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ABSTRACT:

In this paper, we present a novel 3D segmentation approach operating on point clouds generated from overlapping images. The aim
of the proposed hybrid approach is to effectively segment co-planar objects, by leveraging the structural information originating from
the 3D point cloud and the visual information from the 2D images, without resorting to learning based procedures. More specifically,
the proposed hybrid approach, H-RANSAC, is an extension of the well-known RANSAC plane-fitting algorithm, incorporating an
additional consistency criterion based on the results of 2D segmentation. Our expectation that the integration of 2D data into 3D
segmentation will achieve more accurate results, is validated experimentally in the domain of 3D city models. Results show that H-
RANSAC can successfully delineate building components like main facades and windows, and provide more accurate segmentation
results compared to the typical RANSAC plane-fitting algorithm.

1. INTRODUCTION

3D segmentation is the task of partitioning a point cloud into con-
sistent regions. Typically, it reilies solely on the structural infor-
mation of the objects (i.e. the geometry and shape of the objects),
without taking into account visual information (i.e. the color and
texture of an object). However, geometrical features are not able
to separate different objects belonging to the same surface (in our
case the same plane). On the other hand, 2D segmentation may
be able to separate such coplanar objects, by exploiting their dif-
ferences in visual appearance. It is obvious that 3D and 2D data
contain complementary information that, if effectively combined,
can provide more accurate segmentation results. However, until
recently, most of the existing works address the 3D segmentation
problem as a detection of structural objects, by adopting three
main methodological steps; a) model-fitting (i.e. detecting objects
of specific shape such as planes), b) region-growing (i.e. starting
from a seed point, grow the region with neighboring points and
stop when a certain criterion is met) and c) clustering-based (i.e.
cluster the points into objects based on a set of extracted features).

However, the aforementioned methodologies typically rely only
on the structural information of the 3D point cloud, discarding
completely the visual information. This visual information is be-
coming more and more available with the popularity of obtain-
ing 3D point clouds through photogrammetry, combining multi-
ple overlapping images. In fact, the use of highly accurate and
dense 3D point clouds resulting from multiple overlapping im-
ages using Structure-from-Motion (SfM) and Multi-View-Stereo
(MVS) algorithms has become an extremely attractive solution
for 3D documentation. The advantage of these datasets is that
they contain both 3D and 2D information for the scene, with an
explicit structural connection between the two spaces.

Motivated by the above, in this paper we propose a hybrid point
cloud segmentation algorithm that jointly considers the structural
∗Corresponding author

information of 3D representations and the visual information of
2D images. The proposed hybrid segmentation method, H-RAN-
SAC, aims to successfully segment co-planar objects, that cannot
be segmented based solely on geometric features. More specifi-
cally, H-RANSAC extends the well-known RANSAC algorithm,
RANSAC (Fischler and Bolles, 1981), in this case used for plane-
based segmentation, by further optimizing its results using the
output of k-means-based segmentation applied on 2D images.
RANSAC is an iterative model-fitting algorithm, aiming to ro-
bustly estimate the parameters of a mathematic model. In our
case, we initially use RANSAC to compute the parameters of a
mathematical model describing a plane. Subsequently, we use
this model on the 3D point cloud to identify the computed plane.
H-RANSAC, on the other hand, integrates the 2D segmentation
output in each iteration, by first identifying the most favorable 2D
image (i.e. the image that depicts the whole plane and diminishes
occlusions and radial distortions) from the overlapping images.
Then, it applies k-means segmentation to the selected 2D image
and finally refines the 3D segmentation so that all points belong-
ing to the same 3D plane correspond to pixels that belong to the
same 2D object in the segmented image.

