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Abstract. During the last few years, deeper and deeper networks have
been constantly proposed for addressing computer vision tasks. Resid-
ual Networks (ResNets) are the latest advancement in the field of deep
learning that led to remarkable results in several image recognition and
detection tasks. In this work, we modify two variants of the original
ResNets, i.e. Wide Residual Networks (WRNs) and Residual of Residual
Networks (RoRs), to work on 3D data and investigate for the first time, to
our knowledge, their performance in the task of 3D object classification.
We use a dataset containing volumetric representations of 3D models so
as to fully exploit the underlying 3D information and present evidence
that ‘3D ResNets’ constitute a valuable tool for classifying objects on 3D
data as well.

Keywords: 3D object classification · 3D object recognition ·Deep Learn-
ing · Residual Networks.

1 Introduction

During the last few years, Deep Neural Networks (DNNs) have achieved state-
of-the-art performance in almost every computer vision task. Initially, they were
successfully adopted to applications such as speech recognition, object tracking
and image classification, but today they are also used to tackle more complicated
problems, e.g. video classification, 3D segmentation and 3D object recognition.
Convolutional Neural Networks (CNNs), in particular, have shown excellent per-
formance in scenarios involving large datasets. A detailed review on CNNs and
their various applications can be found in [4]. As expected, CNNs’ outstand-
ing performance later attracted the attention of researchers working towards 3D
data analysis and understanding as well.

Experimental results indicate that deeper networks provide more representa-
tional power and higher accuracy. One of the latest trends in designing efficient
deep networks is adding residual connections. Residual Networks (ResNets) were
initially introduced in [6] and later extended in [7] achieving remarkable perfor-
mance on the tasks of image classification, segmentation, object detection and
localization. ResNets address one of the biggest DNNs’ challenges, i.e. explod-
ing/vanishing gradients, by adding shortcut (or skip) connections to the network
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Fig. 1. Original Residual Block (image from [9])

that allow to better update the weights in the early layers of a deep network.
This development allowed the training of very deep networks (up to 1K layers
[7]) that led to performances even beyond the human-level ones [5]. The ba-
sic residual block is shown in Fig.1. As it can be seen, input x passes through
two stacked weight layers (i.e. convolutional layers) and the output is added
to the initial input which skips the stacked layers through the employed iden-
tity function. In the original version of ResNets, after each convolutional layer,
Batch Normalization (BN) [11] and the ReLU activation function were applied.
In the improved version of ResNets (Pre-ResNets), though, it was shown that
pre-activation, i.e. applying BN and ReLU before the convolution layer, led to
better results.

Concurrently with ResNets, Highway Networks [20] were proposed employing
shortcut connections as well, but with gating functions whose weights needed to
be learned. Recently, several variations of the original ResNets have also been
proposed. In [9], a novel training algorithm that allows training deep residual
networks with Stochastic Depth (SD) was introduced. The authors explored the
scenario of randomly removing layers during the training phase while exploit-
ing full network depth at test time. Experimental results showed that stochastic
depth can lead to reduced training time and test error. “ResNet in ResNet”
(RiR) [22] presented an extension of the standard resnet blocks by adding more
convolutional layers. The new RiR block has two stacked layers each of which is
composed of two parallel streams, a residual and a non-residual one. Improved
results were reported on CIFAR-10 and CIFAR-100 datasets. The authors of
Wide Residual Networks (WRNs) [25] proposed the widening of ResNet blocks
by adding more feature planes in the convolutional layers and argued that ‘wide’
networks are faster to train and perform better than ‘thin’ ResNet models with
approximately the same number of parameters. Residual Networks of Residual
Networks (RoRs) [26] from the other side is a novel architecture that introduces
level-wise shortcut connections that can also be incorporated to other residual
networks for increasing their performance. RoRs achieved state-of-the-art results
with the most popular image datasets used for classification. Long Short-Term
Memory (LSTM) networks are variants of Recurrent Neural Networks (RNNs)
proposed for tackling the problem of vanishing gradients in recurrent networks.
Interestingly, the authors of [16] proposed an architecture, referred to as Convo-
lutional Residual Memory Networks (CRMNs), where a LSTM is placed on top
of a ResNet leading to promising results.
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Despite their success though, residual networks have not been tested yet in
tasks utilizing 3D data. In this work, we modify two recently proposed variations
of residual networks, namely (1) Wide Residual Networks (WRNs) [25] and (2)
Residual of Residual Networks (RoRs) i.e. Multilevel Residual Networks [26], and
use them to perform 3D object classification. We test the adapted architectures
on one of the most popular 3D datasets, i.e. Princeton’s ModelNet [24] consisting
of 3D CAD models from common object categories, and present comparable
experimental results with the state-of-the-art.

