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Let’s be clear from the start:  
I. Won’t. Go. Overtime. 

Aims – 1 

!  To present both: 
!  basic material (what you find in books) 
!  advanced material (recently published, even not 

yet published!) 

!  Links with Julio, Enrique, Evangelos 
!  not (yet!) fully integrated 
!  a bit disorganized… 

Aims – 2 

!  Intro to IR Evaluation 
!  Intro to IR Evaluation Measures / Metrics 
!  The Link between Measurement Theory and 

Metrics 
!  Intro to Measurement Theory (Scales) 
!  Metrics Analysis 
!  The Axiometrics Framework (*) 

The Monday effect… You don’t find it funny?! 
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Outline 

!  Evaluation [5’] 
!  Measures / metrics [15’] 
!  Measurement theory [15’] 
!  Metrics analysis [5’] 
!  Axiometrics framework [15’] 

Outline 

!  Evaluation [5’] 
!  Measures / metrics [15’] 
!  Measurement theory [15’] 
!  Metrics analysis [5’] 
!  Axiometrics framework [15’] 

What is evaluation (in IR)? 

!  Eh… 
!  Ideally: a machine telling you how good an 

IR system is 
!  "Good": effective, capable to retrieve 

relevant (useful?!)  documents 
!  (efficiency is also studied, but focus is on 

effectiveness) 

The importance of evaluation 
in IR 

!  Everybody agrees that evaluation is of 
paramount importance in IR 

!  One of the most evaluation-oriented 
disciplines in computer/information sciences 

!  We’re busy doing a lot of evaluation since the 
60s 
!  So this talk is relevant. I do not know if it is 

useful :-) 

S1 > S2 
(maybe w/ 
numbers) 

A short history of nearly 
everything about IR evaluation 

IR  
evaluation 
machine 

S1 

S2 

S3 

S1 > S2... Sn 
(maybe w/ 
numbers) 

…

Sn 

Docs Qrys 

“qrels” 
 

Metrics! Users 

The importance of evaluation 
in IR 

!  Everybody agrees that evaluation is of 
paramount importance in IR 

!  One of the most evaluation-oriented 
disciplines in computer/information sciences 

!  We’re busy doing a lot of evaluation since the 
60s 

!  And we don’t know (agree on) how to 
evaluate 
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(Other) Issues in IR evaluation 
!  Relevance 

!  "Topicality"?  
!  "Utility"? 
!  … 

!  Methodology  
!  Test collection, benchmark ,TREC-like 
!  User study (--> Diane) 
!  Large log analysis  
!  … 

Outline 

!  Evaluation [5’] 
!  Measures / metrics [15’] 
!  Measurement theory [15’] 
!  Metrics analysis [5’] 
!  Axiometrics framework [15’] 

We go down the dark 
evaluation metrics rabbit hole 

IR effectiveness metric 

!  (or, measure) 
!  ““A number telling us how effective an IR 

system is”” 
!  Simple, isn’t it? 

Simple, isn’t it? List? 
1.  Precision 
2.  Recall 
3.  Swets's E measure 
4.  Fallout 
5.  Normalized Recall 
6.  Normalized Precision 
7.  P/R curve 
8.  Fallout/R curve 
9.  Brookes's S measure 
10.  Expected Search Length 
11.  ESL Reduction Factor 
12.  Precision Averaged over Recall Points 
13.  Sliding Ratio 
14.  Coverage Ratio 
15.  Novelty Ratio 
16.  Relative Recall 
17.  E-measure 
18.  F-measure 
19.  Utility 
20.  Average Precision 
21.  Mean Average Precision 
22.  Interpolated MAP 
23.  Precision at rank r 
24.  R-Precision 
25.  Generality 
26.  Miss 
27.  Shaw's D 
28.  PRecall 
29.  Satisfaction 
30.  Frustration 
31.  Total 
32.  Usefulness measure 
33.  Hull's Averaged Precision 
34.  Average Search Length 
35.  Quality based on ASL 
36.  Normalized Distance-Based Performance Measure 
37.  Recall Effort 
38.  Relative Relevance 
39.  Ranked Half Life 
40.  Reciprocal Rank 
41.  Mean Reciprocal Rank 
42.  Instance Precision 
43.  Instance Recall 
44.  Classification Accuracy 

45.  Discounted Cumulative Gain 
46.  Normalized DCG 
47.  NDCG at rank r 
48.  Average Weighted Precision 
49.  Weighted R-Precision 
50.  Average Distance Measure 
51.  PRecall adopted to XML 
52.  Precision and Recall with overlap 
53.  \no 
54.  area 
55.  Success at rank r 
56.  Average Gain Ratio 
57.  R-Gain Ratio 
58.  Binary Preference 
59.  Bpref-10 
60.  Q-measure 
61.  R-measure 
62.  Tolerance to Irrelevance 
63.  Estimated Ratio of Relevant 
64.  Egghe's measure 
65.  Passage Recall 
66.  Passage Precision 
67.  Passage bpref 
68.  Kendall, Spearman 
69.  Normalized xCG 
70.  Mean Average nxCG 
71.  Effort-Precision/Gain-Recall 
72.  Mean Average Effort-Precision 
73.  Precision-Recall with User Modelling 
74.  Geometric MAP 
75.  Generalized AP 
76.  Inferred AP 
77.  Expected Precision-Recall with User Modelling 
78.  Rpref 
79.  Generalized Success@10 
80.  k-call 
81.  Highlighting XML Evaluation 
82.  Ranking Efficiency 
83.  Rank-Biased Precision 
84.  Average Search Length Transformed 
85.  Logarithm of Found Position 
86.  Normalized Search Length 
87.  Polynomial Natural Order Imposition 
88.  Constant Penalty Natural Order Imposition 
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A shorter list  
!  Precision, Recall 
!  Precision-Recall curve 
!  MAP (Mean Average Precision) 
!  P@n (Precision at n) 
!  NDCG (Normalized Discounted Cumulative 

Gain) 
!  MRR (Mean Reciprocal Rank) 
!  RBP (Rank Biased Precision) 
!  TBG (Time Based Gain) 

Precision & Recall 

 Not 
retrieved 

Retrieved 

Not 
relevant 

Relevant 
[Salton & McGill, 84] Documents database 

P =
relevant & retrieved

retrieved

R =
relevant & retrieved

relevant

P & R: probabilistic definition 

!  P = p(relevant | retrieved) 
!  R = p(retrieved | relevant) 

Ranking! 
!  But today all IR systems rank the documents 
!  Limitations of P&R 

!  2 numbers, not just one 
!  Not affected by the rank of retrieved docs. 

!  Solutions: (too?) many. 
!  Precision/Recall curve 
!  MAP (Mean Average Precision) 
!  … 

!  Let us see some examples 

Rank 
Rank Rel? R P 

1 1 0,25 1 
2 1 0,5 1 
3 0 0,5 0,67 
4 1 0,75 0,75 
5 0 0,75 0,6 
6 0 0,75 0,5 
7 1 1 0,57 
8 0 1 0,5 
9 0 1 0,44 

10 0 1 0,4 

Rank 
Rank Rel? R P 

1 1 0,25 1 
2 1 0,5 1 
3 0 0,5 0,67 
4 1 0,75 0,75 
5 0 0,75 0,6 
6 0 0,75 0,5 
7 1 1 0,57 
8 0 1 0,5 
9 0 1 0,44 

10 0 1 0,4 
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Sawtooth P/R curve 
Recall-Precision curve
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Interpolated step P/R curve 
Interpolated Recall-Precision curve
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(Because we don't want) We prefer 

(We could do but we don't do) So we average the step curves 
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Over N queries and we get And of course on 11 levels of 
recall 

We happily compare systems ? Although often… 

P/R curve --> MAP 
!  P/R curve 

!  It is not a number 
!  It can be transformed into a number by measuring 

the area below the curve 
!  --> AP (Average Precision) 
!  --> MAP (Mean Average Precision) 
!  Good property: top-heavyness 

!  User model? 

Rank 1 2 3 4 5 6 7 8 … 

Rel 1 0 1 0 0 0 1 0 … 

P@n 

!  Simply count how many relevant documents 
are retrieved in the first n positions of the 
rank 

!  P@10 useful for classical Web search engines 
!  P@1 for "Feeling lucky" 
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Non binary relevance 

!  Some documents are "more relevant" than 
others 

!  Discounted Cumulative Gain (DCG, NDCG) 
!  Different relevance --> different gain for the user 

!  E.g., H --> 3, R --> 2, P --> 1, N --> 0 

!  Sum of the gains while walking down the rank 
!  Discounting more and more: late rank positions 

give less gain even if of equal relevance ("top-
heaviness") 

Example 
Rank Rel 

1 H 

2 P 

3 N 

4 R 

5 H 

6 R 

7 N 

8 P 

9 N 

10 P 

Example 
Rank Rel Gain 

1 H 3 

2 P 1 

3 N 0 

4 R 2 

5 H 3 

6 R 2 

7 N 0 

8 P 1 

9 N 0 

10 P 1 

Example 
Rank Rel Gain CG 

1 H 3 3 

2 P 1 4 

3 N 0 4 

4 R 2 6 

5 H 3 9 

6 R 2 11 

7 N 0 11 

8 P 1 12 

9 N 0 12 

10 P 1 13 

Example 
Rank Rel Gain CG Discount 

1 H 3 3 log(1) 1 

2 P 1 4 log(2) 

3 N 0 4 log(3) 

4 R 2 6 log(4) 

5 H 3 9 log(5) 

6 R 2 11 log(6) 

7 N 0 11 log(7) 

8 P 1 12 log(8) 

9 N 0 12 log(9) 

10 P 1 13 log(10) 

Example 
Rank Rel Gain CG Discount DG 

1 H 3 3 log(1) 1 3/1=3 

2 P 1 4 log(2) 1/log(2)=1 

3 N 0 4 log(3) 0/log(3)=0 

4 R 2 6 log(4) 2/log(4)=1 

5 H 3 9 log(5) 3/log(5)=1.3 

6 R 2 11 log(6) 2/log(6)=.8 

7 N 0 11 log(7) 0/log(7)=0 

8 P 1 12 log(8) 1/log(8)=.3 

9 N 0 12 log(9) 0/log(9)=0 

10 P 1 13 log(10) 1/log(10)=.3 
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Example 
Rank Rel Gain CG Discount DG DCG 

