the colors of the tennis court. Fig. 
2(b) shows the color segmentation of the activity area, where, again, the boy’s colors are 
separated from the background. Finally, the color segmentation of the static regions is 
shown in Fig. 2(c), where the different colors in the background have been separated. The 
extracted colors of each area need to be matched in a reliable manner, in order to 
accurately retrieve the pixels corresponding to the player’s location in each frame. 
 
 
 



   
 
       (a)            (b)    (c) 
 
Fig. 2. Mean shift color segmentation: (a) Frame 36, (b) activity area, (c) background. 
 
 

A. Earth Mover’s Distance 
 

Many methods exist for the comparison of areas of different colors, in our case of the 
color regions in the activity areas and the background. Each color region is represented 
by three histograms corresponding to its three color components. The histograms of each 
color can be regarded as “signatures” characterizing its distribution. The similarity 
between signatures of data is measured by the Earth Mover’s Distance (EMD) [41], that 
calculates the cost of transforming one signature to another. The most similar signatures 
will have the lowest cost and, consequently, can be clustered together. In this paper, 
histograms will be used as signatures, as the large amount of data processed in a video 
makes the use of more sophisticated signatures (e.g. histograms with adaptive binning) 
computationally impractical. 
    A histogram with m bins can be represented by ( ) ( ){ }mmm hhP ,,,,,, 111 ΣΣ= μμ K , where 

ii Σ,μ  are the mean and covariance, respectively, of the data in that bin (equivalently, 
cluster), and hi is the corresponding histogram value (essentially the probability of the 
values of the pixels in that cluster). This histogram can be compared with another, 

( ) ( ){ mmm hhQ ,,,,,, 111 ΣΣ= }μμ K , by estimating the cost of transforming histogram P to 
Q. If the distance between their clusters is ijΔ  (we use the Euclidean distance here), the 
goal of transforming one histogram to the other is that of finding the flow  that 
achieves this, while at the same time minimizing the cost: 

ijf

.
1 1
∑∑
= =

Δ=
m

i

n

j
ijij fW           (6) 

After the optimal flow fij between clusters i and j is found [41], the EMD becomes: 
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    In order to compare color distributions, the multi-dimensional color histogram can be 
used. However, estimating the precise, joint color distribution of each color cluster is 
computationally demanding. The subsequent comparison of these multi-dimensional 
distributions further increases the computational cost. For the case of video processing, in 
particular, this can become computationally prohibitive, as the colors histograms of all 
segmented areas, in all video frames need to be compared. We are thus led to treat the 
three color components of each image area as uncorrelated and independently distributed. 
This assumption is made in the literature for kernel color density estimation [42], [43], 
and for computationally efficient color modeling by mixtures of Gaussians [44]. In 
practice, both in the literature and in our experimental results, this suboptimal 
independence assumption leads to good results. Nevertheless, examining the use of more 
precise color models, that are also computationally efficient, is also possible.  
    Thus, we estimate the EMD between the three histograms of each color region in the 
action mask and the background area of each frame. We combine the EMD’s results for 
each color component (L, u, v in this case) by simply adding their magnitudes. The pixels 
of each color region in the activity area and the background that require the least cost 
(EMD) to be transformed to each other correspond to the background pixels of the 
activity areas. By removing the “background pixels” from the activity areas, we aim to 
extract the moving objects from the video. 
 
 
 B. Probability Likelihood Testing for Color Comparison 
 
    The EMD can become computationally expensive, especially for large amounts of 
data, like those encountered in video applications. This motivates us to develop an 
alternative approach for the comparison of the color regions. Our method leads to the 
extraction of the moving objects by comparing the color in the activity area with the 
background color, but it also has the additional advantage of providing an estimate of 
each pixel’s likelihood to belong to the moving object, instead of only providing a binary 
decision (like EMD-based comparison does). We estimate the statistical distribution of 
each color homogeneous layer in the activity and the background areas, and compare 
these two distributions. This is equivalent to forming a hypothesis test for each pixel r , 
with color x  (there are three color components, e.g. R, G and B or L, u and v, so x  is 
3D), with the hypotheses that it has moved in the current frame or is a static pixel: 
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    This process requires modeling of the color data’s statistical distribution for the pixels 
inside the activity area ( ), and its complement ( ). As in Sec. IV-A, we make 
the assumption that the three color components in each region are independent random 
variables [44], [43], so the overall pdf of pixel 

