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ABSTRACT
An original approach for real time detection of changes in
motion is presented, which can lead to the detection and
recognition of events. Current video change detection fo-
cuses on shot changes, which depend on appearance, not
motion. Changes in motion are detected in pixels that are
found to be active via the kurtosis. Statistical modeling
of the motion data shows that the Laplace distribution pro-
vides the most accurate fit. The Laplace model of the motion
is used in a sequential change detection test, which detects
the changes in real time. False alarm detection determines
whether a detected change is indeed induced by motion or by
varying scene illumination. This leads to precise detection
of changes in motion for many videos, where shot change
detection is shown to fail. Experiments show that the pro-
posed method finds meaningful changes in real time, even
under conditions of varying scene illumination.

Categories and Subject Descriptors
[Content Track]: Video Segmentation, Video surveillance,
Event detection

Keywords
change detection, motion analysis, illumination invariance

1. INTRODUCTION
Event and activity recognition have become particularly

important in the recent years, as they can provide valu-
able information for surveillance, medical monitoring, smart
homes, traffic monitoring etc. The video segments being
processed are usually extracted by shot change detection, or
have been segmented before the processing, possibly manu-
ally. Today, shot detection can achieve very high accuracy
for any kind of shot change, be it abrupt or gradual, but
it is based on similarity of appearance. Object trajectories
obtained over the entire video are processed in [9] as well
as in [11] for event detection. Activity recognition takes
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place over video segments that are found by shot change de-
tection in [17]. In practice, this approach may not always
work, as different activities may take place in subsequences
with the same appearance, i.e. in subsequences that belong
to the same shot. This motivates us to propose a method for
separating a video sequence based on motion, which would
provide a more meaningful segmentation. Motion has been
used for this in [2], where frames with low activity are sep-
arated from the others using MPEG-7 motion descriptors,
but this is not generally applicable to the case of videos
with different activities that need to be separated from each
other.

In this work, binary masks of active pixels (Activity Ar-
eas) are extracted at each frame, using a kurtosis-based
method. The illumination variations over active pixels are
processed in the sequel in order to detect changes in them.
Statistical modeling of the data shows that the best proba-
bility distribution for the sequential likelihood testing is the
Laplace. Sequential change detection is then applied to the
data based on this model, in order to detect changes in it. A
false alarm test is implemented after each change is detected,
to determine if they are true or false alarms introduced by
scene illumination variations. Since only the currently avail-
able video frames are used, the change detection takes place
in real time.

This paper is organized as follows. In Sec. 2, the method
for extracting the Activity Areas is presented and the CUSUM
change detection algorithm is presented in Sec. 3. The statis-
tical modeling required for the CUSUM is included in 3.1. A
method for acquiring robustness to scene illumination vari-
ations is presented in Sec. 4, and the proposed procedure
for change verification is presented in Sec. 4.1. Experiments
with a wide range of indoors and outdoors videos are an-
alyzed in Sec. 6, including videos with global scene illumi-
nation variations. Finally, conclusions and future work are
discussed in Sec. 7.

2. ACTIVITY AREA
A binary mask of the active pixels in the video, the Ac-

tivity Area, is helpful in reducing the computational cost of
the method and also reducing the possibility of having false
alarms, by limiting the data being processed to the truly
active pixels. The Activity Area can be extracted at each
frame by using the data available until that moment, i.e.
the inter-frame illumination variations until frame k, thus
retaining the real time nature of the system. The data at
frame k and pixel r̄ is a 1 × k vector that can be written
as vk(r̄) = [v1(r̄), ...vk(r̄)], where vn(r̄) is the illumination



Figure 1: Activity Areas superposed on frames of
videos examined.

variation at frame n, 1 ≤ n ≤ k, caused either by actual
motion or by measurement noise. Each pixel’s illumination
variation at frame n can be modeled by the following hy-
potheses:

H0 : vn(r̄) = zn(r̄)

H1 : vn(r̄) = un(r̄) + zn(r̄), (1)

where zn(r̄) originates from measurement noise and un(r̄)
from actual motion. Additive measurement noise is often
modeled as a Gaussian random variable [1], [16], so the ac-
tive pixels can be discerned from the static ones as they
are non-Gaussian. A classical non-Guassianity measure is
the kurtosis, which can be employed to separate the active
from static pixels, as its value is equal to zero for Gaus-
sian data. For a random variable y, the kurtosis is given
by kurtosis[y] = E[y4]− 3(E[y2])2, which obtains the value
zero when y is Gaussian. The kurtosis is also defined as

kurtosis[y] =
E[y4]