1 H 3 3 log(1) 1 3/1=3 3.0 

2 P 1 4 log(2) 1/log(2)=1 4.0 

3 N 0 4 log(3) 0/log(3)=0 4.0 

4 R 2 6 log(4) 2/log(4)=1 5.0 

5 H 3 9 log(5) 3/log(5)=1.3 6.3 

6 R 2 11 log(6) 2/log(6)=.8 7.1 

7 N 0 11 log(7) 0/log(7)=0 7.1 

8 P 1 12 log(8) 1/log(8)=.3 7.4 

9 N 0 12 log(9) 0/log(9)=0 7.4 

10 P 1 13 log(10) 1/log(10)=.3 7.7 

Example 
Rank Rel Gain CG Discount DG DCG DCG Ideal 

1 H 3 3 log(1) 1 3/1=3 3.0 (H) 3.0 

2 P 1 4 log(2) 1/log(2)=1 4.0 (H) 6.0 

3 N 0 4 log(3) 0/log(3)=0 4.0 (R) 7.3 

4 R 2 6 log(4) 2/log(4)=1 5.0 (R) 8.3 

5 H 3 9 log(5) 3/log(5)=1.3 6.3 (P) 8.7 

6 R 2 11 log(6) 2/log(6)=.8 7.1 (P) 9.1  

7 N 0 11 log(7) 0/log(7)=0 7.1 (P) 9.4  

8 P 1 12 log(8) 1/log(8)=.3 7.4 (N) 9.4  

9 N 0 12 log(9) 0/log(9)=0 7.4 (N) 9.4  

10 P 1 13 log(10) 1/log(10)=.3 7.7 (N) 9.4  

Example 
Rank Rel Gain CG Discount DG DCG DCG Ideal NDCG 

1 H 3 3 log(1) 1 3/1=3 3.0 (H) 3.0 1.00	
  

2 P 1 4 log(2) 1/log(2)=1 4.0 (H) 6.0 0.67	
  

3 N 0 4 log(3) 0/log(3)=0 4.0 (R) 7.3 0.55	
  

4 R 2 6 log(4) 2/log(4)=1 5.0 (R) 8.3 0.61	
  

5 H 3 9 log(5) 3/log(5)=1.3 6.3 (P) 8.7 0.72	
  

6 R 2 11 log(6) 2/log(6)=.8 7.1 (P) 9.1  0.78	
  

7 N 0 11 log(7) 0/log(7)=0 7.1 (P) 9.4  0.75	
  

8 P 1 12 log(8) 1/log(8)=.3 7.4 (N) 9.4  0.78	
  

9 N 0 12 log(9) 0/log(9)=0 7.4 (N) 9.4  0.78	
  

10 P 1 13 log(10) 1/log(10)=.3 7.7 (N) 9.4  0.82	
  

Example 
Rank Rel Gain CG Discount DG DCG DCG Ideal NDCG 

1 H 3 3 log(1) 1 3/1=3 3.0 (H) 3.0 1.00	
  

2 P 1 4 log(2) 1/log(2)=1 4.0 (H) 6.0 0.67	
  

3 N 0 4 log(3) 0/log(3)=0 4.0 (R) 7.3 0.55	
  

4 R 2 6 log(4) 2/log(4)=1 5.0 (R) 8.3 0.61	
  

5 H 3 9 log(5) 3/log(5)=1.3 6.3 (P) 8.7 0.72	
  

6 R 2 11 log(6) 2/log(6)=.8 7.1 (P) 9.1  0.78	
  

7 N 0 11 log(7) 0/log(7)=0 7.1 (P) 9.4  0.75	
  

8 P 1 12 log(8) 1/log(8)=.3 7.4 (N) 9.4  0.78	
  

9 N 0 12 log(9) 0/log(9)=0 7.4 (N) 9.4  0.78	
  

10 P 1 13 log(10) 1/log(10)=.3 7.7 (N) 9.4  0.82	
  

A shorter list  

!  Precision, Recall 
!  Precision-Recall curve 
!  MAP 
!  P@n 
!  NDCG 
!  MRR (Mean Reciprocal Rank) 
!  RBP (Rank Biased Precision) 
!  TBG (Time Based Gain) 

… even continuous relevance 

!  Dynamometer, Hand force grip, even 
physiological data 

!  IR System showing a "relevance bar" close to 
each document 
!  "estimation of the amount of relevance" 

!  Magnitude estimation (paper @ last SIGIR) 
!  … 
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Metrics classification 

!  Metrics could be classified on the basis of 
underlying notions of: 
!  relevance (binary, ranking, continuous) 
!  retrieval (binary, ranking, continuous) 

!  3 x 3 (or N x N) grid, … 

Classification (incomplete!) 

Binary Rank Continuous 

Rank 

Binary 

Retrieval 

Relevance 

Continuous 

P&R, 
E, F, … 

RP curve,  
MAP, R-prec, … 

NDCG, 
Kendall/

Spearman? 

ADM Sliding ratio 

So, if you understand it, I’m 
not being clear enough :-) 

--> Julio, Enrique, Evan… 

Take home messages so far 
!  In IR, Evaluation is important. 
!  There are many (100+) metrics 

!  System-oriented metrics only 
!  (R, P, MAP, NDCG, …) 

!  Let alone human/user-oriented metrics 
!  (user satisfaction, fatigue, …) 

!  And still IR only, no clustering, filtering… 

!  Just a few are indeed used 
!  (which ones? Why those? --> Julio) 

!  Definitions of some of them 

And now for something 
completely different… 

Outline 

!  Evaluation [5’] 
!  Measures / metrics [15’] 
!  Measurement theory [15’] 
!  Metrics analysis [5’] 
!  Axiometrics framework [15’] 
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Measurement 

!  Definition: A process aimed at determining a 
relationship between a physical quantity and 
a unit of measurement 

!  Typically, one assigns numbers to objects/
events 

!  Studied in Measurement Theory 
!  Reasonably settled 

Measurement Theory 

!  Reasonably settled 

SCIENCE 
Vol. 103, No. 2684 Friday, June 7, 1946 

On the Theory of Scales of Measurement 
S. S. Stevens 

Director, Psycho-Acoustic Laboratory, Harvard University 

FOR SEVEN YEARS A COMMITTEE of the 
British Association for the Advancement of 
Science debated the problem of measurement. 

Appointed in 1932 to represent Section A (Mathe- 
matical and Physical Sciences) and Section J (Psy- 
chology), the committee was instructed to consider 
and report upon the possibility of "quantitative esti- 
mates of sensory events"-meaning simply: Is it pos- 
sible to measure human sensation? Deliberation led 
only to disagreement, mainly about what is meant by 
the term measurement. An interim report in 1938 
found one member complaining that his colleagues 
"came out by that same door as they went in," and in 
order to have another try at agreement, the committee 
begged to. be continued for another year. 

For its final report (1940) the committee chose a 
common bone for its contentions, directing its argu- 
ments at a concrete example of a sensory scale. This 
was the Sone scale of loudness (S. S. Stevens and 
H. Davis. Hearing. New York: Wiley, 1938), which 
purports to measure the subjective magnitude of an 
auditory sensation against a scale having the formal 
properties of other basic scales, such as those used to 
measure length and weight. Again the 19 members of 
the committee came out by the routes they entered, 
and their views ranged widely between two extremes. 
One member submitted "that any law purporting to 
express a quantitative relation between sensation in- 
tensity and stimulus intensity is not merely false but 
is in fact meaningless unless and until a meaning can 
be given to the concept of addition as applied to sen- 
sation" (Final Report, p. 245). 

It is plain from this and from other statements by 
the committee that the real issue is the meaning of 
measurement. This, to be sure, is a semantic issue, 
but one susceptible of orderly discussion. Perhaps 
agreement can better be achieved if we recognize that 
measurement exists in a variety of forms and that 
scales of measurement fall into certain definite classes. 
These classes are determined both by the empirical 
operations invoked in the process of "measuring" and 

' 

by the formal (mathematical) properties of the scales. 
Furthermore-and this is of great concern to several 
of the sciences-the statistical manipulations that can 
legitimately be applied to empirical data depend upon 
the type of scale against which the data are ordered. 

A CLASSIFICATION OFP SCALES OF MEASUREMENT 

Paraphrasing N. R. Campbell (Final Report, p. 
340),. we may say that measurement, in the broadest 
sense, is defined as the assignment of numerals to ob- 
jects or events according to rules. The fact that 
numerals can be assigned under different rules leads 
to different kinds of scales and different kinds of 
measurement. The problem then becomes that of 
making explicit (a) the various rules for the assign- 
ment of numerals, (b) the mathematical properties 
(or group structure) of the resulting scales, and (c) 
the statistical operations applicable to measurements 
made with each type of scale. 