activef staticf

r  can be written as: 
    ),()()()( ,,, xfxfxfxf vareauareaLareaarea =            (9) 
where “area” is static or active. Spatial luminance data is often modeled by mixtures of 
Gaussian distributions, which are estimated using the Expectation-Maximization (EM) 
algorithm [45]. However, the EM requires training, which in turn would require either 



prior knowledge of which frames (and which regions of the frames) are appropriate for 
training, as well as more computational overhead. The EM also needs knowledge of the 
number of mixture components, which is usually determined in an ad-hoc manner. Its 
success is highly dependent on the number of mixture components and, most of all, on 
correct training, which limits its usability in general applications. For these reasons, we 
develop a simpler but effective method for approximating the probability distribution of 
each color layer, and subsequently comparing the different color regions. 
    The normal probability plot (NPP) plots the “percentage points” of the normal 
distribution, which are linearly related to the ordered data values (when these follow a 
normal distribution). The “percentage point” for each ordered value j is given by 

, where G is the inverse cumulative distribution function, and )( jj pGz =

)41()83( +−= Njp j  for N samples [46]. The horizontal axis shows the ordered sample 
data values. Thus, the NPP of normally distributed data should follow a straight line 
when the ordered values j are plotted against the percentage points, and deviations of the 
plot from a straight line indicate deviations of the data from a Normal distribution.  
    The empirical cumulative probabilities for the data under examination are estimated 
and superposed on the NPP to see if they indeed follow a Normal distribution. We 
normalize our data by subtracting its mean and dividing by its standard deviation, so if it 
follows a Gaussian distribution, its normalized values should follow a Normal 
distribution. The NPP of Fig. 3(a) shows that our (normalized) data has empirical 
probability values that deviate from the straight line, and consequently cannot be 
accurately modeled by a Normal (or Gaussian) distribution. This is because the color 
values contain outliers that introduce heavier tails than the Gaussian distribution. We 
account for the data’s outliers by using the heavy-tailed Cauchy distribution, given by: 
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where γ  is the data’s dispersion and δ  is its location parameter (the median for the 
Cauchy pdf). The dispersion parameter of the Cauchy distribution expresses the data’s 
spread around its median δ , so its meaning is similar to that of the data variance for 
distributions where it is defined (the variance is not defined for the family of stable 
distributions, to which the Cauchy distribution belongs) [47]. 

  
 
   (a)           (b) 
 
Fig. 3. (a) Normal Probability Plot for a frame’s color layer. (b) Likelihood ratio values. 



    A likelihood ratio test (LRT) is then formulated, to find whether each frame’s pixel 
belongs to the color layer of the action or the static area. Using the Cauchy model for our 
data and Eq. (9), we have: 
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where [ ]vuL xxxx ,,=  are the examined pixel’s luminance values (in this case in L*u*v* 
space), layer = {static or active}, and the parameters ilayer ,γ  and ilayer ,δ  are estimated 
directly from the data available [47]. In order to mask out the player, we threshold the 
values of the LRT, using the Bayesian threshold [28], which is automatically extracted 
from the data: 

,
2

01 HH μμ
η

+
=               (12) 

where 
1Hμ  and 

0Hμ  are the means of the LRT of Eq. (11). They are directly estimated 
from the data available as follows: )]([

11
rLEHH =μ , )]([

00
rLEHH =μ , where, for  we 

estimate the LRT mean using pixels in an active area, and for  we use the rest of the 
frame pixels. By thresholding the LRT, we separate the moving object pixels from the 
background pixels in each frame. As our experiments show, this method gives equally 
good results as the EMD-based one, and in some cases performs even better, at a much 
lower computational cost and with a simpler implementation. Another advantage of using 
the LRT is that it gives a measure of the likelihood with which the pixels in the action 
mask match the corresponding color layer of the static regions, as shown in Fig. 3(b). 
This gives us the flexibility to decide whether the segmentation should include all 
possible object pixels, at the cost of including “false alarm” pixels, i.e. pixels that did not 
move at that frame, or including only the high LRT pixels, at the cost of losing some of 
the object pixels. 