We validate the benefit of the proposed hybrid segmentation ap-
proach in the domain of 3D building segmentation, that is becom-
ing more and more popular due to advancements in the field of
UAVs and mobile mapping systems. More specifically, we show
experimentally that H-RANSAC can successfully achieve build-
ing delineation, i.e. the segmentation of buildings into its individ-
ual parts such as main facade, windows, etc., while the typical
3D segmentation based on RANSAC cannot distinguish between
these objects. In addition, it is important to note that one great
advantage of H-RANSAC compared to learning-based segmenta-
tion methodologies, is that the segmentation of co-planar objects
is achieved without any prior knowledge or annotated data for
training, which is particularly useful for analyzing city models
that typical come without any ground-truth information.

The rest of the paper is organized as follows. Section 2 reviews
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the related work, and focuses on the methodologies combining
3D and 2D segmentation. Section 3 describes in detail the pro-
posed hybrid procedure. The evaluation protocol of H-RANSAC
consisting of two publicly available datasets and three evaluation
metrics is described in Section 4. The experimental results are
outlined and discussed in Section 5. Finally, Section 6 discusses
and concludes the impact of this work and describes our inten-
tions for future research.

2. RELATED WORK

This paper presents a 3D point cloud segmentation approach for
co-planar objects that jointly considers structural and visual char-
acteristics of the objects, without using any prior knowledge or
annotated data for training. Related methodologies working on
point cloud segmentation mainly rely on the geometrical features
of the scene, while a limited number of works, combine visual
and geometrical features. In the following, Section 2.1 presents
the traditional segmentation methodologies relying on geometri-
cal features, and Section 2.2 presents the hybrid approaches com-
bining visual and geometrical characteristics.

2.1 Point cloud segmentation based on geometry

The typical approaches for point cloud segmentation that may
be applied irrespectively of the capturing device and the point
cloud generation technique (e.g. LIDAR, terrestrial laser scanner
devices, point clouds sourcing from SfM algorithms), solely rely
on the point cloud geometry. Such methods may be categorized
into three different groups; namely model-fitting, region-growing
and clustering approaches, and are explained in the following.

Most of the algorithms belonging to model-fitting approaches are
based on either the Hough Transform (HT) (Ballard, 1981) or
the Random Sample Consensus (RANSAC) (Fischler and Bolles,
1981) approach. HT is capable of detecting both well-defined
shapes as well as arbitrary shapes, while RANSAC is capa-
ble of robustly computing the parameters of a given mathemat-
ical model (i.e. plane) and thus detecting surfaces that can be
modeled in mathematical terms. Comparisons between HT and
RANSAC have shown that both algorithms are very sensitive
to parameter tuning, with RANSAC being able to achieve bet-
ter segmentation accuracies (Tarsha-Kurdi et al., 2007). Based
on HT, the authors of (Vosselman et al., 2004) review plane,
sphere and cylinder detection from city models, while, in (Rab-
bani and Van Den Heuvel, 2005) the automatic detection of cylin-
ders in point clouds is examined. Moreover, in (Tarsha-Kurdi et
al., 2007) comparative results for plane-based detection, in the
context of extracting roofs from buildings, are presented. Con-
cerning RANSAC-based algorithms, the authors of (Boulaassal
et al., 2007) extract facades from point clouds by manually tun-
ing the parameters of RANSAC. Other works extend RANSAC
by incorporating some extra steps in order to develop a more effi-
cient methodology. For example, (Schnabel et al., 2007) extracts
planes, cylinders and spheres, after computing normal vectors for
each point, in order to perform the assignment in a candidate
shape. Furthermore, (Chen et al., 2014) also used an improved
RANSAC methodology to detect roof-tops in point clouds sourc-
ing from airbone laser scanners. After segmentation, a Voronoi-
based primitive boundary extraction algorithm was introduced in
order to extract the primitives of each rooftop. Finally, (Li et
al., 2017) proposed the clustering of points into planar and non-
planar, according to the extracted normals. The aforementioned
studies have shown that RANSAC is robust to high noise and

outliers. However, it is based on the strict assumption that all
the points belonging to the same pre-defined surface (e.g. plane,
sphere, etc.) belong to the same object, which is not true for all
types of objects (e.g. cannot distinguish windows from facades).