Scales are possible in the first place only because 
there is a certain isomorphism between what we can 
do with the aspects of objects and the properties of 
the numeral series. In dealing with the aspects of 
objects we invoke empirical operations for determin- 
ing equality (classifying), for rank-ordering, and for 
determining when differences and when ratios between 
the aspects of objects are equal. The conventional 
series of numnerals yields to analogous operations: 
We can identify the members of a numeral series 
and classify them. We know their order as given 
by convention. We can determine equal differences, 
as 8-6=4-2, and equal ratios, as 8/4=6/3. The 
isomorphism between these properties of the numeral 
series and certain empirical operations which we per- 
form with objects permits the use of the series as a 
model to represent aspects of the empirical world. 

The type of scale achieved depends upon the char- 
acter of the basic empirical operations performed. 
These operations are limited ordinarily by the nature 
of the thing being scaled and by our choice of pro- 
cedures, but, once selected, the operations determine 

677 

Measurement Theory 

!  One important concept: which numbers can I 
select when measuring? What properties do 
they have? 

!  Which measurement scale? 
!  (or “level”) 
!  E.g., to measure length: 

!  Meters 
!  Inches 
!  "Longer than" (?) 

Measurement scales 

!  Standard set of scales: 
1.  Nominal 
2.  Ordinal 
3.  Interval 
4.  Ratio 

!  (other proposals exist) 

Perhaps not so well settled… 

QUANTITATIVE METHODS IN PSYCHOLOGY

Measurement Scales and Statistics: A Clash of Paradigms
Joel Michell

University of Sydney
Sydney, New South Wales, Australia

The "permissible statistics" controversy stems from a clash of different theories or paradigms of
measurement. Three theories are identified: the representational, the operational, and the classical.
In each case the relation between measurement scales and statistical procedures is explored. The
representational theory implies a relation between measurement scales and statistics, though not the
one mentioned by Stevens or his followers. The operational and classical theories, for different rea-
sons, imply no relation between measurement scales and statistics, contradicting Stevens's prescrip-
tions. A resolution of this issue depends on a critical evaluation of these different theories.

The recent exchange between Gaito (1980) and Townsend
and Ashby (1984) shows that the controversy over measurement
scales and statistics, begun by Stevens (1946), still persists. The
two sides are as unrepentant as ever and show no sign of being
able to appreciate the opposing point of view. Such a protracted
controversy suggests that the disagreement lies much deeper
than the arguments hitherto presented imply. If this is true then
merely reciting these well-worn arguments will never resolve the
issue. What is needed is a deeper analysis, one that probes to
the disagreement's source. This source lies in the different con-
ceptions of measurement. On one side of the debate, those fol-
lowing the Stevens tradition have attempted to make explicit
their theory of measurement. This is the representational the-
ory. The opponents of this tradition have not been as prepared
to lay their cards on the table, but one can discern within psy-
chology at least two other, quite distinct measurement tradi-
tions: the operational theory and the classical theory. The de-
bate on this issue may be advanced by providing a clear state-
ment of each of these theories and their implications regarding
the use of statistical (or other numerical) procedures. That is
my goal. I will not present arguments for or against these theo-
ries at this stage.

Representational Theory and Appropriate Statistics

This theory derives from the writings of Stevens and Suppes
(cf. Stevens, 1946,1951,1959; Suppes, 1951; Suppes &Zinnes,
1963). They, in turn, were indebted to the earlier representa-
tional tradition of Helmholtz (1887), Russell (1903), and
Campbell (1920), The core of this theory is that numbers are
used in measurement to represent empirical relations between
objects. Townsend and Ashby (1984) state clearly this view:

I thank J. P. Sutcliffe, G. W. Oliphant, and two anonymous reviewers
for their constructive criticisms of earlier versions of this article.

Correspondence concerning this article should be addressed to Joel
Michell, Department of Psychology, The University of Sydney, New
South Wales 2006, Sydney, Australia.

The fundamental thesis is that measurement is (or should be) a
process of assigning numbers to objects in such a way that interest-
ing qualitative empirical relations among the objects are reflected
in the numbers themselves as well as in important properties of the
number system, (p, 394)

It will be helpful to give some simple examples of such "inter-
esting qualitative empirical relations" and the way in which
they may be represented numerically. Consider first the repre-
sentation of an empirical equivalence relation. Suppose that
people are classified according to hair color. In this case the em-
pirical relation observed is that of Person x's hair being the same
color as Person y's. If this relation is transitive, symmetric, and
reflexive then it may be represented by the relation of numerical
equality (=). That is, numbers may be assigned to the people
being classified in such a way that for any pair of people, x and
y, x's hair is the same color as y's if and only if NX. = Ny (where
NX is the number assigned to x and Ny is the number assigned
to y). For example, blondes may be assigned 1, brunettes 2, red-
heads 3, and so on. Let us call these assignments "Hair Color
Scale X." Scale X is what Stevens would have called a nominal
scale and, as Suppes and Zinnes (1963) observed, a nominal
scale such as X could be replaced by another nominal scale for
the same variable (hair color) by any one-one transformation
of the numbers assigned. That is, the class of admissible scale
transformations for nominal scales is the class of one-one trans-
formations.

Second, consider the representation of an empirical order re-
lation. There are different kinds of order relations, but take for
example, a weak order (i.e., a binary relation that is connected
and transitive; see e.g., Krantz, Luce, Suppes, & Tversky, 1971).
In marking a batch of students' essays the empirical relation
observed may be that the quality of Student x's essay is at least
as good as the quality of Student y's. If this relation is transitive
and connected then it may be represented by the numerical re-
lation of being at least as great as (^). That is, numbers may be
assigned to the essays such that the quality of x's is at least as
good as the quality of y's if and only if jVx ^ Ny. The result is
an ordinal scale. For ordinal scales the class of admissible scale

Psychological Bulletin, 1986. Vol. 100. No. 3, 398-407
Copyright 1986 by the American Psychological Association, Inc. 0033-290f)/86/$00.75

398

(1986) 
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And indeed 

!  Nicholas Chrisman  
!  1998  
!  Proposes 10 scales, 

not just 4 

Rethinking Levels of Measurement for Cartography

Nicholas R. Chrisman

ABSTRACT: Stevens' measurement levels (nominal, ordinal, interval and ratio) have become a
familiar part of cartography and GIS. These levels have been accepted unquestioned from publica-
tions in social sciences dating from the 1940s and 1950s. The Stevens taxonomy has been used to
prescribe appropriate symbolism (or analytical treatment) to each scale of measurement. This pa-
per reviews the process by which these levels became a part of cartography, as well as subsequent
literature that cartographers have all but ignored over the intervening four decades. The paper
concludes that the four levels of measurement are not adequate to cover the circumstances of car-
tography, and that attribute issues alone do not provide a sufficient guide to symbolism or analyti-
cal treatment. A broader framework for measurement must be considered, including the
relationships of control that constrain variation in one component to permit measurement of an-
other. An informed use of tools does not depend on numbers alone, but on the whole "measure-
ment framework," the system of objects, relationships and axioms implied by a given system of
representation.

How Measurement Levels
Reached Cartography

The approach to measurement in certain
social sciences (including geography) is still
strongly influenced by Stevens' (1946) paper

in Science. Stevens' levels of measurement form an
important foundation for textbooks in spatial analy-
sis (Unwin 1981) and in cartography (Robinson et al.
1995; Muehrcke and Muehrcke 1978; Dent 1993).
While there has been continued development of the
theory of measurement (Khurshid and Sahai 1993),
the debate on measurement in cartography and GIS
literature remains stuck in 1946. This phenomenon
is interesting because it is followed by an absorption
of a new set of ideas, and resistance to further
changes. It also is important because the measure-
ment concepts serve as foundations for instruction.
This first section will review the process leading up to
Stevens' paper and how it diffused into cartographic
practice.

History of Theories of Measurement

The "classical" school of measurement has its
origins in Aristotle's metaphysics and continues
through Newton to include the physical sciences

Nicholas Chrisman is Associate Professor in the Depart-
ment of Geography, Room 408, Smith Hall, University of
Washington, Box 353550, Seattle, Washington 98195,
USA. E-mail: <chrisman@u.washington.edu>.

at the end of the nineteenth century. In the classi-
cal view, measurement discovered the numerical
ratio between a standard object and the one
measured.

Clifford, a mathematician in the nineteenth
century, used a definition of measurement not much
different from Euclid's: "every quantity is measured
by the ratio which it bears to some fixed quantity,
called the unit" (Clifford 1870). The property was
seen to be "inherent" in the object, and the relation-
ship took on all the mathematical properties of num-
bers without question (Michell 1993).

Let us take the attribute "length." Every entity in
space can be measured by comparing its length to
some other length. If we adopt a "standard" measur-
ing rod, the ratio between the length of the rod and
the objects measured embodies a number implicit in
the relationship. The realm of numbers is then, in
tum, seen to be derived from these basic relation-
ships of ratios.

Through a series of theoretical developments,
this classical approach was overthrown and com-
pletely replaced by a "representational" school in the
first half of the twentieth century (Michell 1993). The
representationalists impose a firm separation be-
tween the empirical world and numbers, as first
expressed by Bertrand Russell (Russell 1897; 1903).
In the place of ratios and rational numbers as the
core of mathematics, set theory permitted a more
generic range of relationships. According to Russell:

Measurement of magnitudes is, in its
most general sense, any method by which
a unique and reciprocal correspondence
is established between all or some of the

Cartography and Geographic Information Systems, Vol. 25, No.4, 1998, pp. 231-242
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Anyway "Good Old Fashioned" 
Measurement scales 

1.  Nominal 
2.  Ordinal 
3.  Interval 
4.  Ratio 

4. Ratio scale 

!  I’m twice taller than him 
!  He is twice richer than me 

!  (Both “how much” & “how many”) 

!  I'm twice older than you 
!  Years, months (*12), days, … 

!  Zero 
!  Age starts from zero! 