1H

0H

 
V. EXPERIMENTS 

 
    In the following experiments, we demonstrate the results for various stages of our 
algorithm on real video sequences, where color and motion are used to achieve accurate 
segmentation and semantically meaningful results.  
    We also compare the results of our approach to other methods combining motion and 
color for the purposes of object segmentation. The estimation of activity areas using 
higher order statistics (the kurtosis) is compared to the activity areas extracted via simple 
frame differencing, as in the work focusing on motion energy images and motion history 
[48], [49]. Indeed, our method gives more reliable results for the regions of activity (Sec. 
II), as both quantitative and qualitative results show. 
     The proposed method is also compared against the methods in [15], [13]. In [15], 
mean shift color segmentation is first applied to the video frames, and motion is detected 
in color homogeneous regions, by estimating the fourth order moment of the illumination 
difference between regions of similar color. This approach does not estimate the optical 
flow, but simple frame-region differences, in order to reduce its computational cost. We 
expect that it will lead to less accurate activity areas than our flow based approach, since 
simple frame differencing is more susceptible to false alarms. Afterwards, an affine 



model is fitted to the motion of each color region, and similarly moving regions are 
clustered [15]. This limits the applicability of the method to color homogeneous moving 
objects, whereas our approach does not impose such restrictions on the objects to be 
segmented, and can therefore deal with a larger range of motions and object appearances. 
In [13], clusters with similar color and spatial location are grouped over a sequence of 
frames, for tracking purposes. However, this requires prior knowledge of the number of 
clusters, making it impractical in realistic applications. Additionally, by clustering pixels 
that have similar color and location, it cannot deal with moving objects that have very 
different colors, or have similar colors which appear in different locations (e.g. after 
sudden large displacements, which are common in sports). These motion and color based 
methods also have a higher computational burden than our method, as they require the 
estimation of displacements between regions of similar color, which is equivalent to 
estimating the motion between many sequences, formed by the color clusters from all 
video frames. 
    All these methods are applied on video sequences from various domains (sports, 
surveillance, nature etc), with varying degrees of complexity of color information and 
motion, and with multiple moving entities. Quantitative evaluation and comparison of the 
results is provided in Sec. VI and the processing times are compared. In the first 
experiment we present the analytical explanations and qualitative results of all methods, 
but to avoid repetition, we provide a table with quantitative comparison results of the 
quality of segmentation for all videos (including the first one). 
 

A. Tennis serve 
 

    In this experiment, our method is applied to a color video of a tennis serve. In Fig. 4(a) 
the player is shown before she hits the ball, and Fig. 4(b) shows the results of the color 
segmentation. The optical flow is then estimated and processed as described in Sec. II, 
leading to the activity areas shown in Fig. 4(c) – (e). We show the results of accumulating 
the flow over different subsequences of video frames, to demonstrate that the resulting 
areas are representative of the actions taking place. 
 
 

   
           (a)                                (b)           (c) 
 
 



        

          (d)                                (e)           (f) 
 
 

    

          (g)                                (h)           (i) 
 
Fig. 4.Tennis serve: (a) frame 2. (b) Mean Shift color segmentation for frame 13. Activity 
Areas for a Tennis Serve: (c) frames 1 – 30, (d) frames 31 – 60, (e) frames 1 – 60. Color 
segmentation for: (f) background, (g) activity area. Segmentation results: (h) EMD, (i) 
LRT.  
   
     By performing color segmentation in the resulting activity and background areas, we 
can acquire even more information about the video. The color alone can provide 
information about the kind of tennis court, whereas the matching of the color in the 
activity area and the background area will lead to the segmentation of the tennis player. 
Fig. 4(f), (g) shows the results of the mean shift color segmentation applied to the 
background, as well as the activity area in each frame. 
    By comparing the color layers using the EMD and the LRT, we obtain the 
segmentation results shown in Fig. 4(h), (i). The LRT gives better segmentation results 
than the EMD, and also provides us with the likelihood mask of Fig. 3(b). The better 
performance of the LRT-based method can be attributed to the fact that the test based on 
the EMD sums the absolute values of the EMD’s between the three color components, 
whereas the LRT approximates the color distribution, with a model that is theoretically 
suboptimal, albeit sufficient for practical purposes.  
 
    Analytical Comparison with color-motion based methods. 
     