Region-growing techniques were first introduced in (Besl and
Jain, 1988). In this work, the mean Gaussian curvature was
computed and resulted in a coarse segmentation, which was af-
terwards refined through an iterative region-growing procedure
based on a variable order bivariate surface-fitting. Also deploy-
ing region-growing for 3D segmentation, the authors of (Gorte,
2002) proposed to use Triangulated Irregular Networks (TINs)
as seeds and merged triangles with similar angles within a pre-
defined distance. Furthermore, in (Vieira and Shimada, 2005),
points across edges were eliminated with the help of a curva-
ture threshold. Afterwards, noise reduction was performed and
the remaining points served as seeds. In a similar context, the
authors of (Nurunnabi et al., 2012) selected the points with the
least curvature as seeds and the criterion for merging points was
the computation of the normal. Overall, the efficiency of region
growing methodologies for point cloud segmentation is strongly
correlated with successful seed selection and merging criteria and
these methodologies have not shown to be robust enough.

The final category refers to methods, which approach the seg-
mentation problem through clustering, by assigning each point in
the 3D point cloud with a set of features and afterwards apply-
ing clustering to the points’ feature vectors. A typical example is
(Biosca and Lerma, 2008), where the point cloud was segmented
with the help of fuzzy clustering. For each point features were
extracted (including the height difference of a point relative to
its neighbors, the unit normal vector of the tangent plane and the
distance of the tangent plane to the origin) and subsequently the
results were refined by assigning unlabeled points to the nearest
cluster. Combining clustering and region-growing the authors of
(Dorninger and Nothegger, 2007) first use hierarchical clustering
in four dimensional feature space so as to extract the centers of
the clusters and use them afterwards as seeds. Similar regions
were merged if the normal distance between the examined point
and the seed cluster was within a predefined threshold. Compared
to region-growing, clustering methodologies are more robust and
do not require the selection of seed points. However, their effi-
ciency depends on the quality of the extracted features.

2.2 Hybrid segmentation approaches

So far, there is only a limited number of studies that have com-
bined segmentation in the 2D and 3D space, either by projecting
the 3D space onto an image and applying segmentation in the 2D
space, or by deploying segmentation in both domains. With re-
spect to the first category, the authors of (Kabaria et al., 2014),
proposed to project the point cloud on a gray scale image and
segment the 2D image with the help of an active contour segmen-
tation algorithm, in order to identify and classify different coral
reefs. In a similar vein, the authors of (Aijazi et al., 2016) trans-
formed the 3D point cloud (object space) into an elevation image,
with the help of mathematical morphology, in order to segment
urban objects, such as sidewalks and facades of buildings.

More closely related to H-RANSAC are the works that refine the
segmentation by incorporating information from the 2D and the
3D space. In this direction, the authors of (Hickson et al., 2014)
first identified the object boundaries in the 3D space where depth
discontinuities occurred and used this information as an initial
segmentation. Then, image segmentation in the CIE LAB color
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space followed, while preventing any merging to occur across
depth discontinuities. Segmentation both in 3D object and 2D
image space was based on graph theory. In (Vetrivel et al., 2015),
the authors proposed a work flow for building detection from
point clouds sourcing from UAV images, which firstly detected
planar segments in the point clouds and defined 3D Regions of
Interest (ROIs). The 3D ROIs were afterwards identified in the
images and hybrid segmentation was employed to them in order
to refine the 2D segmentation results. The hybrid segmentation
was conducted by applying a region-growing algorithm based on
both structural and visual features. Finally, the authors of (Omi-
dalizarandi and Saadatseresht, 2013) have also worked on iden-
tifying roof segments using this combined segmentation. First,
they detect planar segments deploying a robust-fitting approach
and afterwards, they adopt a region growing methodology both
in the 3D space based on the direction of surface normals, and in
the 2D image space based on intensity values.