The remainder of the paper is organized as follows. Section 2 briefly re-
views the DNN-based state-of-the-art works for 3D object classification. Section
3 presents the residual architectures studied in this work, while Section 4 de-
scribes all experimental details and results. Finally, Section 5 discusses conclu-
sions and future work.

2 Related Work

Due to increased availability of 3D data, a need for efficient and reliable 3D
object recognition and classification methods has emerged. The popular DNNs
are primarily designed to work with 1D and/or 2D data, hence their adaptation
to the 3D case is not trivial. A review on how 3D data can be employed in DNNs
can be found in [10].

Towards 3D object classification, several works addressing the task using
a deep architecture are already available. One of the first approaches is 3D
ShapeNets [24], i.e. a Convolutional Deep Belief Network (CDBN) with five lay-
ers accepting as input binary 3D voxel grids. Along with the proposed network,
the authors of this work released a large-scale 3D dataset with CAD models
from 662 unique categories, named ModelNet, that is used in the experimental
evaluation of almost every related method ever since. A voxelized representation
of the 3D data is also used in [15]. A CNN with two convolutional, one pooling
and one fully-connected layer is employed in this work leading to better classi-
fication results compared to 3D ShapeNets. Also working on the voxelized 3D
point cloud, in [18], the authors propose a convolutional network (ORION) that
not only produces the labels of the 3D objects, but also their pose. The authors
of [14] proposed the Kd-Nets, working directly on the unstructured point clouds
without requiring that the point clouds are voxelized. This is accomplished since
there are no convolutional layers in their architecture and as a result they avoid
any problems that might occur during the voxelization due to poor scaling.

Approaches where multiple views of the 3D objects are provided to the net-
work can be found in [21, 12]. Multi-View CNN (MVCNN) [21] learns to combine
any number of input views of an object without any particular order through
a view pooling layer. Setups with 12 and 80 views were tested increasing the
classification accuracy significantly compared to other DNNs like [24]. Qi et al.
[17] managed to introduce improvements to MVCNN’s performance by using
enhanced data augmentation and multi-resolution 3D filtering in order to ex-
ploit information from multiple scales. Multiple views organized in pairs were
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used in [12]. The authors employed a known CNN, that is VGG-M [2], and
concatenated the outputs of the convolutional layers from the two images be-
fore providing them to the first fully-connected layer. The introduced model
surpassed the performance of voxel-based 3D ShapeNets [24] and the MVCNN
approach of Su et al. [21] on the ModelNet dataset.

Recently, ensemble architectures have become popular. A work that attempts
to combine the advantages of different modalities of the 3D models can be found
in [8]. Two volumetric neural networks were combined with a multi-view net-
work after the final fully-connected layer. A linear combination of class scores
was then taken with the predicted class being the one with the highest score.
An ensemble of 6 volumetric models was proposed in [1] achieving the current
state-of-the-art classification accuracy on both ModelNet10 (i.e. 97.14%) and
ModelNet40 (i.e. 95.54%) datasets. The final result was computed by summing
the predictions from all 6 models. The proposed architecture led to excellent
performance, however, is significantly more complex compared to most existing
networks from the relevant literature requiring 6 days of training on a Titan X.