!  But not 
!  Today is twice as hot as yesterday? 

3. Interval scale 

!  Today is twice as hot as yesterday? 
!  In the last two days we had the same 

increase of 5ºC in temperature 
!  The difference between today and yesterday 

temperature is the same as … 

!  Dates are another example 
!  Difference: OK (2014 – 2012 = 2006 – 2004) 
!  Ratio: KO (2000 is not 2 * 1000) 
!  (ratios of differences: OK) 

!  A measure is not an amount but a rank 
!  It is a form of measurement! 
!  Ex: Lines ranked according to their length 
!  It does not mean that: 

!  the first is twice as long than 
the second 

!  the length difference between 
the 1st and the 2nd is the 
same as the 2nd and the 3rd 

2. Ordinal scale 

1st 

2nd 

3rd 

4th 

1. Nominal scale 

!  Qualitative 
!  Categories 
!  Names, gender, nationality, … 
!  Can be Dichotomous or Non-dichotomous 
!  No assumptions on ratios, distances, ranks. 
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Legit operations 

!  Given a scale, only some operations make 
sense 
!  Arithmetic: +, -, *, / 
!  Statistic: Mean, median, mode, … 

!  Ex: 
!  Average height, weight, …: OK 
!  Average gender: KO 

Legit relational/math 
operations 

  =, ≠ >, < +, - ×, ÷ 
Nominal ✓ ✗ ✗ ✗ 
Ordinal ✓ ✓ ✗ ✗ 
Interval ✓ ✓ ✓ ✗ 
Ratio ✓ ✓ ✓ ✓ 

Permissible transformations 

  a · x a · x + b Monotonic 1-to-1 
Nominal ✓ ✓ ✓ ✓ 
Ordinal ✓ ✓ ✓ ✗ 
Interval ✓ ✓ ✗ ✗ 
Ratio ✓ ✗ ✗ ✗ 

Meaning 

!  If you transform the measure, are you still 
measuring the same thing? 
!  Nationality 
!  Rank 
!  Temperature 
!  Money 

Examples 

!  Nominal scale for nationality 
!  Greek= 1 
!  Italian = 2 
!  Spanish = 3 
!  Japanese = 4 
!  … 
!  3 – 1 = 4 – 2 Uh?!? 

!  Whereas interval scale for temperature ºC 
!  30º – 10º  = 40º – 20º: ok 

Legit statistics 

  
Mode Median 

Mean 
Arithmetic Geometric, 

Harmonic 
Nominal ✓ ✗ ✗ ✗ 
Ordinal ✓ ✓ ✗ ✗ 
Interval ✓ ✓ ✓ ✗ 
Ratio ✓ ✓ ✓ ✓ 
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Examples 

!  Nationality, mode, ok 
!  Mean rank? Uh?! 

!  (think of ranking ten students…) 

!  Mean temperature, ok 

Now, 

Why are you telling me this? 

Why are you telling me this? 

!  Two reasons 
!  1. Measurement theory and scales can be used 

to directly analyze IR metrics 
!  2. Because IR can be seen as a measurement. Of 

relevance --> Language to define axioms on 
metrics 

!  Let's see 1. first 

Outline 

!  Evaluation [5’] 
!  Measures / metrics [15’] 
!  Measurement theory [15’] 
!  Metrics analysis [5’] 
!  Axiometrics framework [15’] 
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MRR (Mean Reciprocal Rank) 

!  Take the rank of the 1st relevant doc. 
!  Take the reciprocal (…) 

!  Then take the mean (…) over some topics 

A Survey and Classification of Information Retrieval E↵ectiveness Metrics A:31

is the user ranking over the set of document D = {d1, d2, d3, d4, d5} and
d1
d5
�s

d2
d4
�s d3

is the system ranking, then

C� = (d2, d5)(d3, d4)(d3, d5)
Cu = (d1, d5)(d2, d4)

and dpm(�u,�s) = 2C� + Cu = 6 + 2 = 8.
When the evaluation is performed over a set of queries, it is necessary to normalize the

DPM measure with respect to the maximum distance between rankings, in order to give
the same importance to all queries and also to obtain values in the [0, 1] interval. In order
to do this we need to normalize the value of DPM with respect to the maximum distance
from �u, that is, �c

u. It is easy to see that

dpm(�u,�c
u) = 2|�c

u| = 2|�u| = 2C.

We can now define NDPM as

ndpm(�u,�s) =
dpm(�u,�s)
dpm(�u,�c

u)
=

2C� + Cu

2C
. (62)

10. METRICS FOR KNOWN ITEM SEARCH TASKS

In some retrieval tasks, such as question answering or navigational tasks, the user is looking
for only one correct answer rather than several relevant results. Based on this user model,
in the question answering task for example, the goal of a system is to return at the top rank
the document or document fragment that answers the user’s query. The standard IR metrics
are not well suited for the evaluation of these tasks [Berger et al. 2000], but appropriate
measures are required. The range of measures proposed in the literature are reviewed in
this section.

10.1. Reciprocal Rank (RR) and Mean RR (MRR)

The simple measure of Reciprocal Rank (RR) is the inverse of the rank of the first correct
answer [Voorhees 1999]:

RR =
1

rank(i)
, (63)

where i is the first relevant document in the retrieval list. RR is bounded between 0, when
the correct answer is not retrieved, and 1, when the correct answer is retrieved in the first
position.

The average of RR scores over all queries in the evaluation experiment is given by the
measure of Mean Reciprocal Rank (MRR) [Voorhees 1999]:

MRR =
1
|Q|

X

q2Q

1
rank(iq)

, (64)

where iq is the first relevant document in the retrieved list for a given query q and Q is the
set of all the queries considered.

10.2. Weighted Reciprocal Rank (WRR)

Weighted Reciprocal Rank (WRR) [Eguchi et al. 2004; Eguchi et al. 2003] is a generalization
of MRR to multi-graded relevance judgements. The measure was developed in the context
of the NTCIR evaluation initiative where assessors assign grades of highly (H), fairly (A),
partially (B) relevant, or non-relevant (N) to the documents.

ACM Computing Surveys, Vol. ?, No. ?, Article 1, Publication date: ?.
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The simple measure of Reciprocal Rank (RR) is the inverse of the rank of the first correct
answer [Voorhees 1999]:

RR =
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rank(i)
, (63)

where i is the first relevant document in the retrieval list. RR is bounded between 0, when
the correct answer is not retrieved, and 1, when the correct answer is retrieved in the first
position.

The average of RR scores over all queries in the evaluation experiment is given by the
measure of Mean Reciprocal Rank (MRR) [Voorhees 1999]:

MRR =
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|Q|
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rank(iq)

, (64)

where iq is the first relevant document in the retrieved list for a given query q and Q is the
set of all the queries considered.

10.2. Weighted Reciprocal Rank (WRR)

Weighted Reciprocal Rank (WRR) [Eguchi et al. 2004; Eguchi et al. 2003] is a generalization
of MRR to multi-graded relevance judgements. The measure was developed in the context
of the NTCIR evaluation initiative where assessors assign grades of highly (H), fairly (A),
partially (B) relevant, or non-relevant (N) to the documents.
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MRR?! 

!  It is used 
!  In many papers 
!  Even in some TREC 

tracks 

!  When analyzed with 
"measurement theory 
glasses", is is not 
"measurement theory 
proof" 

!  A reciprocal is taken on 
an ordinal scale… 

!  … then it is averaged… 

Even worse than that… NDCG 
!  H,R,P,N --> 3, 2, 1, 0 ?  

!  Linear, most common 
!  H,R,P,N --> 100, 10, 1, 0 ?! (or 4, 2, 1, 0) 

!  Exponential, sometimes used, actually 
!  H,R,P,N --> 100, 99, 90, 0 ?!?  

!  “Crazy”, never heard of… why? 
!  Arbitrary choice! 
!  By transforming relevance levels into gains, we  

transform an 2. Ordinal scale --> 4. Ratio scale! 
!  And we also discount 

!  Dividing by log(rank)… 
!  All metrics that can be modeled as gain/discount… 

Classification (more principled, 
still incomplete!) 

Nominal Ordinal Interval/
Ratio 

Ordinal 

Nominal 

Retrieval 
scale 

Relevance 
scale 

Interval/
Ratio 

P&R, 
E, F, … 

RP curve,  
MAP, R-prec, … 

NDCG, 
Kendall/

Spearman? 

ADM Sliding ratio 

To summarize, but not to 
conclude 

!  100+ metrics 
!  Measurement theory seems a useful tool 

!  Metric classification 
!  Some arbitrary choices 
!  Some metrics are not "Measurement theory 

proof" 

!  Metric engineering seems more an art 
(artisan) than a science…  

!  A more principled approach? 

Outline 

!  Evaluation [5’] 
!  Measures / metrics [15’] 
!  Measurement theory [15’] 
!  Metrics analysis [5’] 
!  Axiometrics framework [15’] 
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So, back to metrics… Hm. One hundred. 
!  What do they have in common? 
!  Research question: 

Are there some axioms that any 
effectiveness metric should satisfy? 