In a similar vein, there have been also methods combing informa-
tion from the 2D and 3D spaces aiming at semantic segmentation.
These methods rely on learning-based approaches and require
labelled training data. In this direction, (Landrieu et al., 2017)
perform ensemble learning, based on 3D features from the point
cloud and 2D features sourcing from the projection of points into
a horizontally oriented plane. In (Serna and Marcotegui, 2014),
elevation images are used and final results are obtained by the
re-projection of images into the 3D point cloud. Objects are clas-
sified with the help of Support Vector Machines (SVMs). Fi-
nally, concerning solely facade parsing, different algorithms are
presented in (Martinovic et al., 2015), (Gadde et al., 2017) and
in (Jampani et al., 2015). These approaches aim at semantically
segmenting the different parts of a facade into doors, windows,
balconies etc, with the help of annotated data combining 2D and
3D features with learning-based approaches.

Contrary to H-RANSAC, these approaches incorporate learning-
based approaches and rely on annotated date, while H-RANSAC
attempts 3D segmentation without any prior knowledge or an-
notated data. The most similar approaches to H-RANSAC are
the ones that do not require manual annotations. As seen from
above, these methods typically rely on region-growing segmen-
tation with features originating from both spaces. Compared to
what has been proposed so far, this paper presents an extended
version of RANSAC, which eliminates the main drawback of a
baseline segmentation method based solely on RANSACs robust
plane parameter computation (i.e. mis-segmenting co-planar seg-
ments) by incorporating visual information from the 2D space.
The greatest advantage of H-RANSAC is that objects differing
both in texture and in geometry can be separated. This is particu-
larly useful in building delineation, where structural components
of buildings are typically co-planar.

3. METHODOLOGY

H-RANSAC, consists of the following steps (Figure 1). First, dif-
ferent planes are computed with the help of RANSAC (Fischler
and Bolles, 1981). The planes are extracted from the point cloud
that has been generated from the overlapping images. RANSAC
is an iterative algorithm, where in each iteration aims to compute
the parameters of a given mathematical model, ensuring that the
solution presents the maximum inliers (i.e. in our case as inliers
we consider the points assigned to the plane based on the distance
between the points and the plane). In finding the plane with max-
imum inliers, RANSAC identifies a set of candidate planes by

executing the same algorithm multiple times with different ini-
tial starting conditions. In order to incorporate the information
from the 2D space, H-RANSAC modifies the candidate planes
based on the 2D segmentation results. More specifically, for each
candidate plane, H-RANSAC selects the most favorable view of
the plane from the overlapping images, assuring that it depicts
the whole plane, while radial distortions and occlusions are min-
imized. 2D segmentation based on k-means is applied on the
RGB and spatial features of the optimal image and the plane is
updated based on a consistency check. This check ensures that
all points belonging to the same plane, also belong to the same
segmented object in the 2D space. Then, the plane with the max-
imum number of inliers from the modified candidate planes is se-
lected and removed from the point cloud. This process is repeated
iteratively, starting with RANSAC based segmentation on the re-
maining point cloud, until there are no points left. Finally, after
the 3D point cloud has been segmented, H-RANSAC refines the
segmentation output by dismissing the small planes with points
less than a predefined threshold and assigns them to neighboring
objects.

3.1 Point cloud segmentation

For the detection of planes in the 3D point cloud, RANSAC forms
multiple random subsets of three points which define the candi-
date planes. For each subset of three points, the distance of the
remaining points from the plane is computed and the points with
a distance lower than a predefined threshold are considered as
inliers.

Figure 1. The flowchart of H-RANSAC

3.2 Image selection

Since the point cloud has resulted from overlapping images, each
3D region of interest is depicted in more than one image. Our ob-
jective is to select the most favorable image for 2D segmentation,
i.e. the one that has the best chances of detecting the desired ob-
ject. For this, the most favorable image is selected so as to depict
the whole identified plane, while radial distortions and occlusions
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are minimized. Towards this goal, first we have to identify all the
images that depict the whole examined plane.