    For this video sequence, we present an analytical comparison of its performance with 
other approaches, including qualitative results. Due to space limitations, and since the 
same analysis applies to the results from the other video sequences, a perceptually 



meaningful quantitative performance comparison of the segmentation results for this and 
the other videos is provided in Sec. VI.  
    In order to compare the performance of our approach to methods that extract 
foreground areas using inter-frame thresholded differences, we first extract the motion 
energy image, as in [49], by taking the union of the binarized (thresholded) frame 
differences. From Fig. 5(a) it is obvious that the resulting area of motion contains many 
errors, as it extracts an entire region of the background vegetation, caused by small leaf 
motions and camera instability. Our method avoids these errors (Fig. 4(e)), as it is based 
on higher order statistics of the optical flow, whose noise-induced variations in those 
locations are effectively eliminated. Thus, in the sequel simple frame differencing, as in 
[49], [48], is not examined, as it leads to less accurate results than the higher order 
statistics processing of the optical flow estimates.  
    In order to compare our approach with the work of [13], [15], we also examine the 
extraction of color homogeneous regions, and the subsequent estimation of their motion. 
In Fig. 5 (b) – (d), three examples of binary masks, corresponding to layers with similar 
color are shown (there are in total five such regions), corresponding to the color 
segmentation shown in Fig. 4(b). For comparison purposes, we extract areas that are 
equivalent to our activity areas, using the approach of [15]. In [15], the higher order 
statistics of the differences between color homogeneous layers (regions) of different 
frames lead to moving regions. A region-based affine motion model is then used to find 
the motion parameters for these regions, and cluster them. After morphological post-
processing, this produces activity areas, as in Fig. 5(e), (f). The area in Fig. 5(e) is less 
noisy than the motion energy image [49], as it makes use of higher order statistics, 
applied to a specific region of the video frames. Nevertheless, there are still many errors, 
caused by error propagation from the initial segmentation stage, and false alarms 
introduced by small luminance changes in background areas, which are mistaken for 
motion. These false alarms are avoided in our approach, since we process the optical flow 
values, which are more robust to small illumination variations than simple frame 
differencing. In order to achieve object segmentation, the estimated affine models are 
used to track activity areas in the next frames [15]. When the color segmented area and 
the tracked area pixels overlap by more than 85%, they are considered to belong to the 
same object. The results of applying this approach, displayed in Fig. 5(g), are 
qualitatively worse than the proposed LRT-based approach (Fig. 4(i)). As the clustering 
groups the pixels in color layers which undergo similar motions, some parts of the player 
with little or different motion, such as the arms or the head, are not extracted. Both the 
EMD and LRT-based methods avoid this, since the activity mask they use is created by 
accumulating all the motions that take place over many frames. 
    In the Color Cluster Flow method of [14], the location of color segments is included in 
a feature vector, which is used to cluster similarly colored and located pixels in 
consecutive frames. An obvious initial drawback of this method is that it requires manual 
selection of the clusters to be tracked, when dealing with video. As Fig. 5(h) shows, this 
method gives good results when the moving objects have similar colors in nearby 
locations. Even so, the head of the tennis player is not included in the segmentation 
result, as it corresponds to a different color region. As expected, this method is unreliable 
for the case of non-rigidly moving objects, when they undergo large displacements. Fig. 
5(i) shows a representative example of the same method, applied to frame 25 of the tennis 



sequence, where the player’s legs and arms have moved significantly, and parts of them 
(and also the head) have been lost, as those pixels do not simultaneously satisfy the color 
and location similarity criteria. This, and the experiments with other sequences that 
follow, show that this method is not reliable for more challenging types of motion, or for 
moving objects with very different colors. 
 

           
          (a)                                (b)           (c) 

           
 
          (d)                                (e)           (f) 

     
          (g)                                (h)           (i) 
 
Fig. 5. (a) Motion energy image from union of thresholded inter-frame differences, from 
frames 1 to 30. Regions from mean shift color segmentation: (b) region 1, (c) region 4, 
(d) region 5. Activity area from higher order statistics of inter-frame differences: (e) in 
region 1, (f) in region 5. Segmentation results: (g) motion-based clustering of color 
layers, frame 13. Color-cluster flow: (h) frame 13, (i) frame 25. 
 
 
 
    B. Tennis hit 
     
    In this experiment, we examine a video of a tennis player hitting the ball (Fig. 6(a)), 
whose color segmentation is shown in Fig. 6(b). The activity areas extracted after 



processing the optical flow estimates for frames 1 – 10, 1 – 30 respectively, are shown in 
Fig. 6(c), (d). As expected, these signatures indicate the activity taking place in each 
subsequence, for example the trajectory of ball is visible, and the motions of the player’s 
arms can also be seen. 

