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What is ?  

¨  Language = 
¤  The system of words or signs that people use to express 

thoughts and feelings to each other 
¤ Any one of the systems of human language that are used 

and understood by a particular group of people 
¤ Words of a particular kind 

[Webster] 
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What is ?  

¨  Semantics = 
¤  The study of the meanings of words and phrases in 

language: 
n Frame semantics  
n Model-theoretic semantics 
n  IR: generic semantic classes: opinions, entity classes, etc. 
n Distributional semantics  

¤  The study of the meanings of words and phrases in any 
perceptive medium 

[Webster, Liang & Potts An. Rev. Ling. 2015] 
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What is ?  

¨  Multimedia =  
¤ Using, involving, or encompassing several media (e.g., text, 

visual data, audio data) 
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[Webster, bbb.com] 
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¨  Modality:  
¤ A sense through which a human can receive some piece of 

information 

¨  Multimodal: coming from multiple information sources, which 
consist of multiple types of content, i.e., multimedia content 

¨  Cross-modal: bridging several modalities 



What is ?  

¨  IR =  
¤  The techniques of storing and recovering and often 

disseminating recorded data especially through the use of a 
computerized system 
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[Webster] 



Why ?  

¨  Content = multimedia !!!!!!! 
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http://money.cnn.com/2015/09/01/technology/yahoo-ceo-marissa-mayer-pregnant-twins/index.html 
 



Goals of the tutorial 

¨  Provide intuitions about multimedia content, queries, 
their representations and retrieval models 

 
¨  Describe influencing state-of-the-art methods 
 
¨  Propose challenges / opportunities  
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¨  What to expect of the tutorial:  
¤ A lot of the tutorial is about to make you think, especially 

about cross-modal processing 
¤ Give intuitions about representative methods 
¤ Minimal details on empirical results  

¨  What to consider beyond the tutorial:  
¤ Challenging machine learning problems: especially with 

regard to representation learning 
¤ Adapted and novel retrieval models 
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Outline of the tutorial 

1.  Properties of the media 

2.  Processing of the media 

3.  Fusion and retrieval models 
 
4.  Reflections 
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1.  Properties of the media 

 
¤ Content 
¤  Information need 
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Some multimedia data types  

¨  Text:  
¤  Sequences of characters, words, phrases, sentences, 

paragraphs, documents … 
¤  Represented as: 

n   (Bag-of-) words 
n   n-Grams of characters 
n   n-Grams of words 
n Dependency tree of phrases or sentences 
n RDF tuples of predicates and arguments 
n Word embeddings 
n … 
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Some multimedia data types  

¨  Image:  
¤  Storage:  

n Encoded as a set of pixels or cell values 
n  In compressed form to save space: e.g. GIF, JPEG 

¤  Image shape descriptor:  describes the geometric shape of the 
raw image:  
n Rectangle of m by n grid of cells 
n Each cell contains a pixel ( = picture element) value that 

describes the cell content in one (black/white image) or more 
bits (gray scale, e.g., 8 bits or color image, e.g., 24 bits)  
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[Handbook of Image and Video Processing 2000] 



Some multimedia data types  

¤  Feature descriptors of images:  
n SIFT (Scale-Invariant Feature Transform) 
n SURF (Speeded Up Robust Features)  
n HOG (Histogram of Oriented Gradients)  
n CNN (Convolutional Neural Network) features 
n … 
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[Tuytelaars et al. Trends® in Computer Graphics 2008, Gua 
et al. Pattern Recognition 2014] 



Some multimedia data types  

¨  Video data:  
 = stream of images (sequence of frames) and audio 

n Frame = still image 
n Presentation at specified rates per time unit 

¤  Stored in compressed form to save space: e.g., MPEG 
¤ Divided into video segments:  

n Each segment:  
n  Is made up of a sequence of contiguous frames that 

include the same objects/activities= semantic unit 
n and corresponding audio phrases 
n  Identified by its starting and ending frames 

n Shot-cut detection 
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[Handbook of Image and Video Processing 2000] 



Some multimedia data types  

¨  Feature descriptors of video: 
¤  HOG 
¤  HOF (Histogram of optical flow) 
¤  3DSIFT 
¤  ESURF 
¤  … 
¤  Take into account spatio-temporal information 
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[Negin & Bremond iV&L report 2015] 