In order to ensure that the whole plane is depicted, the 3D
bounding box of the plane is computed and the four corners
are projected onto the images through equation 1, using the ex-
terior orientation of each frame. Equation 1 defines the well-
established relationship between the 2D and 3D space, known as
the collinearity condition. If the projected points fall within the
dimensions of the image, the 3D region of interest is depicted in
the image and the specific image is selected as a candidate for the
image segmentation procedure.

X −Xo

Y − Yo

Z − Zo

 = λ · R ·

x− xoy − yo
−c

 (1)

where X , Y , Z refer to the 3D coordinates and x,y to the 2D
coordinates. Xo, Yo, Zo represent the reference center of the
3D space and are equal to the linear parameters of the exterior
orientation of each image, while xo, yo, c stand for the principal
point coordinates and the focal length of the camera respectively.
Finally, λ refers to the image scale and R to the rotation matrix.

After having identified the set of candidate images depicting the
3D object, it is important to select the most favorable view with
respect to 2D segmentation, by overcoming the problem of unfa-
vorable perspectives (i.e. extremely oblique views). The selection
of the most favorable image is based on two rules. The first one
depends on the distance between the projected center of gravity
of the 3D object and the center of the image. More specifically,
the preferred images are those for which the aforementioned dis-
tance is minimized, in order to reduce the effects of radial dis-
tortion. Furthermore, the most suitable view has to be as vertical
as possible, to diminish occlusions. Thus, the angle between the
camera axis and the normal of the examined planar object has to
be minimized.

3.3 Image segmentation

Subsequently, the step of 2D segmentation is performed using k-
means clustering. k-means is an unsupervised way of clustering,
initially proposed by (MacQueen, 1967), which classifies the in-
put data into k classes, according to the distances between them.
While clustering is mainly performed based on RGB values, in
our case, both RGB and spatial features are employed to ensure
spatial proximity of the clusters. Thus, each pixel is associated
with five features in total consisting of the RGB values and the
x,y location of each pixel, forming the following feature vector.

f =
[
r g b x y

]
(2)

The pixels are clustered around centroids µi∀i = 1...k, which
are obtained by minimizing the objective function:

V = argmin

k∑
i=1

∑
fj∈Si

∥∥(fj − µi)
∥∥2 (3)

where there are k clusters Si, i = 1, 2, ..., k and µi is the centroid
or mean point of all the points fj ∈ Si

3.4 Merging and refinement

A final refinement is applied to the 3D segmentation results in
order to merge small objects that comprise of few points. To this
end, the known DB-SCAN algorithm is applied (Density-based
clustering), as in (Ester et al., 1996). With the application of
DB-SCAN multiple clusters for each object are computed. Sub-
sequently, distances are measured between the different cluster
centers and small segments (comprised of points fewer than a
predefined threshold) are assigned to the object that the closest
cluster belongs to. The application of DB-SCAN algorithm is a
crucial step towards the refinement of the final outcome, as an ob-
ject with a uniform label might comprise of multiple not spatially
connected segments.

3.5 H-RANSAC

Finally, H-RANSAC is presented in Algorithm 1.

Algorithm 1 H-RANSAC

1: while Point cloud has remaining points do
2: Extract candidate planes based on RANSAC (k candidate

planes)
3: for i = 1 : k do
4: Compute the barycenter bi and project it to the most

favorable image (Eq. 1).
5: Identify the most favorable image (Section 3.3)
6: Remove the 3D points from the plane that are not in

the 2D segment containing the projection of the barycenter
7: Inliersi = #points in the plane
8: end for
9: Select the plane with the most inliers and remove it from