!  "Axioms"? ("Axiometrics"! [Arjen]) 
!  Properties, constraints, Laws, … 

!  Maybe a not so crazy idea:  
!  [van Rijsbergen 1979], [Bollman 1984], [Amigó, 

Gonzalo 2009] (& more), [Sebastiani 2015], 
SWIRL 2012, … 

2. IR as measurement of 
relevance 

!  Both an IR system and a human assessor 
measure the relevance of a document 

!  Maybe on different scales: 
!  Ranked SE output: ordinal scale 
!  Human TREC-like relevance assessor: nominal 

(ordinal) scale (binary, relevant/nonrelevant) 
!  … IR related tasks like categorization, filtering, … 

So, relevance measurement(s) 

!  This is general 
!  Change the scale and you get the 

corresponding relevance measurement 
!  Allows to take into account binary, graded, 

ranked,… relevance and retrieval 

Notation: σ and α 

!  2 relevance measurements 
!  by a system (σ) 

!  σ(q,d), σ(q,D), σ(Q,D)  
!  e.g. SE ranked output 

!  by a human (user/assessor) (α) 
!  α(q,d), α(q,D), α(Q,D)  
!  e.g., TREC qrels 

Similarity 
!  Given two relevance measurements α and σ, 

we can define a notion of similarity between 
them (given a query/topic q and a document 
d) 

 
!  And an IR system should provide a 

measurement σ that is similar to the human 
measurement α

sets contain only one element, i.e., Q = Q� = {q} and
D = D� = {d}, we write simq,d (⇥, ⇥�). If there is no
ambiguity on the sets of queries and documents, then
we simply write sim (⇥, ⇥�).

Following the notation of Sect. 3.3, the similarity
between two systems is given by sim (⇤,⇤�), the agree-
ment among judges is sim (�,��), while the similarity
of a human relevance measurement and a system rel-
evance measurement is sim (�,⇤), that corresponds to
the e�ectiveness of an IRS in measuring relevance as
the user does. In the following, for the sake of sim-
plicity, we mainly deal with this last case, sim (�,⇤),
but most of the results hold for any pair of relevance
measurements.

It is important to note that, in this context, it is
not always possible express similarity as a number,
i.e., it is possible that we can not know, nor even
express, the value of simq,d (�,⇤). More often, simi-
larities can be compared so we can say if

sim
q,d

(�,⇤) < sim
q,d

(�,⇤�) or sim
q,d

(�,⇤) > sim
q,d

(�,⇤�).

For example, let us consider two IRSs that behave in
exactly the same way on a set of documents D and
a set of queries Q, and provide two relevance mea-
surements ⇤ and ⇤�. Their similarities with an asses-
sor measure � are exactly the same for each docu-
ment. Therefore, simQ,D (�,⇤) = simQ,D (�,⇤�). If
a new document d /⇥ D is available and the two
systems have a di�erent behavior on it such that
simQ,d (�,⇤) > simQ,d (�,⇤�) (⇤ evaluates the doc-
ument in a more similar way to the assessor � than
⇤�), we can now infer that the similarity on the new
whole collection of documents D⌅ {d} is higher for ⇤
than for ⇤�:

sim
Q,D⇥{d}

(�,⇤) > sim
Q,D⇥{d}

(�,⇤�).

Note that we did not need to assign specific values
to the various measurements to be able to compare
them. Also note that, in general,

sim
q,D⇥{d}

(�,⇤) ⇤= sim
q,D

(�,⇤) + sim
q,d

(�,⇤).

In the following of this paper we adopt a di�erent
approach from (Busin & Mizzaro 2013) and we will
not use the similarity of sets of queries (Q) and/or
documents (D): we will need simq,d (�,⇤) only, since
we will be dealing with sets when working on metrics.

4.2 Similarity and Measurement Scale

This generic notion of similarity can be specialized by
taking into account the di�erent scales to obtain op-
erational definitions. The scenario is quite complex.
Since � is fixed and ⇤ varies (e.g., by choosing a di�er-
ent retrieval algorithm), similarity is not symmetrical:
sim(⇥, ⇥�) and sim(⇥�, ⇥) need to be defined indepen-
dently. Moreover, each of � and ⇤ can be over nine
scales (see Fig. 1): this leads up to 9� 9 = 81 cases,
see Tab. 1. Actually, some combinations are ruled
out, because either the combination does not make
sense (e.g., categories can not be both related and
unrelated), or no notion of similarity can be defined
(a nominal scale with unrelated categories does not
allow to define a notion of similarity). However, all
the other combinations make sense: although it might
seem strange to have a human assessors that ranks
the documents and an IRS that categorizes them into
JH,R, P, NK, this is not impossible in principle. For

(a) (b)

Figure 2: Categories with across-scales relations

space limitations, we only hint at how sim can be de-
fined for some pairs of scales; the description is at an
intuitive level, but it can be formalized.

If � and ⇤ are expressed on di�erent and unrelated
category scales, nothing can be said. For instance, if
scale (�) = JA, BK (i.e., � is a category scale with
two categories A and B), and scale (⇤) = JC, DK, and
there is no relationship neither across scales (i.e., A
and B have nothing to do with neither C nor D) nei-
ther within scales (i.e., no relations between A and
B, nor between C and D), then sim (�,⇤) can not
be defined. For instance, if ⇤ is a measurement of
the topicality of the documents and � classifies the
source of the documents (e.g., web page, article, tech-
nical report, etc.) then of course � and ⇤ can not be
compared.

Even if one and only one of scale (�) and scale (⇤)
has some within scale relationship, this is not enough
to define any sensible similarity measure (if the two
measures share the same categories then a similarity
can be defined, but this would mean that an across-
scales relationship exists). The following postulate
simply rules out the unrelated categories scale from
further analysis.

Postulate 1 (Unrelated categories). Given two mea-
surements, if the scale of at least one of them is an
unrelated categories scale, then it is not possible to
define a similarity between the two measurements.

There might exist across-scales relationships:
some categories of scale (�) can be related to some
categories of scale (⇤), or even equal (i.e., a particular
case of across-scales relationships is scales with the
same categories). In this case, similarity can be de-
fined and it depends on the number of correctly and
wrongly classified documents: moving one document
from a wrong category into a correct one (i.e., cor-
rectly classifying one more document) increases sim-
ilarity. For instance, let scale(�) = JA�, B�K (i.e.,
it is expressed on a binary scale), and scale(⇤) =
JA⇥, B⇥, C⇥, D⇥K. Let us also assume that it makes
sense that documents in A� should also be in A⇥ or
B⇥, and documents in B� should also be in C⇥ or
D⇥ (see Fig. 2(a)). In such a case, sim (�,⇤) can
be defined. Moving items from A⇥ to B⇥ (or vice-
versa) or from C⇥ to D⇥ (or vice-versa) does not af-
fect sim (�,⇤); similarity varies by moving items from
A⇥ or B⇥ to C⇥ or D⇥ (or vice-versa), or from A�
to B� (or vice-versa). We can increase sim (�,⇤) by
modifying ⇤ in ⇤� in such a way that ⇤� correctly clas-
sifies more documents. Any other modification (e.g.,
moving a wrongly classified item into another wrong
category) does not a�ect the similarity.

Let us consider another di�erent case. Let ⇤ and
⇤� be two system relevance measurements such that
scale(⇤) = scale(⇤�) = JRankK and let � be a hu-
man relevance measurement. If ⇤� is obtained from
⇤ by swapping two adjacent documents and moving
a more relevant document above a less relevant one
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The metric and dimensional assumptions that underlie the geometric represen-
tation of similarity are questioned on both theoretical and empirical grounds.
A new set-theoretical approach to similarity is developed in which objects are
represented as collections of features, and similarity is described as a feature-
matching process. Specifically, a set of qualitative assumptions is shown to
imply the contrast model, which expresses the similarity between objects as a
linear combination of the measures of their common and distinctive features.
Several predictions of the contrast model are tested in studies of similarity with
both semantic and perceptual stimuli. The model is used to uncover, analyze,
and explain a variety of empirical phenomena such as the role of common and
distinctive features, the relations between judgments of similarity and differ-
ence, the presence of asymmetric similarities, and the effects of context on
judgments of similarity. The contrast model generalizes standard representa-
tions of similarity data in terms of clusters and trees. It is also used to analyze
the relations of prototypicality and family resemblance.

Similarity plays a fundamental role in errors of substitution, and correlation between
theories of knowledge and behavior. It serves occurrences. Analyses of these data attempt to
as an organizing principle by which individuals explain the observed similarity relations and
classify objects, form concepts, and make gen- to capture the underlying structure of the ob-
eralizations. Indeed, the concept of similarity jects under study.
is ubiquitous in psychological theory. It under- The theoretical analysis of similarity rela-
lies the accounts of stimulus and response tions has been dominated by geometric
generalization in learning, it is employed to models. These models represent objects as
explain errors in memory and pattern recogni- points in some coordinate space such that the
tion, and it is central to the analysis of con- observed dissimilarities between objects cor-
notative meaning. respond to the metric distances between the

Similarity or dissimilarity data appear in respective points. Practically all analyses of
different forms: ratings of pairs, sorting of proximity data have been metric in nature,
objects, communality between associations, although some (e.g., hierarchical clustering)

yield tree-like structures rather than dimen-
This paper benefited from fruitful discussions with sionallv. organized spaces. However, most

Y. Cohen, I. Gati, D. Kahneman, L. Sjeberg, and theoretical and empirical analyses of similarity
S. Sattath. assume that objects can be adequately repre-

Requests for reprints should be sent to Amos Tversky, , , . . . ,. , i
Department of Psychology, Hebrew University, sented as points m some coordinate space and
Jerusalem, Israel. that dissimilarity behaves like a metric dis-
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Now, similarity… Similarity comparison 
!  And we can compare similarities 
!  For example,  

!  means that on the query q and the document 
d, and given the human relevance judgment 
α, system σ is worse than σ’ (i.e., less similar 
to α) 

sets contain only one element, i.e., Q = Q� = {q} and
D = D� = {d}, we write simq,d (⇥, ⇥�). If there is no
ambiguity on the sets of queries and documents, then
we simply write sim (⇥, ⇥�).