Despite the existing significant works on 3D object classification, computa-
tional cost is still a bottleneck, especially when working on pure 3D representa-
tions. Networks including sophisticated modules or ensembles of large topologies
require increased training time and hardware resources that are not always avail-
able. In this work, we extend two of the most recent variants of residual networks
in 2D-image classification, adapt them to the 3D domain keeping complexity in
mind and investigate the efficiency of these ‘3D ResNets’ on classifying volumet-
ric 3D shapes.

3 3D Classification with Residual Networks

The authors of [25] have recently investigated several architectures of ResNet
blocks and ended up proposing ‘widening’ by adding more feature planes in the
convolutional layers. More specifically, WRNs consist of an initial convolutional
layer followed by 3 groups of residual blocks. Additionally, an average pooling
layer and a classifier completes the architecture, while dropout [19] was used
for regularization. Experimental evaluation showed that widening boosts the
performance compared to that of ‘thin’ ResNet models with approximately the
same number of parameters and at the same time, accelerates training mostly
due to the strong parallelization that can be applied in the convolutional layers.

In [26], level-wise shortcut connections were introduced to enhance the per-
formance of ResNets. ‘Residual Networks of Residual Networks’ (RoRs) is a
novel architecture with 3 shortcut levels (i.e. root, middle and final level) that
allow information to flow directly from the upper layers to lower layers. Except
for their original RoR architecture, the authors also incorporated the RoR con-
cept to other residual networks, in particular Pre-ResNets and WRNs (denoted
as Pre-RoR-3 and RoR-3-WRN respectively in [26]). Extensive experiments on
the most popular image datasets used for classification indicated that RoRs can
improve performance without bringing additional computational cost.
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group output size [3D filter size, #filters]

conv1 32x32x32 [3× 3× 3, 16]

conv2 32x32x32
[3× 3× 3, 16× k]

}
×N[3× 3× 3, 16× k]

conv3 16x16x16
[3× 3× 3, 32× k]

}
×N[3× 3× 3, 32× k]

conv4 8x8x8
[3× 3× 3, 64× k]

}
×N[3× 3× 3, 64× k]

avg-pool 1x1x1 [8× 8× 8]
Table 1. Structure of adapted WRNs for 3D object classification

Network #params Train Accuracy Test Accuracy

WRN-16-2-modified ∼0.5M 98.70% 92.18%
WRN-22-2-modified ∼0.7M 99.57% 92.95%

Pre-RoR (N=2, k=1) ∼0.5M 99.8% 92.84%
RoR-WRN-16-2 ∼2M 99.8% 94.00%

Table 2. Classification Results on ModelNet10 using Wide Residual Networks & Resid-
ual of Residual Networks

In this paper, our goal is to study the performance of residual networks on
the task of 3D object classification. Towards this direction, we explored several
variations of the original ResNets and trained a variety of models with differ-
ent network and training parameters in order to get insights and identify best
strategies. We tested networks of varying depth and width and explored suitable
values for the learning rate, dropout, weight decay and activation functions. Ex-
cept from the classification accuracy, the computational cost was also taken into
account during our experimentation. We focused on networks with a relatively
small number of parameters (up to 2.5 M) requiring a reasonable time to train.