the point cloud
10: end while
11: Apply DBSCAN and merge small objects

4. EXPERIMENTAL PROTOCOL

4.1 Dataset

For the assessment of the proposed approach the ISPRS / Eu-
roSDR Benchmark for Multi-Platform Photogrammetry1 and the
Gerrard-hall theater dataset2 have been used. A subset of 20 and
99 images were selected respectively for each dataset. 3D mod-
els have been formed using Pix4D mapper3 and are depicted in
Figures 2(a) and 3(a) respectively. Even though the aim of creat-
ing the ISPRS dataset was to assess the accuracy and reliability
of methodologies for calibration and image orientation compu-
tation, as well as the success of different dense matching algo-
rithms, this benchmark was deemed as one of the most appropri-
ate for evaluating the results of our methodology, as it is widely
established and was captured with state-of-the art sensor data.
Similarly, the aim of creating the Gerrard-hall theater dataset was
to assess the performance of indoor and outdoor alignment meth-
ods. However, the dataset was selected for evaluation purposes,
as it consists of multiple overlapping images depicing a building,
which constitute the dataset appropriate to measure the success
of our proposed methodology.

1http://www2.isprs.org/commissions/comm1/icwg15b/

benchmark/Benchmark_Aim.html
2http://www.cvg.ethz.ch/research/indoor-outdoor/
3https://pix4d.com/
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(a) Dataset 1 (b) Ground Truth 1 (c) RANSAC results (d) H-RANSAC results

Figure 2. ISPRS / EuroSDR Benchmark for Multi-Platform Photogrammetry: a) original point cloud, b) segments obtained after
manual segmentation, c) segments obtained using only geometry features, d) segments obtained using both geometry and visual

features

(a) Dataset 2 (b) Ground Truth 2 (c) RANSAC results (d) H-RANSAC results

Figure 3. Gerrard-hall theater dataset: a) original point cloud, b) segments obtained after manual segmentation, c) segments obtained
using only geometry features, d) segments obtained using both geometry and visual features

4.2 Evaluation metrics

The success of the proposed segmentation methodology is quanti-
fied by comparing the resulting segments with reference data, i.e.
ground truth resulting from manual segmentation, with the help
of various evaluation metrics. Several metrics have been used
for 3D segmentation, including Global Consistency Error (GCA)
and Local Consistency Error (LCE), as proposed in (Martin et
al., 2001). Consistency error is also introduced in (Chen et al.,
2009) along with other metrics such us Cut Discrepancy, Rand
Index and Hamming Distance. While (Vo et al., 2015) and (Yan
et al., 2014) use Precision, Recall and F1-measure, as originally
introduced in the field of information retrieval (Manning, 1995).

In line with (Vo et al., 2015) and (Yan et al., 2014) we have de-
cided to use Precision, Recall and F1 measure in our experiments.
Precision refers to the percentage of correctly retrieved elements,
as it results from the number of True Positives (TP), divided by
the sum of True Positives (TP) and False Positives (FP):

precision =
|TP |

|TP |+ |FP | (4)

In the context of measuring 3D segmentation results, precision
may be declared as follows. Let mj be a segmented object in
the ground truth dataset and ai its extracted corresponding object
from the proposed methodology. Any point pk ∈ (ai ∩ mj) is
counted as True Positive and any point pk ∈ (ai \mj) is counted
as a False Positive. In other words, the false positives represent
all points in segment ai that do not have a corresponding point in
the reference segment mj .

Recall is the percentage of the ground truth elements that were
correctly retrieved and is sensitive to the existence of ground truth
segments that were not successfully detected. In mathematical
terms, recall is expressed as:

recall =
|TP |

|TP |+ |FN | (5)

Where TP refers to the True Positives and FN to the False Neg-
atives. As explained with mj being the ground-truth segmented
object and ai its corresponding object extracted from the pro-
posed methodology, FN is calculated as the number of points
where pk ∈ (mj \ ai). Thus, False Negatives are the points in
the reference segment mj without a correspondence in ai.