Following the notation of Sect. 3.3, the similarity
between two systems is given by sim (⇤,⇤�), the agree-
ment among judges is sim (�,��), while the similarity
of a human relevance measurement and a system rel-
evance measurement is sim (�,⇤), that corresponds to
the e�ectiveness of an IRS in measuring relevance as
the user does. In the following, for the sake of sim-
plicity, we mainly deal with this last case, sim (�,⇤),
but most of the results hold for any pair of relevance
measurements.

It is important to note that, in this context, it is
not always possible express similarity as a number,
i.e., it is possible that we can not know, nor even
express, the value of simq,d (�,⇤). More often, simi-
larities can be compared so we can say if

sim
q,d

(�,⇤) < sim
q,d

(�,⇤�) or sim
q,d

(�,⇤) > sim
q,d

(�,⇤�).

For example, let us consider two IRSs that behave in
exactly the same way on a set of documents D and
a set of queries Q, and provide two relevance mea-
surements ⇤ and ⇤�. Their similarities with an asses-
sor measure � are exactly the same for each docu-
ment. Therefore, simQ,D (�,⇤) = simQ,D (�,⇤�). If
a new document d /⇥ D is available and the two
systems have a di�erent behavior on it such that
simQ,d (�,⇤) > simQ,d (�,⇤�) (⇤ evaluates the doc-
ument in a more similar way to the assessor � than
⇤�), we can now infer that the similarity on the new
whole collection of documents D⌅ {d} is higher for ⇤
than for ⇤�:

sim
Q,D⇥{d}

(�,⇤) > sim
Q,D⇥{d}

(�,⇤�).

Note that we did not need to assign specific values
to the various measurements to be able to compare
them. Also note that, in general,

sim
q,D⇥{d}

(�,⇤) ⇤= sim
q,D

(�,⇤) + sim
q,d

(�,⇤).

In the following of this paper we adopt a di�erent
approach from (Busin & Mizzaro 2013) and we will
not use the similarity of sets of queries (Q) and/or
documents (D): we will need simq,d (�,⇤) only, since
we will be dealing with sets when working on metrics.

4.2 Similarity and Measurement Scale

This generic notion of similarity can be specialized by
taking into account the di�erent scales to obtain op-
erational definitions. The scenario is quite complex.
Since � is fixed and ⇤ varies (e.g., by choosing a di�er-
ent retrieval algorithm), similarity is not symmetrical:
sim(⇥, ⇥�) and sim(⇥�, ⇥) need to be defined indepen-
dently. Moreover, each of � and ⇤ can be over nine
scales (see Fig. 1): this leads up to 9� 9 = 81 cases,
see Tab. 1. Actually, some combinations are ruled
out, because either the combination does not make
sense (e.g., categories can not be both related and
unrelated), or no notion of similarity can be defined
(a nominal scale with unrelated categories does not
allow to define a notion of similarity). However, all
the other combinations make sense: although it might
seem strange to have a human assessors that ranks
the documents and an IRS that categorizes them into
JH,R, P, NK, this is not impossible in principle. For

(a) (b)

Figure 2: Categories with across-scales relations

space limitations, we only hint at how sim can be de-
fined for some pairs of scales; the description is at an
intuitive level, but it can be formalized.

If � and ⇤ are expressed on di�erent and unrelated
category scales, nothing can be said. For instance, if
scale (�) = JA, BK (i.e., � is a category scale with
two categories A and B), and scale (⇤) = JC, DK, and
there is no relationship neither across scales (i.e., A
and B have nothing to do with neither C nor D) nei-
ther within scales (i.e., no relations between A and
B, nor between C and D), then sim (�,⇤) can not
be defined. For instance, if ⇤ is a measurement of
the topicality of the documents and � classifies the
source of the documents (e.g., web page, article, tech-
nical report, etc.) then of course � and ⇤ can not be
compared.

Even if one and only one of scale (�) and scale (⇤)
has some within scale relationship, this is not enough
to define any sensible similarity measure (if the two
measures share the same categories then a similarity
can be defined, but this would mean that an across-
scales relationship exists). The following postulate
simply rules out the unrelated categories scale from
further analysis.

Postulate 1 (Unrelated categories). Given two mea-
surements, if the scale of at least one of them is an
unrelated categories scale, then it is not possible to
define a similarity between the two measurements.

There might exist across-scales relationships:
some categories of scale (�) can be related to some
categories of scale (⇤), or even equal (i.e., a particular
case of across-scales relationships is scales with the
same categories). In this case, similarity can be de-
fined and it depends on the number of correctly and
wrongly classified documents: moving one document
from a wrong category into a correct one (i.e., cor-
rectly classifying one more document) increases sim-
ilarity. For instance, let scale(�) = JA�, B�K (i.e.,
it is expressed on a binary scale), and scale(⇤) =
JA⇥, B⇥, C⇥, D⇥K. Let us also assume that it makes
sense that documents in A� should also be in A⇥ or
B⇥, and documents in B� should also be in C⇥ or
D⇥ (see Fig. 2(a)). In such a case, sim (�,⇤) can
be defined. Moving items from A⇥ to B⇥ (or vice-
versa) or from C⇥ to D⇥ (or vice-versa) does not af-
fect sim (�,⇤); similarity varies by moving items from
A⇥ or B⇥ to C⇥ or D⇥ (or vice-versa), or from A�
to B� (or vice-versa). We can increase sim (�,⇤) by
modifying ⇤ in ⇤� in such a way that ⇤� correctly clas-
sifies more documents. Any other modification (e.g.,
moving a wrongly classified item into another wrong
category) does not a�ect the similarity.

Let us consider another di�erent case. Let ⇤ and
⇤� be two system relevance measurements such that
scale(⇤) = scale(⇤�) = JRankK and let � be a hu-
man relevance measurement. If ⇤� is obtained from
⇤ by swapping two adjacent documents and moving
a more relevant document above a less relevant one

Similarity --> Metric 

!  On the basis of the notion of similarity, we 
can define an IR effectiveness metric 

!  The more σ is similar to α, the higher the 
metric value 

So, to summarize (but not to 
conclude!) 

!  Measurement theory, Measurement scales, 
IR as relevance measurement 
!  σ(q,d), σ(q,D), σ(Q,D), α(q,d), α(q,D), α(Q,D) 

!  Similarity 

!  Metric 

sets contain only one element, i.e., Q = Q� = {q} and
D = D� = {d}, we write simq,d (⇥, ⇥�). If there is no
ambiguity on the sets of queries and documents, then
we simply write sim (⇥, ⇥�).

Following the notation of Sect. 3.3, the similarity
between two systems is given by sim (⇤,⇤�), the agree-
ment among judges is sim (�,��), while the similarity
of a human relevance measurement and a system rel-
evance measurement is sim (�,⇤), that corresponds to
the e�ectiveness of an IRS in measuring relevance as
the user does. In the following, for the sake of sim-
plicity, we mainly deal with this last case, sim (�,⇤),
but most of the results hold for any pair of relevance
measurements.

It is important to note that, in this context, it is
not always possible express similarity as a number,
i.e., it is possible that we can not know, nor even
express, the value of simq,d (�,⇤). More often, simi-
larities can be compared so we can say if

sim
q,d

(�,⇤) < sim
q,d

(�,⇤�) or sim
q,d

(�,⇤) > sim
q,d

(�,⇤�).

For example, let us consider two IRSs that behave in
exactly the same way on a set of documents D and
a set of queries Q, and provide two relevance mea-
surements ⇤ and ⇤�. Their similarities with an asses-
sor measure � are exactly the same for each docu-
ment. Therefore, simQ,D (�,⇤) = simQ,D (�,⇤�). If
a new document d /⇥ D is available and the two
systems have a di�erent behavior on it such that
simQ,d (�,⇤) > simQ,d (�,⇤�) (⇤ evaluates the doc-
ument in a more similar way to the assessor � than
⇤�), we can now infer that the similarity on the new
whole collection of documents D⌅ {d} is higher for ⇤
than for ⇤�:

sim
Q,D⇥{d}

(�,⇤) > sim
Q,D⇥{d}

(�,⇤�).

Note that we did not need to assign specific values
to the various measurements to be able to compare
them. Also note that, in general,

sim
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(�,⇤) ⇤= sim
q,D

(�,⇤) + sim
q,d

(�,⇤).

In the following of this paper we adopt a di�erent
approach from (Busin & Mizzaro 2013) and we will
not use the similarity of sets of queries (Q) and/or
documents (D): we will need simq,d (�,⇤) only, since
we will be dealing with sets when working on metrics.

4.2 Similarity and Measurement Scale

This generic notion of similarity can be specialized by
taking into account the di�erent scales to obtain op-
erational definitions. The scenario is quite complex.
Since � is fixed and ⇤ varies (e.g., by choosing a di�er-
ent retrieval algorithm), similarity is not symmetrical:
sim(⇥, ⇥�) and sim(⇥�, ⇥) need to be defined indepen-
dently. Moreover, each of � and ⇤ can be over nine
scales (see Fig. 1): this leads up to 9� 9 = 81 cases,
see Tab. 1. Actually, some combinations are ruled
out, because either the combination does not make
sense (e.g., categories can not be both related and
unrelated), or no notion of similarity can be defined
(a nominal scale with unrelated categories does not
allow to define a notion of similarity). However, all
the other combinations make sense: although it might
seem strange to have a human assessors that ranks
the documents and an IRS that categorizes them into
JH,R, P, NK, this is not impossible in principle. For
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space limitations, we only hint at how sim can be de-
fined for some pairs of scales; the description is at an
intuitive level, but it can be formalized.