Starting from Wide Residual Networks, we initially explored different values
for the width (denoted with k) and the number of convolutional layers denoted
with n. The depth of the network denoted with N is computed as N = (n −
4)/6. Due to memory limitations, we were able to train networks with k=2,
i.e. networks that are two times wider than the original ResNets. With respect
to the number of convolutional layers, we tested values between 10 and 22,
therefore N was in the range [1...3]. In addition, the notation WRN-n-k is used
to describe a wide residual network with n convolutional layers and width k. The
adapted WRN structure incorporates 3D convolutions and is depicted in Table
1. Regarding multilevel residual networks, we tested in our experiments Pre-RoR
and RoR-WRN with 16 convolutional layers, i.e. N=2, k=1 (for Pre-RoR) and
k=2 (for WRNs), on ModelNet10. The multilevel structure is demonstrated in
Figure 2.
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Fig. 2. Adapted Pre-RoR-3 (if k=1) and RoR-3-WRN (if k>1) architectures

4 Experimental Results

4.1 Dataset and implementation

ModelNet is a large 3D dataset containing more than 120K CAD models of
objects from 662 categories. The dataset was released in 2015, and thereafter its
two publicly available subsets, i.e. ModelNet10 and ModelNet40, are commonly
used in works related to 3D object recognition and classification. To perform our
experimental evaluation, we employ ModelNet10 that consists of 4899 models
(3991 for training and 908 for testing) each manually aligned by the authors
of the dataset. Binary voxelized versions of the 3D models are provided to our
network. The resolution of the occupancy grid affects the classification accuracy,
since it determines in which extent the 3D object’s details will be apparent, as
depicted in Fig.3. Obviously, a larger volume size leads to a better representation
but also to an increased computational cost, hence a compromise needs to be
made. In this work, the employed grid size is 32x32x32. As a pre-processing step,
the voxels were transformed from {0, 1} to {-1, 1}. In addition, the dataset is
augmented by 12 copies (i.e. rotations around the z axis) of each model. Inspired
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Fig. 3. 3D object from ModelNet voxelized in 3 different resolutions

Fig. 4. 12 voxelized rotations of a ‘chair’ train sample from ModelNet10

by [15], one randomly mirrored and shifted instance of each object is also added
in the dataset. An indicative 3D object and its 12 voxelized rotations are depicted
in Fig.4.

All of our experiments were conducted on a Linux machine with 128GB RAM
and a NVIDIA GeForce GTX 1070 GPU. The deep learning framework that was
used was Keras [3] running on top of Theano [23].

4.2 Training

During training, we split the original training set randomly into a ’train’ set,
containing 75% of the 3D models, and a ’validation’ set, containing the re-
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maining 25% of models. The tested networks were trained from scratch using
Adam optimizer [13] for fast convergence. We used fixed learning rates, such as
0.001 or 0.0001, since larger values reduced the performance. Categorical cross-
entropy was used as the objective. All convolutional layers were initialized with
the method of [5]. During training, every copy of a 3D model was considered as
a separate train sample. At inference time, the predictions of all copies of a 3D
model were summed up in order to make the final label assignment to it, i.e.
pick the argmax on the sum.

4.3 Results on ModelNet10

Our initial experimentation with large wide networks, e.g. WRN-22-2 containing
approximately 3.2M parameters, led to relatively low performance (∼ 90%) in
comparison to the state-of-the-art (97.1% [1]). Aiming to keep the computational
cost as low as possible, we changed the structure of WRNs by removing the
final group of convolutions, i.e. conv4. Hence, WRN-22-2 in our setting actually
contains 15 convolutional layers and not 22 as the original WRN would have. We
denote these networks as WRN-n-k-modified. Additionally, inspired by works like
[15], we investigated using Leaky ReLU as the activation function in the trained
networks instead of the original ReLU and found this to lead to a slight boost
of approximately 0.5% in the classification accuracy. In these experiments, a
dropout keep rate of 0.7 was used, while batch size was set to 32. Moreover,
L2 regularization to the weights by a factor of 0.0001 was applied. Some of the
results we obtained with WRNs after training for 50 epochs are provided in
Table 2. As shown, an accuracy of over 92% can be yielded by a ‘wide’ network
of less than 500K parameters. In contrast, VoxNet [15], for example, achieves the
same accuracy with a network containing twice the parameters. By adding more
(convolutional) layers leading to a network of approximately 700K parameters,
a slight improvement in performance is observed (0.77%).