Finally, the F1-score combines the two afore-mentioned mea-
sures and may be used as a unique index, showing the capacity of
the proposed methodology. F1-measure is computed from Equa-
tion (6):

F1 =
2 · precision · recall
precision+ recall

(6)

4.3 Ground truth data

The ground truth data was segmented manually, in order to as-
sess the success of the proposed hybrid approach. In generating
the ground truth segmentations we have used the convention of
clearly identifying the different structural components of a build-
ing, such as windows, doors, main facades, roofs, pipes, etc. In
Figures 2(b) and 3(b), the manually segmented structural com-
ponents are depicted, for Datasets 1 and 2 respectively. These
ground truth segments were used compare the performance of
RANSAC and H-RANSAC, with the help of Precision, Recall
and F1-score, as defined in Section 4.2.

4.4 Identification of corresponding object

From the above, it is clear that in order to assess the efficiency
of the proposed methodology, it is necessary to identify the
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corresponding objects between the algorithm-produced and the
manually-generated segments. Thus, a pair for segments (ai,mj)
are identified as corresponding ifmj mostly overlapped ai and ai
mostly overlapped mj .

5. EXPERIMENTAL RESULTS

This section presents quantitative and qualitative results, com-
paring H-RANSAC with a baseline consisting exclusively of the
RANSAC plane-fitting segmentation algorithm. It is important
to note that performance is measured on the basis of successfully
segmenting the different parts of the building facade, without as-
signing any semantic labels on the identified segments. How-
ever, in order to make the presentation of our results easier for
the reader, we refer to the different segments of the scene with
their semantic labels.

5.1 Qualitative results

Figure 2 presents the results for Dataset 1, consisting of the
original dataset 2(a), the ground truth segmentation 2(b), the re-
sults of RANSAC plane-fitting segmentation 2(c) and the results
of H-RANSAC 2(d). RANSAC threshold was set through trial
and error over the available data, making sure to avoid over-
segmentation. It is evident from Figure 2(c) that the RANSAC
based approach failed to separate the important structural com-
ponents of the buildings, i.e. the windows, as they are almost
coplanar with the main facades of the buildings. Moving on to
the results of H-RANSAC, our hybrid procedure has successfully
segmented the structural components of the buildings, since the
windows have been successfully seperated from the main build-
ing.

With respect to Dataset 2, results are depicted in Figure 3, consist-
ing of the original dataset 3(a), the generated ground truth 3(b),
as well as the results of RANSAC plane-fitting 3(c) and H-
RANSAC 3(d) segmentation. The RANSAC based segmenta-
tion has segmented Dataset 2 into the two main facades, failing
to delineate the doors and the windows of the building. On the
other hand, after visual inspection of Figure 3(d), it is evident that
H-RANSAC successfully delineated parts of the structural com-
ponents of the building (i.e. the doors, the windows and the two
main facades).

5.2 Quantitative Results

Quantitative results are presented in Table 1 (Dataset 1) and Ta-
ble 2 (Dataset 2) for both the H-RANSAC and RANSAC meth-
ods. Since there is no one-to-one correspondence between the
ground truth segments and the segments generated by RANSAC
or H-RANSAC, some ground truth segments may not have a cor-
responding part in the segments produced by the algorithms. In
these cases, values for the evaluation metrics are not available,
and are marked with (-).

Concerning the results tabulated in Table 1 and with respect to
the facade 1 of the building, the RANSAC based segmentation
presents lower precision, as expected from the visual inspection,
since a lot of points belonging to the windows are segmented as
points of the facade 1 (False Positives). Contrary, H-RANSAC
appears to have identified less FP, as it has successfully seg-
mented bigger parts of the windows and thus achieves higher
precision for facade 1. On the other hand, the recall of RANSAC
plane-based detection is higher than the hybrid procedure, since

H-RANSAC has segmented larger segments from the facade 1,
some of them being False Negatives.