Some multimedia data types 

¨  Audio data: 
¤  Speech, music, ... 
¤ Can be compressed, e.g., MP3 
¤ Can be structured in sequences:  

n Characterized by tone, duration,  … 
n When sequence contains speech: characteristics of a 

certain person’s voice: e.g., loudness, intensity, pitch and 
clarity 

n When sequence contains music: beat, pitch, chords, ...  
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Some multimedia data types 

¨  Composite or mixed multimedia data (e.g. video 
data): 

n May be physically mixed to yield a new storage format 
n Or logically mixed while retaining original types and 

formats 
n Additional control information describing how the 

information should be rendered  
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¨  Example:  
 An insurance company’s accident claim report as a multimedia 
object: it includes:  
¤   Images of the accident 
¤   Insurance forms with structured data 
¤   Audio recordings of the parties involved in the accident 
¤   Text report of the insurance company’s representative 

 
¨  Multimedia retrieval systems must retrieve structured and 

unstructured data  
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1.  As in many retrieval systems, the user has the opportunity 
to browse and navigate the collection or the results of a 
query by following hyperlinks :  
¤  Topic maps 
¤  Summaries of multimedia objects 
 

2.  Queries specifying the conditions of the objects of interest   
¤  Idea of multimedia query language:  

n Should provide predicates for expressing conditions on 
the attributes, structure and content (semantics) of 
multimedia objects 

21 

Some multimedia query types 



Some multimedia query types 
 

¤ Attribute predicates  
¤  Structural predicates: 

n Temporal predicates to specify temporal restrictions 
n Spatial predicates to specify spatial lout properties 

¤ Users do not formulate queries structured languages + query 
language is always limited !!! 

¤  Instead use natural language: 

22 

Show me platform 9 at 15:10 
on December 7 2013 
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Some multimedia query types 

3.  Question-answering 
 

¤ E.g., questioning video: “How many helicopters were 
involved in the attack on Kabul of December 20, 2001?” 
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Some multimedia query types 
 

4.  Query by example:  
¤  E.g., image, audio    
¤  The query is composed of an example with features that 

the searched object must comply with  
¤  E.g., in a graphical user interface (GUI) by choosing an 

image of a house, query by sketch 
¤  E.g.,  music: recorded melody, note sequence being entered 

by Musical Instruments Digital Interface (MIDI), query by 
humming  
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Some multimedia query types 

5.     Cross-modal query 
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[Zoghbi et al. submitted] 
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Some multimedia query types 

6.     Emerging query type: Multimodal query 
¤ Text/question, audio, image and video examples  
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Summary so far 

¨  Content is heterogeneous and each medium has its 
own type of features to form content 
representations 

¨  There are many different types of queries possible, 
some of which are yet not fully explored ! 
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Outline of the tutorial 

1.  Properties of the media 

2.  Processing of the media 

3.  Fusion and retrieval models 
 
4.  Reflections 
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2. Processing of the media 
¤ Content: 

n Recognition of content in one medium 
n Alignment and linking of multimedia content 

n Probabilistic models 
n Neural network based models (see section 3 of this 

lecture) 
¤  Information need 

29 



Indexing the documents 

¨  Segmentation = detection of retrieval units  
¨  Actual indexing  = assigning or extracting descriptors/features 

that will be used for similarity matching 
 
¨  Two main approaches:  

¤ Manual:  
n Segmentation 
n  Indexing= naming of objects and their relationships with key 

terms (natural language or controlled language)  
 

30 



Indexing the documents 

¤ Automatic analysis: “content-based retrieval” 
n  Identify the mathematical characteristics of the contents 

for segmentation and indexing 
n Different techniques depending on the type of 

multimedia source (image, text, video, or audio) 
 

¤  Important research topic: joint content recognition in 
text and other medium, and cross-media content 
alignment ! 
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Indexing the documents 

¤ Multimedia object:  
n Typically represented as set of features (e.g., as vector of 

features) 
n Features can be weighted (expressing uncertainty or 

significance) 
n Can be stored and searched in a search structure, 

e.g., inverted file 
n  Increasing interest in vector representations obtained 

with neural networks 
n Also representation in the form of a structured object is 

possible 
 

32 



Processing of text 

¨  Unstructured representation: 
Bag-of-words representation = unordered set of terms: 
oversimplification: ignoring any syntax and semantics, but 
satisfiable retrieval performance  