 
          (a)                                (b)           (c) 

 
          (d)                                (e)           (f) 
 

 
          (g)                                (h)           (i) 
 
Fig. 6. Tennis hit: (a) frame 1. (b) Color segmentation. Activity Areas for Tennis Hit: (c) 
frames 1-10, (d) frames 1-30. Mean Shift Color Segmentation: (e) background, (f) 
activity area. Segmentation results: (g) EMD, (h) LRT. (i) Likelihood ratio values. 
 
    As before, the motion processing results are complemented by the mean shift color 
segmentation, so errors introduced in the activity areas, e.g. by outlier flow values, can be 
eliminated (Sec. II). In Fig. 6(e), (f) we see the results of color segmentation on the 
background and the activity areas of a frame of the video sequence. After comparing and 
matching the color histograms of the color layers in the segmented activity area and 
background area using the EMD and the LRT, we obtain the correct segmentation of the 
player, shown in Fig. 6(g), (h). As before, the result of the EMD method does not remove 



all the background pixels from the activity area. Also, the LRT method provides us with 
the values of the likelihood ratio for comparing the colors of the foreground and the 
background, shown in Fig. 6(i), where it can be seen that the player’s colors are quite 
different from those of the background, and validate the LRT-based method’s good 
performance. 
 
C. Low Color Contrast Video: Pelikans 
 
    In this experiment we have applied the proposed method to a video of pelikans 
walking, where the colors of the background and of the pelikans are similar (Fig. 7(a)). 
The extracted optical flow is processed to obtain the activity area shown in Fig. 7(b). In 
this case the activity area includes the moving birds as well as the lake, because its water 
is rippling, and also because the moving pelikans are reflected in it. The color 
segmentation obtained using mean shift applied to the entire frame, the activity area and 
background region is shown in Fig. 7(c) – (e). After comparing the color layers inside the 
activity and background areas using the EMD and the LRT, we obtain the results of Fig. 
7(f) – (i), where, again, the LRT-based method gave a more precise segmentation of the 
moving pelikans, whereas the EMD-based approach also included a part of the 
background behind them. 
 

 
 
          (a)                                (b)           (c) 
 
 
 
 
 
 
 
 
 



 
          (d)                                (e)           (f) 
 

 
          (g)                                (h)           (i) 
 
Fig. 7. Pelikan Sequence. (a) Frame 50. (b) Activity Area. Color segmentation for: (c) 
Frame 50. (d) Activity Area. (e) Background Area. Segmentation results. Frame 7: (f) 
EMD, (g) LRT. Frame 20: (h) EMD, (i) LRT. 
 
     
    D. Many Moving Objects: Soccer sequence 
 
     In order to examine the robustness of our method when the number of moving objects 
increases, we have applied it to a soccer sequence, where many players are moving in 
various directions (Fig. 8(a)). The activity area extracted for this sequence is shown in 
Fig. 8(b), where it is already obvious that the areas where the players are moving have 
been successfully localized. The mean shift color segmentation is shown in Fig. 8(c), 
where the colors of the players and the field have been effectively separated. The color 
layers in the activity and background areas are compared using the EMD and LRT-based 
methods in order to separate the players from the soccer field. The results are, as in the 
previous cases, better for the LRT-based method, which extracts the players with more 
precision, as shown in Fig. 8(d), (e). The likelihood ratio values in Fig. 8(f) are clearly 
higher in the players’ pixels than the background pixels, as expected. It should be noted 
that the proposed method extracts the moving entities in each video. In Fig. 8(c) it is 
evident that the immobile observer (the dark silhouette in the bottom of this image) has 
been successfully segmented from the background, based on color, but the activity area of 
Fig. 8(b) eliminates him from the final segmentation result (Fig. 8(d), (e)), as he is not 
moving. Further processing could also enable the extraction of all people on the soccer 
field, even if they are motionless. Specifically, the comparison of background pixels with 



the segmented moving objects, based on color, would enable the extraction of this person 
as well.  
 

   
          (a)                                (b)           (c) 
 
 

 
          (d)                                (e)           (f) 
 
 
Fig. 8. Soccer Sequence. (a) Frame 1. (b) Activity Area. (c) Mean Shift color 
segmentation. Soccer Sequence segmentation results. (d) EMD-based for frame 10. (e) 
LRT-based for frame 10. (f) Likelihood ratio values. 
 