The performance of both algorithms is rather similar for facade
2, while most differences are observed in the case of windows.
H-RANSAC achieves better segmentation of windows and thus
presents a much higher recall with only marginal reduction of the
precision. This is reflected in the value of F1-measure that is con-
siderably higher than RANSAC. Furthermore, with respect to the
other structural components, H-RANSAC has not segmented the
water pipe, the roof and the facade 3 as they have been assigned
to larger objects of the scene, during the merging step. However,
as we can see in Table 1 the scores achieved by RANSAC for
these structural components are particularly low, which makes
them inappropriate for making any comparisons. Summarizing
the results obtained for Dataset 1, we can see that both algo-
rithms perform similarly in detecting facades 1 and 2 and very
poorly (not suitable for comparisons) for roof, water pipe, and fa-
cade 3. Their main difference derives from the ability to segment
windows, which constitute one of the most important structural
component of city buildings.

In a similar vein, the results for Dataset 2 are presented in Table 2.
Concerning the two main facades, H-RANSAC achieves higher
precision than RANSAC, as the latter returns a lot of False Posi-
tives (i.e. points belonging to the doors and windows that are as-
signed to the two main facades). On the other hand, the RANSAC
based segmentation achieves a higher recall rate for the two main
facades, similarly to Dataset 1, since H-RANSAC is character-
ized by more False Negatives. As also observed in Dataset 1,
the main advantage of H-RANSAC is the successful segmenta-
tion of doors and windows. More specifically and with respect
to F1-scores, H-RANSAC and RANSAC perform similarly con-
cerning the segmentation of the main facades. On the other hand,
H-RANSAC outperforms the conventional plane-fitting method
when referring to the main structural components of the building,
such as windows and doors. Indeed, H-RANSAC succeeds in de-
lineating the doors and the windows with an F1-score of 0.7656
and 0.5991 respectively, compared to a total failure of the base-
line approach.

Table 1. Evaluation metrics for Dataset 1

H-RANSAC RANSAC
Precision Recall F1 Precision Recall F1

Facade 1 0.9164 0.8146 0.8625 0.8208 0.9054 0.8610
Facade 2 0.6798 0.9768 0.8017 0.6876 0.9952 0.8133
Windows 0.5027 0.6736 0.5757 0.5364 0.1880 0.2784
Roof - - - 0.1311 0.0375 0.0583
Water pipe - - - 0.1768 0.1489 0.1617
Facade 3 - - - - - -

Table 2. Evaluation metrics for Dataset 2

H-RANSAC RANSAC
Precision Recall F1 Precision Recall F1

Facade 1 0.7999 0.7075 0.7509 0.5661 0.9634 0.7134
Windows 0.7085 0.8238 0.7656 - - -
Facade 2 0.9990 0.6650 0.7988 0.8233 0.9676 0.8896
Doors 0.4329 0.9722 0.5991 - - -

6. CONCLUSIONS

This paper proposes a novel approach for segmenting point
clouds that result from multiple overlapping images. H-RAN-
SAC performs segmentation incorporating information from both
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the 3D and 2D space and combines the results in the final out-
come. By leveraging geometrical and visual features, objects be-
longing to the same mathematical surface (in our case planes),
can be successfully delineated in different segments. The over-
all effectiveness of H-RANSAC has been evaluated in the do-
main of city buildings and facade segmentation. More specifi-
cally, doors and windows constitute a typical challenge in build-
ing delineation, as they are coplanar with building main facades.
Experimental results, outlined in Section 5, have proved the effec-
tiveness of H-RANSAC in successfully segmenting facades into
different parts without resorting to learning-based approaches.
Concerning the limitations of our approach and our intentions for
future improvements, in this experimental study we have been
mainly concerned with small-scale objects that typically fit in the
view of a single image. However, this may not be the case for
large-scale objects that extent across the view of two or more
images. To overcome this shortcoming, we aim to create and
use panoramic images covering large-scale objects that will be
generated by performing automatic stitching of multiple images.
Moreover, in order to avoid trial and error in setting the RANSAC
threshold on the distance of the points considered as inliers, we
plan to investigate how to automatically set this value by applying
different thresholds and examining the residuals of each thresh-
old. Finally, H-RANSAC could be easily extended for segment-
ing objects belonging to spheres, curves and other mathematical
surfaces.
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