If � and ⇤ are expressed on di�erent and unrelated
category scales, nothing can be said. For instance, if
scale (�) = JA, BK (i.e., � is a category scale with
two categories A and B), and scale (⇤) = JC, DK, and
there is no relationship neither across scales (i.e., A
and B have nothing to do with neither C nor D) nei-
ther within scales (i.e., no relations between A and
B, nor between C and D), then sim (�,⇤) can not
be defined. For instance, if ⇤ is a measurement of
the topicality of the documents and � classifies the
source of the documents (e.g., web page, article, tech-
nical report, etc.) then of course � and ⇤ can not be
compared.

Even if one and only one of scale (�) and scale (⇤)
has some within scale relationship, this is not enough
to define any sensible similarity measure (if the two
measures share the same categories then a similarity
can be defined, but this would mean that an across-
scales relationship exists). The following postulate
simply rules out the unrelated categories scale from
further analysis.

Postulate 1 (Unrelated categories). Given two mea-
surements, if the scale of at least one of them is an
unrelated categories scale, then it is not possible to
define a similarity between the two measurements.

There might exist across-scales relationships:
some categories of scale (�) can be related to some
categories of scale (⇤), or even equal (i.e., a particular
case of across-scales relationships is scales with the
same categories). In this case, similarity can be de-
fined and it depends on the number of correctly and
wrongly classified documents: moving one document
from a wrong category into a correct one (i.e., cor-
rectly classifying one more document) increases sim-
ilarity. For instance, let scale(�) = JA�, B�K (i.e.,
it is expressed on a binary scale), and scale(⇤) =
JA⇥, B⇥, C⇥, D⇥K. Let us also assume that it makes
sense that documents in A� should also be in A⇥ or
B⇥, and documents in B� should also be in C⇥ or
D⇥ (see Fig. 2(a)). In such a case, sim (�,⇤) can
be defined. Moving items from A⇥ to B⇥ (or vice-
versa) or from C⇥ to D⇥ (or vice-versa) does not af-
fect sim (�,⇤); similarity varies by moving items from
A⇥ or B⇥ to C⇥ or D⇥ (or vice-versa), or from A�
to B� (or vice-versa). We can increase sim (�,⇤) by
modifying ⇤ in ⇤� in such a way that ⇤� correctly clas-
sifies more documents. Any other modification (e.g.,
moving a wrongly classified item into another wrong
category) does not a�ect the similarity.

Let us consider another di�erent case. Let ⇤ and
⇤� be two system relevance measurements such that
scale(⇤) = scale(⇤�) = JRankK and let � be a hu-
man relevance measurement. If ⇤� is obtained from
⇤ by swapping two adjacent documents and moving
a more relevant document above a less relevant one

�
Nominal Ordinal Interval Ratio /

Un- Related < ⇤ P.O. Ranked Absolute
related Across Within Categories

↵

Nominal
Unrelated • � � • • • • • •
Related

Across �
Within � • • • •

Ordinal

< • •
⇤ • •
P.O. • •
Ranked Categories •

Interval •
Ratio / Absolute •

Table 1: Similarity between relevance measurement scales. Empty cells mean that similarity can be defined.
� means that the combination does not make sense. • means that no notion of similarity can be defined.

without a�ecting anything else (see Fig. 2(b)), then
sim(⇥�, �) > sim(⇥,�). The notions of more and less
relevant are defined if scale(�) is any ordinal, interval,
or ratio / absolute scale. The move of a less relevant
document below a more relevant one is equivalent.
Other changes can always be obtained by several ad-
jacent swaps (as it is well known, any permutation is
a sequence of swaps).

5 E�ectiveness Metric

5.1 Definitions and Notation

On the basis of the concepts of measurement, mea-
surement scales, and similarity we now turn to mod-
eling the e�ectiveness metrics itself. An e�ectiveness
metric provides a numerical representation of the sim-
ilarity between two relevance measurements. A met-
ric is then a function that takes as arguments two
measurements � and ⇥, a set of documents D, and
a set of queries Q, and provides as output a numeric
value (usually in R):

metric : �� ⇥ �D �Q ⌃⌅ R.

A metric is defined on the basis of five compo-
nents: scale(�), scale(⇥), a notion of similarity sim,
how the values on single documents are averaged
over the set D (we denote the corresponding aver-
aging function with avgD), and how these averages
are averaged over the set Q (avgQ). We can write
metric (scale(�), scale(⇥), sim, avgD, avgQ).

In most cases we do not need to specify all the
components of the e�ectiveness metric. Also, we do
not need to refer to the metric itself, but rather to the
value of the metric in a specific measurement (the con-
text will resolve the ambiguity). For instance we de-
note with metric(�(Q, D), ⇥(Q, D)) the e�ectiveness
metric value obtained when evaluating ⇥ with respect
to � on the set of queries Q and on the set of docu-
ments D. Usually, Q and D are common to � and ⇥,
so we often write metricQ,D(�,⇥).When not needed,
we omit Q and D as in metric(�,⇥), and sometimes
in place of sets Q and D we also use single elements
q and d, as in metricq,d(�,⇥).

5.2 Some Metrics

This framework and notation should be general
enough to model most (if not all) e�ectiveness met-
rics. For instance, Precision and Recall can be defined
as follows. For both of them, scale(�) = scale(⇥) =
JR,NK. Let Rel = {d ⇧ D|�(d) = R} and Ret =
{d ⇧ D|⇥(d) = R} be the sets of relevant and re-
trieved documents, respectively. Similarity is defined

as:
sim
q,d

(�,⇥) =
⇢

1 if �(d) = ⇥(d)
0 otherwise.

The avgD functions for Precision and Recall are the
arithmetic means over the sets Ret and Rel, respec-
tively:

Pq(�,⇥) = metric
q,D

(�,⇥) =
1

|Ret|
X

d⇥Ret

sim
q,d

(�,⇥),

Rq(�,⇥) = metric
q,D

(�,⇥) =
1

|Rel|
X

d⇥Rel

sim
q,d

(�,⇥).

And both the avgQ functions are the arithmetic mean
over the set Q:

Precision =
1
|Q|

X

q⇥Q

Pq,Recall =
1
|Q|

X

q⇥Q

Rq.

For the MAP (and MAP-like metrics like GMAP,
logitAP, yaAP) we have two di�erent scales:
scale(�) = JR,NK and scale(⇥) = JRankK. Similar-
ity can be defined as:

sim
q,d

(�,⇥) =
⇢

1 if �(d) = R
0 otherwise.

Precision@n values for a query can be defined as:

P@nq =
Pn

i=1 sim(i)
n

Then sim can be used to define AP values as

APq(�,⇥) =
1

|Rel|
X

d⇥D

✓
sim
q,d

(�,⇥) ⇥ P@pos(d)
◆

,

where pos(d) is the position of the document d in the
rank, P@pos(d) is the precision value at that point,
and avgD is the arithmetic mean. Then MAP is ob-
tained using as avgQ the arithmetic mean of the AP
values:

MAPQ,D(�,⇥) = metric
Q,D

(�,⇥) =
1
|Q|

X

q⇥Q

APq(�,⇥).

GMAP is similar to MAP, the only di�erence being
on avgQ since in GMAP the geometric mean is used:

GMAPQ,D(�,⇥) = |Q|

sY

q⇥Q

APq.

Generality: Across different 
measurement scales 

!  We can compute the similarity of two 
relevance judgments when they are on the 
same scale 

!  …but more than that… 
!  … also when they are on different scales, in 

some cases 
!  E.g., the classical ad-hoc retrieval 

!  scale(σ) = [[ordinal]] 
!  scale(α) = [[nominal]] (binary relevance. Ordinal) 

Same scales: binary IR 

Rel 

Non Rel 

Ret 

Non Ret 

Ret 

Non Ret 

α σ1  σ2  

sim(α, σ1) > sim(α, σ2) 
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Different scales: ad hoc IR 

Rel 

Non Rel 

α σ1  σ2  

sim(α, σ1) < sim(α, σ2) 

Ok, but we want Axioms! 

Some details… 
!  I do not trust our axioms too much yet… 
!  … preliminary work… 
!  Actually: 

!  I think axioms are correct and consistent 
!  I don't know if they are complete 

!  Stating axioms is also useful to "test the 
framework" 
!  Measurement theory is an effective language to 

state them! 

A First Axiom 

GMAP can be defined in an equivalent way as the
average of logarithms:

GMAPQ,D(�,⇥) =
1

|Q|
�

q⇥Q

log APq(�,⇥),

and logitAP and yaAP definitions are similar. The
definition of Precision@n and R-Prec on the basis of
the same sim function is also straightforward.

6 Axioms

We now can list some axioms: they define properties
that, ceteris paribus, any e�ectiveness metric should
satisfy. Axioms can also be interpreted as a set of
constraints on a search space. We formalize as ax-
ioms the properties of similarity between relevance
measurements (Subsection 6.1), we then present some
axioms that define the relationships between similar-
ity and metrics (Subsection 6.2), and we then present
metric-specific axioms (Subsection 6.3).

6.1 Similarity

The first axioms represent basic constraints on simi-
larity, and metrics are not concerned yet.

Axiom 1 (Similarity of documents). Let q be a query,
d and d� two documents, � a human relevance mea-
surement and ⇥ a system relevance measurement such
that �(q, d) = �(q, d�) and ⇥(q, d) = ⇥(q, d�). Then

sim
q,d

(�,⇥) = sim
q,d�

(�,⇥).