 
E. Table Tennis 
 
   Experiments have been conducted with a video of a person playing table tennis (Fig. 
9(a)). The player’s motion is highly non-rigid, as the resulting activity mask shows in Fig. 
9(b). The mean shift color segmentation in Fig, 9(c) shows the color layers, where some 
of the colors in the foreground area are similar to those in the background. The proposed 
algorithm, using the EMD color-comparison does not give an accurate segmentation of 
the player, as shown in Fig. 9(d), whereas the LRT-based method leads to a much more 
precise segmentation, in Fig. 9(e). It should be noted that in the results of the LRT-based 
approach, the player’s face is not extracted, as its color is very similar to that of the 
background. Finally, the likelihood ratio values are displayed in Fig. 9(f), where it can be 
seen that the colors of the player lead to higher likelihood ratio values in the correct 
pixels. 
 



 
          (a)                                (b)           (c) 
 

 
          (d)                                (e)           (f) 
 
Fig. 9. Table Tennis. (a) Frame 10. (b) Activity Area. (c) Mean Shift color segmentation. 
Segmentation results. (d) EMD-based for frame 10. (e) LRT-based for frame 10. (f) 
Likelihood ratio values. 
 
 
F. Surveillance 
  
    We also perform experiments with a surveillance video, taken from the PETS-
ECCV’04 benchmark data (available online at http://www-prima.imag.fr/PETS04/caviar 
data.html), which shows two people meeting inside a building. Fig. 10(a) shows a frame 
of the video and Fig. 10(b) shows the resulting activity area. The large white area on the 
right shows that that person is walking towards the other for a longer time. Information 
like this can prove very useful in applications that are trying to extract semantics, such as 
detecting suspicious activities from surveillance videos. 
    The mean shift color segmentation is shown in Fig. 10(c), where it can be seen that 
parts of the people walking have a different color from their environment and can be 
successfully separated. Other regions (like their shirts) are similarly colored to their 
environment, and could be confused with it. This difficulty is overcome by taking 
advantage of the motion information, which limits the search area, and consequently the 
chances of false alarms (Fig. 10(b)).  
 
 
 



   
          (a)                                (b)           (c) 

 
          (d)                                (e)           (f) 
Fig. 10. Surveillance. (a) Frame 10. (b) Activity Area. (c) Mean Shift color segmentation. 
Segmentation results: (d) EMD, (e) LRT. (f) Likelihood ratio values. 
 
Despite this, the person that is walking from the left is not segmented out as accurately as 
the person on the right. The color histograms of the resulting color layers are then 
matched using the EMD and the LRT methods, and the results are shown in Figs. 10(d) 
and (e). As in previous cases, the LRT-based method has produced better segmentation 
results, as the EMD results contain more regions of the background. Finally, the 
likelihood of a pixel to belong to the moving objects is shown in Fig. 10(f). The 
likelihood is higher in the regions corresponding to the two people, but also contains false 
alarms in the regions under the windows. However, the incorporation of the motion 
information via the activity mask eliminates these areas, as no motion was detected in 
them. Thus, we see that the complementary roles of motion and color reduce the errors 
that each method alone might introduce, and leads to good segmentation results. The 
color and motion based techniques of [13] and [15] give worse results for this video, as 
the initial color segmentation is not sufficient for accurate segmentation and tracking of 
the two people (Sec. VI). 
 
G. Surveillance - Hallway 
     
    We applied the proposed hybrid color-motion approach to a surveillance video of a 
person entering a hallway (Fig. 11(a)). In this case the motion of the person is non-rigid, 
and he undergoes perspective transformation, as he walks away from the camera. Also, 
the shape of the person changes, as different parts of him become visible, and his color is 
similar to some parts of the background (especially the staircase railing and the shade). 
The activity mask for this video is shown in Fig. 11(b), and includes the parts of the scene 
where the door is opening, and the person is walking. The color segmentation of Fig. 
11(c) clearly separates the different color regions. By comparing the color in the activity 



and background areas, we obtain the segmentation results of Fig. 11(d), (e), where, as 
before, the EMD-based results are generally noisier than the LRT-based ones, as they 
include more areas of the background. The quantitative comparison of the proposed 
system with other color-motion methods in Table I also shows that it outperforms them. 
 

 
          (a)                                (b)           (c) 
 

 
          (d)                                (e)           (f) 
 
Fig. 11. Surveillance of hallway. (a) Frame 50. (b) Activity Area. (d) Mean Shift color 
segmentation. Segmentation results: (e) EMD, (f) LRT. g) Likelihood ratio values. 
 