For training Pre-RoRs, no dropout or regularization of the weights was ap-
plied. Additionally, ReLU was used as the activation function as originally pro-
posed by the authors. The classification results for ModelNet10 are included in
Table 2. It can be seen that a Residual of Residual Network of approximately
500K parameters leads to better performance in comparison to a Wide network
with the same number of parameters. In addition, a ‘wide’ Residual of Residual
Network containing around 2M parameters achieves an accuracy of 94%.

In Table 3, recent classification results on ModelNet10 from relevant works
are reported. As it can be seen, the state-of-the-art performance on this dataset
is 97.1% achieved with an ensemble of 6 networks, though, containing 90M pa-
rameters. The next best performing networks have an accuracy in the range of
93.3%-94% achieved from networks containing several million parameters. Our
best model, i.e. RoR-WRN-16-2 with only 2M parameters, after approximately
18 hours of training achieves a classification accuracy equal to the best perfor-
mance reported so far from a single model architecture. In contrast, the equally
performing Kd-Net with depth 15 (94%), requires 5 days to train on the faster
Titan GPU, while its slimmer version (depth 10) performing 93.3% requires 16
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Model Type # params ModelNet10

VoxNet [15] single 0.92M 92
FusionNet [8] ensemble 118M 93.1
VRN Single [1] single 18M 93.6
ORION [18] single 4M 93.9
Kd-Net (depth=10) [14] single - 93.3
Kd-Net (depth=15) [14] single - 94
VRN Ensemble [1] ensemble 90M 97.1

RoR-WRN-16-2 single 2M 94

- “not reported in the original paper”
Table 3. Classification Accuracy (%) on ModelNet10 of our best performing model in
comparison with other models from the literature

Fig. 5. Confusion matrix of our best performing model on ModelNet10

hours. In Figure 5, the confusion matrix of this model on ModelNet10 is de-
picted. As it can be seen, most of the misclassified 3D models were assigned a
label of a similar category compared to the ground truth.



10 A. Ioannidou et al.

5 Conclusions

We have explored the extension of residual networks in the 3D domain for ad-
dressing the task of 3D object classification. In particular, we used volumetric
representations as they provide a rich and powerful representation of 3D shapes.
Our experiments have validated the effectiveness of residual architectures and
have shown that the combination of multilevel and wide residual connections
can result in competitive performance. More specifically, we managed to achieve
equivalent or better classification accuracy than bigger and more complicated
networks on a well-known dataset. In future work, we would like to investigate
other variants of the original ResNets and test different training configurations in
order to gain more insights considering the effectiveness of 3D residual networks
on classifying and recognizing 3D shapes.

Acknowledgements

The research leading to these results has received funding from the European
Union H2020 Horizon Programme (2014-2020) under grant agreement 665066,
project DigiArt (The Internet Of Historical Things And Building New 3D Cul-
tural Worlds).

References

1. Brock, A., Lim, T., Ritchie, J., Weston, N.: Generative and discriminative voxel
modeling with convolutional neural networks. CoRR abs/1608.04236 (2016),
http://arxiv.org/abs/1608.04236

2. Chatfield, K., Simonyan, K., Vedaldi, A., Zisserman, A.: Return of the devil in the
details: Delving deep into convolutional nets. In: British Machine Vision Conference
(BMVC) (2014)

3. Chollet, F., et al.: Keras. https://github.com/fchollet/keras (2015)
4. Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., Liu, T., Wang, .,

Wang, G., Cai, J., et al.: Recent advances in convolutional neural networks. Pattern
Recognition (2017)

5. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification. In: IEEE International Conference on
Computer Vision (ICCV). pp. 1026–1034 (2015)

6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR). pp.
770–778 (2016)

7. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks.
In: Proceedings of the 14th European Conference on Computer Vision (ECCV) -
Part IV. pp. 630–645 (2016)