¨  Weakly-structured representation:  
Certain terms are labeled with their semantics and might 
become structured metadata: named entities, relations 
between named entities, opinions => information extraction 

¨  Latent representation:  
Discovering topics/concepts based on distributional semantics: 
latent semantic indexing, probabilistic latent semantic indexing, 
latent Dirichlet allocation, non-negative matrix factorization, 
word embeddings, … 

33 



Information extraction from text 

© 2013-2014 M.-F. Moens  KU Leuven

34 

 

¨  Relies on pattern recognition algorithms 

¨  Relies on progress in general natural language processing 

¨  Relies on increasing available computational power 

¨  Relies on interest in biomedical domain, intelligence services, 

business intelligence, ... 

 



Information extraction from text 

© 2013-2014 M.-F. Moens  KU Leuven
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¨  Usually supervised machine learning algorithms:  

¤  E.g., learning of rules and trees, support vector machines, 
maximum entropy classifier, hidden Markov models, 
conditional random fields, structured support vector 
machines 

 



Named entity recognition 

© 2013-2014 M.-F. Moens  KU Leuven
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¨  Two problems: Segmentation  +  Classification 
¨  Constituent based processing:  

¤  Sentence constituents are first identified (constituency parser 
or phrase chunker) 

¤ Constituents are classified 
¨  Use of BIO format:  

¤ Words or tokens are first identified 
¤  B= Begin, I = Inside, O = Outside labels per class 
¤ Words or tokens are classified 

 Here illustrated for NER, but similar approach for other 
extraction tasks (e.g., relation extraction) 

 



Named entity recognition 

© 2013-2014 M.-F. Moens  KU Leuven
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Example: 
 
 

John Smith works for IBM.                                                               
     Person               Company 

 



Named entity recognition 

© 2013-2014 M.-F. Moens  KU Leuven
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•  At the sentence level: 
–  Given a sentence with T  constituents or T words represented as 

a sequence of feature vectors  
   X = (x1, ... , xT) in a document d 
–  Label x with one Ci, where 
   Ci ∈ {person, location, company, …, none} or  
   Ci ∈ {Bperson,, Iperson, Borganization,, Iorganization, Blocation,,Ilocation, …, O}  
 

•  At the document level: e.g., results of a first classification are 
input as features for a second classification 

 
 

[Krishnan & Manning ACL 2006] 



Information extraction from text 

© 2013-2014 M.-F. Moens  KU Leuven
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¤  Information extraction relies on pattern recognition techniques:  
n Features:  

n Lexical: e.g., words 
n Syntactical (language dependent): e.g., POS-tags, parse tree 

information 
n Semantic: e.g., from lexico-semantic resources, obtained in 

previous extraction tasks 
n Discourse: e.g., discourse distance 
n Other: e.g., HTML tags 

n Of the information unit to be classified and its context 



Bridging different vocabularies 

¨  Illustrated with latent Dirichlet allocation 
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Learning  
Per document topic distributions 
Per topic word distributions 

[Blei et al. JMLR 2003] 
K = number of topics = a prior defined 



Linking pins to webshops 
41 



Linking pins to webshops 
42 



Linking pins to webshops 
43 

[Zoghbi et al. CIKM Workshop 2013] 



Linking pins to webshops 
44 

[Vulić et al. SIGIR 2014] 

Training with Gibbs sampling: see WSDM 2014 tutorial 
http://liir.cs.kuleuven.be/tutorial/WSDM2014Tutorial.pdf 

Vocabulary of webshop product 

Vocabulary of reviews 

Common vocabulary 



Linking pins to webshops 
45 



Linking pins to webshops 
46 

[Vulić et al. SIGIR 2014] 
Results of language retrieval model that combines topic representations and BOW 
BOW only: MAP: 0.28 



Word embeddings 

¨  Word embedding = vector representation of the word that 
expresses the context of a word 

¨  Each word is associated with a real valued vector in N-
dimensional space (usually N = 50 to 1000)  

¨  The word vectors that have some similar properties form word 
classes: many degrees of similarity are captured  

¨  Word embeddings are usually trained on huge text datasets 
with neural networks and are formed by the values of the 
hidden layer components  
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Word embeddings 

¨  Skip-gram neural network language model predict 
the surrounding words given a current word  