(E[y2])2
− 3,

which is equal to zero for Gaussian data. Then, the kurto-
sis of vk(r̄) is estimated, to form a “kurtosis mask”, which
obtains high values at active pixels, and low values at the
static ones. It should be noted that the kurtosis has been
found to be very sensitive to outliers, and can detect them
reliably even for non-Gaussian data [8], [7]. Thus, if the
measurement noise deviates from the Gaussian model, the
kurtosis is still expected to lead to an accurate estimate of
the active pixels. The robustness of the kurtosis for extract-
ing Activity Areas has been analyzed in [4] as well, where it
is shown to provide accurate activity areas even for videos
with slightly varying backgrounds (e.g. backgrounds with
moving trees). The activity areas for some videos used in
the experiments in this work are shown in Fig. 1, where it
can be seen that the regions of motion are accurately lo-
calized. Other foreground extraction methods could also be
employed to extract activity areas from the video, such as
the Gaussian Mixture models of [15], [18]. However, the
method used should be computationally efficient, like the
one proposed here, in order to allow operation in real time.

3. CHANGE DETECTION
Sequential change detection methods are perfectly suited

for designing a real time system for detecting changes, as
they are specifically designed for this purpose. Additionally,
methods like the CUSUM have been shown to provide the
quickest detection of changes in the distribution of a data
stream [6], [12]. The data used in this context are the illu-
mination variations of the active pixels in each video frame,
which have been extracted using only the currently available

video frames. The method used here is the CUSUM (Cu-
mulative Sum) approach developed by Page [14], based on
the log-likelihood ratio test statistic at each frame k:

Tk = ln
f1(Vk)

f0(Vk)
. (2)

Here, Vk = [v1(r̄1), ..., v1(r̄N1), ..., vk(r̄1), ..., vk(r̄Nk )] repre-
sents the illumination of all active pixels over frames 1 to
k, assuming that the activity area of each frame n contains
Nn pixels. The data distribution before a change is given by
f0(Vk) and after a change it is f1(Vk), so the test statistic
of Eq. (2) becomes:

Tk =

k∑
i=1

Ni∑
j=1

ln
f1(vi(r̄j)

f0(vi(r̄j)
. (3)

The log-likelihood ratio uses
∑k

i=1×
∑Ni

j=1 samples. This is
a large number of samples, which provides a good approxi-
mation of the data distributions and is expected to lead to
reliable detection performance.

In this problem, neither the data distributions before and
after a change, nor the time of change are known. In order
to find the moment of change using Eq. (2), the distributions
f0 and f1 have to be approximated. The initial distribution
f0 can be approximated from the first w0 data samples [13],
under the assumption that no changes occur in the first w0

frames. The distribution f1 is approximated at each time
instant k using the data available until that moment. Since
it should describe the data after a change, it is found us-
ing the w1 most recent frames, in order to avoid a bias to-
wards the baseline pdf f0. The size of the windows w0, w1

is determined by using training data, and it is found that
w0 = 10, w1 = 1 led to good distribution approximations
and accurate change detection for most videos.

The data is assumed to be independent and identically dis-
tributed (i.i.d.) in Eq. 3, an assumption that is common in
such problems [10], as joint data distributions can be quite
cumbersome to determine in practice. The CUSUM algo-
rithm has been shown to be asymptotically optimal even for
data that is not independent [3], so deviations from the i.i.d.
assumptions are not expected to introduce noticeable errors.
Indeed, in the experiments changes are detected with accu-
racy under the i.i.d. assumption. As shown in [14], the test
obtains a computationally efficient recursive form for i.i.d.
data, as Eq. 3 becomes:

Tk = max

(
0, Tk−1 + ln

f1(Vk)

f0(Vk)

)

= max

(
0, Tk−1 +

k∑
i=1

Ni∑
j=1

ln
f1(vi(r̄j)

f0(vi(r̄j)

)
. (4)

The test statistic Tk is compared at each frame with a thresh-
old to find if a change has occurred at that frame. The re-
lated literature recommends using training data to find a
reliable threshold for good detection performance [12]. We
have found that at each time instant k, the threshold can be
estimated from:

ηk = mean([Tk−1] + c× std[Tk−1], (5)

where mean[Tk−1] is the mean of the test statistic’s values
until frame k− 1 and std[Tk−1] is the standard deviation of
those values. Very accurate detection results are found for
c = 5 for the videos used in these experiments.
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Figure 2: Statistical modeling using Gaussian,
Laplace distributions for surveillance videos.