8. Hegde, V., Zadeh, R.: FusionNet: 3d object classification using multiple data rep-
resentations. CoRR abs/1607.05695 (2016), http://arxiv.org/abs/1607.05695

9. Huang, G., Sun, Y., Liu, Z., Sedra, D., Weinberger, K.: Deep networks with stochas-
tic depth. In: Proceedings of the 14th European Conference on Computer Vision
(ECCV), Part IV. pp. 646–661 (2016)



3D ResNets for 3D object classification 11

10. Ioannidou, A., Chatzilari, E., Nikolopoulos, S., Kompatsiaris, I.: Deep learn-
ing advances in computer vision with 3d data: A survey. ACM Com-
puting Surveys 50(2), 20:1–20:38 (2017). https://doi.org/10.1145/3042064,
http://doi.acm.org/10.1145/3042064

11. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network train-
ing by reducing internal covariate shift. In: Proceedings of the 32nd In-
ternational Conference on Machine Learning (ICML). pp. 448–456 (2015),
http://jmlr.org/proceedings/papers/v37/ioffe15.html

12. Johns, E., Leutenegger, S., Davison, A.: Pairwise decomposition of image sequences
for active multi-view recognition. In: IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). pp. 3813–3822 (2016)

13. Kingma, D., Ba, J.: Adam: A method for stochastic optimization. CoRR
abs/1412.6980 (2014), http://arxiv.org/abs/1412.6980

14. Klokov, R., Lempitsky, V.: Escape from cells: Deep kd-networks for the
recognition of 3d point cloud models. CoRR abs/1704.01222 (2017),
http://arxiv.org/abs/1704.01222

15. Maturana, D., Scherer, S.: Voxnet: A 3d convolutional neural network for real-time
object recognition. In: IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). pp. 922–928 (2015)

16. Moniz, J., Pal, C.: Convolutional residual memory networks. CoRR
abs/1606.05262 (2016), http://arxiv.org/abs/1606.05262

17. Qi, C., Su, H., Nießner, M., Dai, A., Yan, M., Guibas, L.: Volumetric and multi-
view cnns for object classification on 3d data. CoRR abs/1604.03265 (2016),
http://arxiv.org/abs/1604.03265

18. Sedaghat, N., Zolfaghari, M., Brox, T.: Orientation-boosted voxel nets for 3d object
recognition. CoRR abs/1604.03351 (2016), http://arxiv.org/abs/1604.03351

19. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: A simple way to prevent neural networks from overfitting. Journal of
Machine Learning Research 15, 1929–1958 (2014)

20. Srivastava, R., Greff, K., Schmidhuber, J.: Highway networks. CoRR
abs/1505.00387 (2015), http://arxiv.org/abs/1505.00387

21. Su, H., Maji, S., Kalogerakis, E., Learned-Miller, E.: Multi-view convolutional
neural networks for 3d shape recognition. In: Proceedings of the IEEE International
Conference on Computer Vision (ICCV). pp. 945–953 (2015)

22. Targ, S., Almeida, D., Lyman, K.: Resnet in resnet: Generalizing residual archi-
tectures. CoRR abs/1603.08029 (2016), http://arxiv.org/abs/1603.08029

23. Theano Development Team: Theano: A Python framework for fast computa-
tion of mathematical expressions. arXiv e-prints abs/1605.02688 (May 2016),
http://arxiv.org/abs/1605.02688

24. Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., Xiao, J.: 3d ShapeNets:
A deep representation for volumetric shapes. In: IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) (June 2015)

25. Zagoruyko, S., Komodakis, N.: Wide residual networks. In: BMVC (2016)
26. Zhang, K., Sun, M., Han, X., Yuan, X., Guo, L., Liu, T.: Residual networks of

residual networks: Multilevel residual networks. IEEE Transactions on Circuits
and Systems for Video Technology PP(99), 1–1 (2017)