48 

[Mikolov COLING Tutorial 2014] 

https://code.google.com/p/word2vec/ 

 



Word embeddings 

¨  Continuous bag-of-words model (CBOW):  adds 
inputs from words within short window to predict the 
current word  

¨  Generative variant: 

 Latent Words Language Model 

49 

[Deschacht & Moens EMNLP 2009,  

Deschacht et al. Comp. Speech & 

Lang. 2012] 

[Mikolov COLING Tutorial 2014] 



Word embeddings 

¨  Word vectors capture many linguistic properties  
¨  Linguistic regularities in continuous space word representations: e.g., 

king – man + woman  = queen 
¨  Google analogy dataset:

https://code.google.com/p/word2vec/source/browse/trunk/questions-words.tx 

¨  Additional analogy models: 
http://www.marekrei.com/blog/linguistic-regularities-word-representations 

50 

[Mikolov et al. NIPS 2013] 



Word embeddings 

¨  Start to be used in retrieval settings for 
representing documents 

51 

[Clinchant & Perronnin ACL workshop 2013, Vulić & Moens SIGIR 2015] 



Processing of images 

¤  Segmentation in homogeneous segments:  
n Homogeneity predicate defines the conditions for 

automatically grouping  the cells 
n E.g., in a color image, cells that are adjacent to one 

another and whose pixel values are close, are grouped 
into a segment 
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Processing of images 

¤  Indexing:  
n Recognition of objects:  simple patterns: 

n Recognition of low level features : color histograms, 
textures, shapes (e.g., person, house), position 

n Extraction of more abstract features: SIFT, CNN, …  
n Classemes  

n Recognition of concepts: 

n Exploitation of the conceptual relationships 
between recognized objects 

53 



Processing of audio 

¤  Segmentation into sequences (= basic units for retrieval)  
¤  Indexing:   

n Speech recognition and indexing of the resulting transcripts (cf. 
indexing written text retrieval) 

n Acoustic analysis   (e.g., sounds,  music, songs: melody 
transcription: note encoding, interval and rhythm detection, timbre 
and chords information, vocal timbre feature, vocal pitch feature, 
genre based feature, instrument based feature):  
n e.g., for key melody extraction, for music genre 

classification  

54 



[Maddage et al. SIGIR  2006] 55 



Processing of video 

¤  Segment: basic unit for retrieval  
¤ Objects and activities identified in each video segment: can be used 

to index the segment 
¤  Segmentation:  

n Detection of video shot breaks, camera motions 
n Boundaries in audio material (e.g., other music tune, changes in 

speaker)  
n Textual topic segmentation of transcripts of audio and of close-

captions 
n Multimodal segmentation 
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Processing of video 

n Heuristic rules based on knowledge of:  
n Type-specific schematic structure of video (e.g., 

documentary, sports) 
n Certain cues: appearance of anchor person in news  

¤  Indexing:  
n See indexing of images and audio 
n  Important source for content indexing: text: 

n Captions:  recognized by e.g. OCR (optical character 
recognition) 

n Text at beginning or end of a video 
n Speech: with speech recognition tools transcribed to written 

text, subtitles 

57 



Alignment across media 

¨  Novel area of research, focusing on aligning names and faces, 
activity recognition, attribute recognition, ... 

¨  Helps in automatically annotating images, video, ... 

 

¨  EU COST Action iV&L IC 1307 (2014-2018): The European 
Network on Integrating Vision and Language (iV&L Net): 
Combining Computer Vision and Language Processing For 
Advanced Search, Retrieval, Annotation and Description of 
Visual Data 

58 



Mori et al. RIAO 2000 

© 2008 M.-F. Moens  K.U.Leuven 

59 



Mori et al. RIAO 2000 

© 2008 M.-F. Moens  K.U.Leuven 
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Mori et al. RIAO 2000 

© 2008 M.-F. Moens  K.U.Leuven 
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now better 
representations 
of content … 



Cross-media linking of names and faces 

•  Weakly supervised approach: probabilistic model 
•  Alignment through joint processing of text and images 

Who is who ?? 
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U.S. President George W. Bush (2nd R)  
speaks to the press following a meeting  
with the Interagency Team on Iraq at  
Camp David in Maryland, June 12, 2006.  
Pictured with Bush are (L-R) Vice  
President Dick Cheney, Defense  
Secretary Donald Rumsfeld and  
Secretary of State Condoleezza Rice.  
 