3.1 Statistical data distribution modeling
The test of Eq. (3) requires knowledge of the family of data

probability distributions before and after a change. In the
literature, the data has been assumed to follow a Gaussian
distribution [1] due to lack of knowledge about its nature.
We propose finding a more accurate model for the pdf, in
order to achieve optimal detection results. The data under
consideration are the illumination variations of each active
pixel over time. These variations are expected to contain
outliers, as a pixel is likely to be inactive over several frames,
and suddenly become active. Data that contains outliers
is better modeled by a heavy-tailed distribution, such as
the Laplace, the generalized Gaussian or the Cauchy, rather
than the Gaussian. In this work we compare the statisti-
cal fit achieved by the Laplace and Gaussian distributions,
as their parameters can be estimated very quickly, without
affecting the real time character of the proposed approach.
The Laplace pdf is given by:

f(x) =
1

2b
exp

(
−|x− µ|

b

)
, (6)

where µ is the data mean and b = σ/
√

2 is its scale, for
variance σ2, which can be directly estimated from the data.

The histogram of the data (illumination variations) is es-
timated to approximate the empirical distribution. The
data mean and variance are also estimated and used to es-
timate the parameters for the Gaussian and Laplace pdfs.
The resulting pdfs are compared both visually and via their
mean squared distance from the empirical distribution for
the videos used in the experiments. As Fig. 2 shows for
several videos, the empirical data distribution is best ap-
proximated by the Laplace model. This is expected, since
the Gaussian pdf does not account for the heavy tails in the
empirical distribution, introduced by the data outliers. The
average mean squared error for the approximation of the
data by Gaussian and Laplace pdfs is 0.04 for the Laplace
distribution, while it is 0.09 for the Gaussian model, verify-
ing that the Laplace is better suited for our data.

The CUSUM test based on the Laplace distribution then
becomes:

Tk =

k∑
i=1

Ni∑
j=1

(
ln

b0

b1
− vi(r̄j)− µ1

b1
+

vi(r̄j)− µ0

b0

)
, (7)

so the CUSUM test now is:

Tk = max

(
0, Tk−1 +

k∑
i=1

Ni∑
j=1

(
ln

b0

b1
− vi(r̄j)− µ1

b1
+

vi(r̄j)− µ0

b0

))
(8)

and can be applied to each current data sample after the
estimation of the distribution parameters as described in
Sec. 3.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3: Frames before and after equalization. (a),
(b), (e), (f) Frames before the illumination varia-
tion. (c), (d), (g), (h) Frames after the illumination
variation.

4. ROBUSTNESS TO ILLUMINATION VARI-
ATION

In real videos, it is possible to have significant illumina-
tion variations that can be mistaken for changes. In indoors
videos these can be caused by turning a light on and off, in
outdoors they may originate from a shadow falling over the
camera, the sun being covered by clouds and many other
factors. The proposed method is based on the motion infor-
mation in the video, so it is expected to provide detection
results that are relatively robust to such scene illumination
changes. Nevertheless, these changes translate into motion
vectors, which may lead to false alarms, especially in the
case of a significant global illumination change.

In order to increase the system’s robustness to illumina-
tion variations, we propose to apply histogram equalization
to each video frame before testing for a change. This is ex-
pected to reduce sensitivity to global illumination variations,
as it will reduce the contrast in each frame and distribute the
grayscale values more equally among the pixels. After his-
togram equalization is applied to each pair of frames, their
optical flow is computed and sequential change detection
proceeds as described in the previous sections. Figs. 3(a),
(b) show how equalization affects a frame before global scene
illumination changes and Figs. 3(c), (d) show an original and
equalized frame after the scene illumination has changed. It
is clear that the effect of equalization is to more evenly dis-
tribute the illumination values in the video frames. In the
case of the darker image, the even redistribution of its values
reduces the amount of dark pixels, so the resulting equalized
frame is similar to the one before the actual illumination
change. A very large scene illumination change caused by a
person turning a light off in the office is shown in Figs. 3(e)-
(h). The effect of the equalization here is quite striking, as
the person is barely visible in the original image, but can be
clearly seen after it is equalized. From these examples, it is
expected that this preprocessing step will significantly help
in avoiding scene illumination change induced false alarms.