VI. QUANTITATIVE COMPARISON 
 
    In order to evaluate the quality of the segmentation results of all these methods in an 
objective, quantitative manner, we compare the resulting segmentation masks using the 
method of [50], which uses a quality metric with higher perceptual meaning than simple 
spatial accuracy (i.e. the number of erroneous pixels). The segmentation mask errors are 
either missing foreground (MF) points, or added background (AB). The errors in the MF 
have a higher weight as the distance from the ground truth mask’s border increases, 
whereas the errors in AB points stabilize after a certain distance from this border. This 
leads to the absolute Spatial Quality Measure (SQM) given by: 
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   The weighting factor  is a linearly increasing function of the distance to the border 
of the ground truth mask, and  is increasing until a distance d, after which it stabilizes 
[50]. The number of pixels in the SQM is higher when the estimated masks are visually 
unacceptable, so lower SQM values indicate better results. 

MFw

ABw

   The experiments were performed on the video sequences of Sec. V. Frames of size 
 were used in the Tennis Serve (63 frames), Tennis Hit (158 frames), and 

Soccer (100 frames). Frames of size 
576720×

288352×  were used in the Pelikans sequence (200 
frames), Table Tennis (100 frames), Surveillance (161 frames) and Surveillance-Hallway 
(100 frames). In Table I, we see that the SQM achieves its lowest values for the proposed, 
LRT-based method, and the next lowest for the EMD-based approach, in all videos 
except for the Tennis Hit sequence, where the EMD is lower. The CCF and color/motion 
clustering methods lead to higher values of SQM, as expected, since the corresponding 
segmentation results were not as good. The performance of the color cluster flow (CCF) 
approach [14] worsens as the non-rigidity of the moving objects increases. The algorithm 
of [15] leads to less reliable results, as a result of error propagation from the initial color 
segmentation stage, and the limitation of creating clusters with the same color and motion 
(a moving object might have different colors and different motions, e.g. a person in 
sports). The inferior performance of the latter two methods is expected, as they are based 
on clustering the motion or location of color homogeneous regions, which may be 
incorrectly segmented in the beginning, or which may be too many, due to over-
segmentation. Finally, the proposed approaches based on the LRT and the EMD, have a 
similar computational time, of about 7 sec per video frame, on a dual core Pentium IV, 
for  frames, and about 4 sec for 576720× 288352×  frames. The methods of [14], [15] 
require more computations, of about 49 sec for 576720×  frames and 28 sec for 

 frames, as they are essentially applied on each sequence of homogeneous color 
clusters, over time, instead of being applied on the original video sequence only once. 

288352×

 
 

TABLE I 
 

QUANTITATIVE COMPARISON OF SEGMENTATION RESULTS 
 

Video 
 

LRT method EMD method CCF Color/motion 
clust. 

Tennis Serve 5.732 6.673 9.443 8.982 
Tennis Hit 6.321 5.565 9.522 9.233 
Pelikans 5.007 6.343 5.788 7.752 
Soccer   5.211 6.750 7.241 7.168 

Table Tennis 7.551 8.689 10.011 9.878 
Surveillance 6.256 8.572  9.399 10.432 

Surveillance – Hallway  5.141 7.022 7.933 8.102 
 
 
 
 
 
 



VII. SUMMARY AND CONCLUSIONS 
 
   In this paper we have presented a novel approach for the processing of video motion 
and color information, that can lead to the extraction of moving objects and the retrieval 
of the corresponding semantics. At a first stage, the motion estimates are processed 
statistically in order to extract activity areas for each frame. These activity areas are 
indicative of the events taking place. In order to fully describe the appearance of the 
scene and the moving objects, we also perform color processing of the video frames. 
Each activity and background area is segmented based on the colors present in it, and the 
background pixels are detected in the activity areas. This is achieved by comparing the 
colors of the active and static pixels via the EMD and a novel LRT based approach. 
Experiments show that the LRT method can give more reliable results than the EMD 
approach. Additionally, it results in a “likelihood ratio map” that shows with what 
probability each pixel belongs to a moving object or to the background, which can be 
used to tune the degree of segmentation desired in each case. Both methods outperform 
existing color-motion based approaches to segmentation, both in terms of segmentation 
quality and computational cost. Experiments show that the color information helps in the 
extraction of semantics from the video and that it effectively complements the motion 
information, by leading to accurate segmentation results. 
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