 

[Labeled faces in the wild dataset] 

Cross-media linking of names and faces 
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Procedure 
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Detection of 
faces 
in the image 

Detection of 
names  
in the text 

Linking of names and faces 



Preprocessing 
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¨  Images:  
¤  Face detection  
¤ Clustering of similar faces across images (based on face 

descriptors) 
¤ Computation of the namedness of the faces  

¨  Texts:  
¤ Named entity (person) recognition: maximum entropy 

classifier augmented with gazetteers  
¤ Clustering of similar names within and across texts: noun 

phrase coreference resolution  
¤ Computation of the picturedness of the names 
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Cardinal from Cologne Joachim Meisner cries 
during a meeting with Pope Benedict XVI at the 
centre for dialog and prayer in Oswiecim, Poland 
May 28, 2006.  

<?xml version="1.0" encoding="UTF-8"?><output><s 
i="0">Cardinal from Cologne <ENAMEX ID="0" 
TYPE="PERSON">Joachim Meisner</ENAMEX> cries 
during a meeting with Pope <ENAMEX ID="1" 
TYPE="PERSON">Benedict</ENAMEX> XVI at the 
centre for dialog and prayer in <ENAMEX ID=”2" 
TYPE="LOCATION">Oswiecim</ENAMEX>, <ENAMEX 
ID=”3" TYPE="LOCATION">Poland</ENAMEX> May 28, 
2006.</s> 

Picturedness of name: 
Joachim Meisner: 0.75  
Benedict: 0.33 

[Yahoo! News] 
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[Deschacht & Moens ACL 2007] 



Cross-media linking of names and faces 
 
¨  Many different possibilities 
¨  Which is the most probable? 

67 



Assumptions 

¨  Faces of the same person should have similar visual 
characteristics (color and shape parameters) 

¨  A person is only shown once in the image 
¨  All names in the text referring to the same person 

are conflated to 1 name 
¨  On the basis of the structure of the text: some 

names are more likely to be shown (picturedness) 
¨  On the basis of the structure of the image, some 

names have a larger chance to be named 
(namedness) 

68 

è One large optimization problem 
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Optimizing the likelihood of image-text pair xi  and the alignment or 
link scheme aj: different possible likelihood functions: e.g.,  

69 

... 
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e.g., estimating 

http://news.yahoo.com/ 
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•  Use of an EM algorithm to maximize the log-likelihood of all 
image-text pairs S: 

  
 where  
 Ai = set of all possible alignment schemes for image-text pair xi 
 δi,j = strength of the alignment scheme aj for image-text pair xi 

71 

δi, j log(L(xi, aj ))
aj∈Ai
∑

xi∈S
∑



 

¨  The E-step updates δi,j as follows: 
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¨  During the M-step the parameter P(f|n) is recomputed: 

   
  
 where  
 c(aj (n) = f ) is 1, if a face from the same face cluster f is assigned to a name 
of the same name cluster n in the alignment scheme aj, otherwise it is 0 
 c(n, aj) is 1, if the name n is assigned to a non-NULL face in aj , otherwise it is 0 

 
¨  EM is run until convergence 

€ 

P( f n) =
δi, jc(aj∈Ai∑si∈S∑ aj(n) = f )

δi, jc(n,aj∈Ai∑si∈S∑ aj)
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¨  Evaluation with “Faces in the wild” dataset: 11820 
stories or image-text pairs with 5637 unique person 
faces and 8878 unique person names  

¨  No manual labeling ! 
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[Pham et al. IEEE TMM 2010] 
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76  
Buffy The Vampire Slayer: evaluated with two episodes 
 ca. 75% precision – 92% recall                                
 

Cross-media linking of names and faces 
in video 

Names 

Faces 

Video frame 

Pham et al. J 
[Pham et al. VCIR 2013] 
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[Tomasz Malisiewicz] 
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Cross-modal probabilistic latent  
semantic analysis (pLSA)‏ 

Topic 1 

[Research of CLASS (EU FP-6) 
Consortium 2006-2009] 

Her eyes ... The necklace 
with black beads ...  

eyes 

necklace 

nose 

 Role of 
information 
extraction  

beads 
Topic 2 

... 
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[Hofmann SIGIR 1999] 



Cross-modal Latent Dirichlet Allocation 

¨  Learning of word representations from natural 
language corpora paired with images: closer to 
human conceptualizations 