4.1 Change verification
In practice, false alarms may appear even after histogram

equalization, so a method for detecting false alarms is pro-
posed. After each change is detected, the average illumina-
tion before a change is compared with the average illumi-
nation after it. For a video frame of N = N1 × N2 pixels,



where l(r̄(n), k) is the pixel intensity for the nth pixel r̄(n),
the average scene illumination over w frames before and af-
ter frame k is given by l0 = 1

wN

∑k
i=k−w+1

∑N
n=1 l(r̄(n), i)

and l1 = 1
wN

∑k+w
i=k+1

∑N
n=1 l(r̄(n), i) respectively. The ratio

of the average scene illuminations is given by:

ρl =
max(l1, l0)

min(l1, l0)
, (9)

and is compared to the threshold of η = 1.1 in order to detect
global illumination changes. For noiseless data, a threshold
value of 1 would indicate global scene illumination changes.
However, in practice there may be small illumination varia-
tions caused by measurement noise or other sources of noise.
For this reason, a slightly higher threshold of 1.1 is chosen,
which indeed provides reliable false alarm detection for a
wide range of both indoors and outdoors videos. Then, if ρl

is above η, the detected change is attributed to a change in
the global scene illumination and is removed from the list of
detected changes. In that case, the amount of global illumi-
nation variation that has taken place is known and is equal
to ρl. Once a change caused by global illumination variation
is found, that change point is eliminated, since it does not
correspond to a change in motion. The change detection
procedure needs to be reset at that time instant, which will
now be considered as the first frame, since the data before
and after it has a different scene illumination and will always
(falsely) appear to have undergone a change. This renders
the proposed method robust to scene illumination variations,
making it useful for practical applications like surveillance,
where the lighting in the scene under examination changes.

5. ALGORITHM OVERVIEW
In this section we present an overview of the proposed

algorithm’s steps, corresponding to the previous sections and
the block diagram of Fig. 4.

1. Acquire video frame pairs and apply histogram equal-
ization to each frame.

2. Compute optical flow for current frames.

3. Extract Activity Area from current frames.

4. Estimate Laplacian parameters for initial and current
data.

5. Apply sequential change detection testing via the CUSUM
test and the current data.

6. Verify if a change is true or a false alarm caused by
changing scene illumination.

7. Separate video into subsequences of coherent activity if
a change is true, and apply sequential change detection
to the rest of the video.

6. EXPERIMENTS
Experiments take place with various videos to examine the

accuracy of the change detection results. Sec. 6.1 presents
results for videos where the illumination remains constant,
and Sec. 6.2 presents results for videos where the illumina-
tion changes, either artificially or naturally.

Figure 4: Block diagram of proposed system.
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Figure 5: Test statistic and frames before and after
a change, in the presence of illumination changes.
(a)-(c): Person enters room with computer. (d)-
(f): Person enters a room to read, leaves. (g)-(m):
Person enters conference room, leaves.

6.1 Videos with constant illumination
A video of a person entering a room, sitting to read and

then getting up and leaving is examined. The proposed
method detects a change when the person enters, and when
he gets up to leave, while there are no false alarms (Figs. 5(a)-
(c)). Another video, of a person entering a room where a
computer is on, is examined. Here, the computer screen
is flickering, but this does not introduce any false alarms.
A change is detected when the person enters the room, and
when he exits. The test statistic is shown in Fig. 5(d), where
is can be seen that it indeed undergoes a significant increase
at the moments of change. This is also verified by the frames
of change, shown in Figs. 5(e), (f). Finally, a video of a con-
ference room where a person enters and exits is examined.
As Figs. 5(g)-(m) show, the changes are correctly captured.

6.2 Videos with varying illumination
In this section,the performance of the proposed method

for videos with varying illumination is examined. In the



first video, the illumination is artificially darkened in its last
part. The proposed method detects a change when the car
starts moving and when it exits the scene, but does not de-
tect a false alarm at the frame where the global illumination
is modified. Fig. 6(a) shows the corresponding test statis-
tic, which indeed increases suddenly at the frames where
the changes occur, and the frames of change are shown in
Fig. 6(b), (c).