80 

[Feng & Lapata NAACL 2010] 



Cross-modal LDA 
81 

[Feng & Lapata NAACL 2010] 



Cross-modal LDA 
 
¨  LDA: 

¤  Trained on documents that contain visual and textual words compared to 
a model that is only trained on the textual data 

¤  Evaluated on word similarity task 

¨  Different word similarity metrics are possible, e.g., 

 Kullback–Leibler (KL) divergence: 

 

 

 where p = P(w1|zj) and q = P(w2|zj) 

 Jensen-Shannon (JS) divergence: 

 

82 

KL(p q) = pj log 2 pj
qjj=1
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Query processing 

¨  Depending on type of query (e.g., keywords, natural language 
question, image, melody) suitable processing technique 

 

¨  Questions in natural language demand additional natural 
language processing techniques, e.g., to detect frame 
semantics, i.e., who, what, where, when, how, components 
(semantic role labeling)  
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Summary so far 

¨  Accurate content recognition is still a bottleneck: 
¤ To build good indexing descriptions 
¤ To accurately capture the information need of a user 

¨  Multimodal processing approaches are very 
promising 
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Outline of the tutorial 

1.  Properties of the media 

2.  Processing of the media 

3.  Fusion and retrieval models 
 
4.  Reflections 
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3. Fusion and retrieval models 
  

¤ Classical multimedia retrieval models 
¤ Fusion methods 
¤ Cross-modal retrieval 
¤ Multimodal retrieval 

86 



Classical multimedia retrieval models 

1.  Matching/filtering based on assigned metadata 
¤  System exactly returns those tuples or objects that satisfy 

the query expression 
¤ Cf. exact match retrieval using the same techniques as 

traditional DBMSs 
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Classical multimedia retrieval models 

 
2.  Queries with structural metadata and keywords (content 

based queries):  
¤  Result ranking according to relevance/reranking based 

on information extracted and match with structured 
metadata 

¤  Relevance or retrieval models require textual description 
of media 

¤ Models: 
n  Vector space retrieval model 
n  Language retrieval model 
n  Inference retrieval model 
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Classical multimedia retrieval models 

 
3.  Query by example 

¤  E.g., finding a similar text, image 
¤ Query and documents are in the same modality 
¤  Similarity/distance is computed between representations 

(e.g., feature vectors) 
¤  Transformations are possible to improve the matching: 

e.g., rotations or scaling of images 
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Fusion of media content 

¨  Often: matching of query with different multimodal 
document representations (e.g., music and text, images and 
text) 

¨  Content representations are often uncertain (e.g., as the 
result of content recognition) 
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Fusion of media content 

¨  Levels of fusion 
¤  Early fusion 

n Feature level multimodal fusion: e.g., combined vector 
representation of textual features, visual features, 
metadata  

¤  Late fusion 
n Decision level multimodal fusion: e.g., relevance is 

computed per modality and relevance scores are 
combined 

¤ Hybrid fusion 
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[Yan & Hauptmann IR 2007] 
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Fusion of media content 

¨  Methods for multimodal fusion: 
¤  Rule based fusion methods: MAX, MIN, AND, OR 
¤  Linear weighted fusion:  

n When all weights are equal, cf. majority voting 
n  In case of fusion of probabilities, cf. language retrieval 

model  
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[Atrey et al. Multimedia systems 2010] 



Fusion of media content 

¨  Methods for multimodal fusion: 
¤ Classification-based fusion methods 

n Learning importance of modality with training examples: e.g. 
use of a support vector machine, cf. reranking  

n Bayesian inference, cf. inference network retrieval models 

n Dempster-Shafer theory 
n Dynamic Bayesian networks 
n Neural networks 
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[Atrey et al. Multimedia systems 2010, Kaleghi et al. Information Fusion 2010] 



Cross-modal retrieval 
 
¨  Training:  

¤ Given N paired image-text examples: fragments of images 
and fragments of sentences are embedded in common 
space 

¤  Learning of a mapping between the fragments 

¨  Prediction: 
¤ Cross-modal retrieval: 

n Given image retrieve textual description 
n Given textual description retrieve image 
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Cross-modal search  

¨  Modeled based on neural networks: 
¤ Learning of alignments between objects and textual 

phrases 
¤ Learning of better visual and textual representations 

through the alignments 

[Karpathy et al. NIPS 2014, CVPR 2015] 
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[Karpathy et al. NIPS 2014] 
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[Karpathy et al. NIPS 2014] 



¨  Representation:  
¤  Image: modeled with Region Convolutional Neural Network (RCNN)  
=> object bounding boxes and corresponding vector representations 

¤  Text: use of dependency parser and learning of projection of 
dependency triplet in word embedding space  

=> dependency triplets and corresponding vector representations 

¤  Every image represented by set of vectors {v} and every sentence by set 
of vectors {s} 
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¨  Similarity: 
¤  Inner product between the fragment vectors  
   = image – text fragment compatibility score =  

¤  Image-text alignment score Skl for image k and sentence l  
n  Average of their pairwise fragment scores (useful for retrieval, see 

below) [Karpathy et al. NIPS 2014] 
n  Simplified score (useful for training) [Karpathy et al. CVPR 2015]: 
 
 

   sum of similarity scores where every text fragment sj aligns with its 
 best image fragment vi where m = number of text fragments in s 
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vi
T sj

Skl = maxi vi
T sj

j=1

m

∑



Learning of the cross-modal model 

¨  Learning: 
¤  Given set of images and corresponding sentences: learning of weights 

with structured learner (e.g., neural network with structured loss) 
n  Weights θ = represent the weights the network that learn the 

visual and textual embeddings and their respective biases 
n  Learning objective: learned weight is high when correspondence 

in image-sentence ground truth, low otherwise: 

  where k = l  denotes a corresponding image and sentence 
  pair 

¤  Training = optimization with stochastic gradient descent 
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C(θ ) = [ max(0,Skl − Skk +delta)
l=1

N

∑
k=1

N

∑ + max(0,Slk − Skk +delta)
l=1

N

∑ ]



Cross-modal retrieval 

¨  Retrieval: 
¤  Represent images – texts based on the trained 

representations 
¤ Use image-text alignment score Skl as retrieval/ranking 

model 
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Cross-modal retrieval 

 
¤ Model we saw: training on well curated data: humans 

carefully described the images 
¤ What follows: training on realistic multimedia data from the 

Amazon.com webshop: images of dresses and their 
attributes   
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Cross-modal fashion search 
104 

Prediction of 
 attributes of  
dress images 



Cross-modal fashion search 
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Cross-modal fashion search 
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Cross-modal fashion search 

¨  Try our demo:  
http://glenda.cs.kuleuven.be/multimodal search/  

¨  Details on the mapping and retrieval model: S. Zoghbi, G. 
Heyman, J. C. Gomez, and M.-F. Moens (2015). Fashion meets 
computer vision and natural language processing. Submitted.  
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Multimodal retrieval 

¨  Swap retrieval: Retrieving images of cats when the 
query shows a dog : hard task ! 
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[Ghodrati  et al. ICMR 2015] 



Multimodal retrieval 

¨  Future ! 
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Multimodal retrieval 

¨  Future ! 
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Where can I buy a similar  
coat in blue? 
 
coat - yellow + blue 



Summary so far 

¨  Many novel forms of query demand new ranking 
and information fusion approaches 

¨  Large room for innovation ! 
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Outline of the tutorial 

1.  Properties of the media 

2.  Processing of the media 

3.  Fusion and retrieval models 
 
4.  Reflections 

112 



Past 

¨  Unimodal content and querying: relics of the past? 
¨  Processing unimodal content and querying: relics of 

the past?   
¨  Linking and fusion of (multimedia) content is very 

important for IR and these tasks were often 
neglected in the past 
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Present 

¨  Huge interest in learning alignments (equivalencies) 
between content in different media 
= building translation dictionaries 

¨  Allows cross-modal retrieval 
¨  Fusion of media is focused on voting for relevance 
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Future 

¨  Media give complementary content 
¤ E.g., news mixture of image, speech and text 
¤ E.g., multimodal querying 

¨  How to learn suitable representations and retrieval 
models for such complementary content ? 

¨  We did not cover:  
¤ Search structures and compression models that use the 

novel representations 
¤ Presentation of multimedia search results 
¤ … 
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¨  Questions ? 

¨  Thanks to the researchers of my group, especially Susana Zoghbi, Ivan Vulić 
and Phi The Pham, and collaborating colleagues.  
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