In the next video, a person enters an office, turns the
light off, and exits. After histogram equalization, a change is
detected when the person enters and when he exits. The test
statistic that led to these changes is shown in Fig. 6(e) and
the corresponding frames are shown in Fig. 6(f), (g). Similar
results are reported for the other videos examined. Results
for a person entering a room, sitting to read, and getting
up to leave are shown in Figs. 6(h)-(j). In the first frames,
there are gradual illumination changes, however they are not
mistaken for changes in motion. Two videos of a lobby where
the light is turned on and off gradually, throughout all the
frames, are examined. In both videos, the motion changes
are correctly detected, while the false alarms introduced by
the illumination variations are all successfully eliminated.
Figs. 6(k)-(s) show the test statistic and the frames of change
for the two videos. Changes are found when the person
enters or exits the area. It can be seen in these figures that
the scene illumination is different in different parts of each
video.

6.3 Comparison with shot change detection
The usefulness of the proposed approach can be better

determined when comparing it to traditional shot change
detection methods, such as that of [5]. Shot change detec-
tion can find changes between shots introduced by varia-
tions in appearance, rather than in motion. We apply this
method to the videos on which sequential change detection
is performed, after applying histogram equalization to their
frames. This is done to ensure fairness of comparison with
our method, since the scene illumination changes are dimin-
ished after histogram equalization. We find that the shot
change detection is unable to detect most changes in mo-
tion, but tends to find changes caused by the illumination
variations, even after equalization of the video frames. It
should also be emphasized that the proposed approach runs
completely in real time, whereas the shot change detection
requires several minutes to run on the same videos, in C++.

The results for both methods and the corresponding ground
truth are presented in Tables 1 for videos with constant il-
lumination. In this case, the shot change detection detects
a true change only for the video where the person enters the
room with the computer. This can be easily explained by
the fact that the person’s body covers the entire frame as he
enters, so it significantly changes the scene appearance. In
the other cases, only our method is successful in finding the
changes.

In videos with varying scene illumination, shot change de-
tection is unable to find the change detected by our approach
in the video of the car at the railroad crossing. It also misses
the scene illumination change, as it has been eliminated by
the video equalization. In the video of the person enter-
ing the room to turn off the light, both methods find the
changes. This is expected as the appearance changes sig-
nificantly when the person enters and exits the video, as he
covers the entire video frame. Finally, the gradually varying
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Figure 6: Test statistic and frames before and after a
change, in the presence of illumination changes. (a)-
(d): Car at railroad crossing. (e)-(g): Person enters
room, turns light off, exits room. (h)-(j): Person
enters room while light is gradually turned on, sits,
leaves.



illumination is not mistaken for a change in motion in the
video where a person enters a room and sits to read. Our
method finds the changes in his motion, but the shot change
detection misses them. For the videos of the lobby with the
varying illumination, the changes caused by a person en-
tering and exiting are successfully detected by our method.
The shot change detection only detects the moments where
the scene illumination changes. Naturally, this erroneous
detection can also be eliminated by the change verification
step that our method uses.

Table 1: Comparison with shot change detection in
the absence of illumination changes

Video True Changes Our method Shot det.

Read 122, 295 124, 300 -
Office computer 241, 281 244, 283 243

Table 2: Comparison with shot change detection in
the presence of illumination changes

Video True Changes Our method Shot det.

Railroad 61 62 -
Turn off light 46, 79 46, 80 46, 72
Read, var. ill. 180, 195 182, 196 -
Lobby 1 48, 98, 323, 371 51, 96, 320, 367 154
Lobby 2 18, 217, 265 14, 215, 261 60

7. CONCLUSIONS
In this work, a novel, real time approach for separat-

ing videos into meaningful subsequences, that is robust to
changing scene illumination, is proposed. The active re-
gions of the video are localized using higher order statis-
tics, and a corresponding binary mask, the activity area,
is produced. Only the motion in pixels inside the activity
area is processed, in order to minimize computational cost
and probability of false alarms. Sequential change detec-
tion, and specifically the CUSUM method, is applied to the
motion vectors of the video, in order to detect changes in
them in real time. The Laplace model is used to describe
the motion vectors, as it accurately describes the outliers in
them. After a change is detected, it is examined to deter-
mine whether or not it is a false alarm using an appropri-
ately designed test. The resulting changes are detected in
real time and the overall system is robust to global illumi-
nation changes. Comparisons take place with shot change
detection techniques, where it is shown that they are unable
to detect changes in motion, and therefore different events,
which the proposed method can find. Shot change detection
techniques are also computationally costly, unlike the pro-
posed system, which operates in full time. Experiments with
surveillance and monitoring videos demonstrate that it pro-
vides accurate detection of changes, even in the presence of
illumination variations, making it a reliable tool for numer-
ous applications. Future work includes developing methods

for recognition of the activities taking place in the resulting
subsequences.
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