Axiom 2 (Similarity of queries). Let q and q� be two
queries, d a document, � a human relevance measure-
ment and ⇥ a system relevance measurement such that
�(q, d) = �(q�, d) and ⇥(q, d) = ⇥(q�, d). Then

sim
q,d

(�,⇥) = sim
q�,d

(�,⇥).

Axiom 3 (Similarity of two systems). Let q be a
query, d a document, � a human relevance measure-
ment and ⇥ and ⇥� two system relevance measure-
ments such that

⇥(q, d) = ⇥�(q, d). (1)

Then
sim
q,d

(�,⇥) = sim
q,d

(�,⇥�). (2)

Let us remark that (2) does not entail (1). Dia-
grams like those in Fig. 3 can be helpful to intuitively
understand the situation: Figs. 3(a) and 3(b) repre-
sent the cases in which ⇥ and ⇥� respectively overesti-
mate and underestimate (or vice-versa) d by the same
amount; then the similarity (represented in the figure
by the two arcs on the right) of the two systems is the
same, but obviously (1) does not hold. Conversely, as
stated by the axiom, when (1) holds then (2) holds as
well (Figs. 3(c) and 3(d)).

6.2 From Similarity to Metric

6.2.1 Di�erent systems

The following axiom sets a constraint on the metric in
one of the two last cases of Fig. 3 (Figs. 3(c) and 3(d)).

α σ σ’

(a) Divergent

α σ σ’

(b) Divergent

α σ σ’

(c) Overestimate

α σ σ’

(d) Underestimate

Figure 3: Two systems having equal similarity to �

Axiom 4 (Systems with equal e�ectiveness). Let q
be a query, d a document, � a human relevance mea-
surement and ⇥ and ⇥� two system relevance measure-
ments such that

⇥(q, d) = ⇥�(q, d).

Then
metric

q,d
(�,⇥) = metric

q,d
(�,⇥�).

Remark 1. Note that by using, in this axiom, a con-
dition like (1) and not like (2) the first two cases of
Fig. 3 are ruled out, and indeed in those cases we
cannot state any constraint on the metric: a recall-
oriented metric would give a higher value to a system
overestimating all the documents (retrieving all doc-
uments means that recall is 1), whereas a precision-
oriented metric would do the opposite.

Axiom 5 (Systems with di�erent e�ectiveness). Let
q be a query, d a document, � a human relevance
measurement and ⇥ and ⇥� two system relevance mea-
surements such that

sim
q,d

(�,⇥) > sim
q,d

(�,⇥�) (3)

and
sim
q,d

(⇥,⇥�) > sim
q,d

(�,⇥�). (4)

Then
metric

q,d
(�,⇥) > metric

q,d
(�,⇥�).

Remark 2. Condition (3) means that ⇥ is less wrong
than ⇥�. The combination of (3) and (4) means that
the two systems are wrong in the same direction: if
⇥ overestimates (underestimates) d, then ⇥� overes-
timates (underestimates) it even more. Figs. 4(a)
and 4(b) show these two cases. Condition (3) rules
out the other two situations, shown in Figs. 4(c)
and 4(d), in which no constraint on the metric can be
stated for the same reasons mentioned in Remark 1.

Come on you’re kidding! 

!  All this and then such a stupid axiom???? 

Ok, ok. Second Axiom 

α σ σ’

(a) Overestimated

α σ σ’

(b) Underestimated

α σ σ’

(c) Divergent

α σ σ’

(d) Divergent

Figure 4: Two systems with di�erent similarity to �

6.2.2 Di�erent documents

We now turn to compare a system measurement for
two documents d and d�. Let us assume, without loss
of generality, that d is more relevant than d� (�(d) >
�(d�)). We can consider two cases:
• simq,d (�,⇥) > simq,d� (�,⇥) (see Fig. 5(a));

• simq,d (�,⇥) < simq,d� (�,⇥) (Fig. 5(b)).
In the first case we have a smaller error in the more
relevant document and a larger error in less relevant
document. In such a case, no constraint can be stated
on the metric since, as it is often stated, earlier rank
positions are more important than later ones. Con-
versely, the second case allows to state some axioms.
We analyze it and we start by observing that, since
the system could overestimate or underestimate the
documents d and d�, the case of Fig. 5(b) can be sub-
divided into four cases:
• ⇥ overestimates both d and d� (see Fig. 6(a));

• ⇥ underestimates both d and d� (Fig. 6(b));

• ⇥ overestimates d and underestimates d�

(Fig. 6(c));

• ⇥ underestimates d and overestimates d�

(Fig. 6(d)).
Only the first two cases allow to express some con-

straints on the metric, again for the same reason of
Remark 1 (and 2). We analyze the first two cases.
Let us start by noting that: if ⇥ overestimates d then

sim (�(d�), ⇥(d)) < sim (�(d), �(d�)); (5)
if ⇥ underestimates d then

sim (�(d�), ⇥(d)) > sim (�(d), �(d�)); (6)

if ⇥ overestimates d� then

sim (�(d), ⇥(d�)) > sim (�(d), �(d�)); (7)

and if ⇥ underestimates d� then

sim (�(d), ⇥(d�)) < sim (�(d), �(d�)). (8)

We can now state the following two axioms. The
first concerns the case of Fig. 6(a).

α σ

d

d’

(a) Best similarity
top

α σ

d

d’

(b) Best similarity
bottom

Figure 5: Two documents with di�erent similarity

α σ

d

d’

(a) Both over-
estimated

α σ

d

d’

(b) Both
underestimated

α σ

d

d’

(c) Divergent

α σ

d

d’

(d) Divergent

Figure 6: Four possible cases

Axiom 6 (Overestimated documents). Let q be a
query, d and d� two document, � a human relevance
measurement and ⇥ a system relevance measurements
such that

�(d) > �(d�),
sim
q,d

(�,⇥) < sim
q,d�

(�,⇥)

and (5) and (7) hold (i.e., both d and d� are overesti-
mated), then

metric
q,d�

(�,⇥) > metric
q,d

(�,⇥).

The second axiom concerns the case of Fig. 6(b).

Axiom 7 (Underestimated documents). Let q be a
query, d and d� two documents, � a human relevance
measurement and ⇥ a system relevance measurements
such that

�(d) > �(d�),

⇥(d) > ⇥(d�), (9)
sim
q,d

(�,⇥) < sim
q,d�

(�,⇥),

and (6) and (8) hold (i.e., both d and d� are underes-
timated), then

metric
q,d�

(�,⇥) > metric
q,d

(�,⇥).

Remark 3. The condition (9) rules out the critical
case in which both documents d and d� are underesti-
mated but there is a “swap” as shown in Fig. 7. In
such a case, although the similarity is higher for d�,
no constraint can be imposed on the metric, again for

"  (d is more relevant, sim on d is lower,  
then metric value on d has to be lower) 

"  d is both "more wrong" and "more 
visible" to the user 

α σ

d

d’

(a) Best similarity
top

α σ

d

d’

(b) Best similarity
bottom

Figure 5: Two documents with di↵erent similarity
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Figure 6: Four possible cases

• � overestimates both d and d0 (see Fig. 6(a));

• � underestimates both d and d0 (Fig. 6(b));

• � overestimates d and underestimates d0

(Fig. 6(c));

• � underestimates d and overestimates d0

(Fig. 6(d)).

Only the first two cases allow to express some con-
straints on the metric, again for the same reason of
Remark 1 (and 2). We analyze the first two cases.
Let us start by noting that: if � overestimates d then

sim (↵(d0), �(d)) < sim (↵(d), ↵(d0)); (6)
if � underestimates d then

sim (↵(d0), �(d)) > sim (↵(d), ↵(d0)); (7)

if � overestimates d0 then

sim (↵(d), �(d0)) > sim (↵(d), ↵(d0)); (8)

and if � underestimates d0 then

sim (↵(d), �(d0)) < sim (↵(d), ↵(d0)). (9)

We can now state the following two axioms. The
first concerns the case of Fig. 6(a).

Axiom 6 (Overestimated documents). Let q be a
query, d and d0 two document, ↵ a human relevance
measurement and � a system relevance measurements
such that

↵(d) > ↵(d0),
sim
q,d

(↵,�) < sim
q,d0

(↵,�)

and (6) and (8) hold (i.e., both d and d0 are overesti-
mated), then

metric
q,d

(↵,�) < metric
q,d0

(↵,�).

The second axiom concerns the case of Fig. 6(b).

Axiom 7 (Underestimated documents). Let q be a
query, d and d0 two documents, ↵ a human relevance
measurement and � a system relevance measurements
such that

↵(d) > ↵(d0),

�(d) > �(d0), (10)
sim
q,d

(↵,�) < sim
q,d0

(↵,�),

and (7) and (9) hold (i.e., both d and d0 are underes-
timated), then

metric
q,d0

(↵,�) > metric
q,d

(↵,�).

Remark 3. The condition (10) rules out the critical
case in which both documents d and d0 are underesti-
mated but there is a “swap” as shown in Fig. 7. In
such a case, although the similarity is higher for d0,
no constraint can be imposed on the metric, again for
the reason of Remark 1 about top rank positions. In
Axiom 6, this additional condition is not necessary,
because if both documents are overestimated and sim-
ilarity is higher for the less relevant document, then
no swap is possible.

α σ
d
d’

Figure 7: Critical situation

In the following we will need to write that a met-
ric value is more a↵ected by a document d than by
another document d0. Formally, we define:

Definition 1. We write that

d Ametric(↵,�) d0

if and only if

| metric
q,D[{d}

(↵,�)�metric
q,D

(↵,�)| >

| metric
q,D[{d0}

(↵,�)�metric
q,D

(↵,�)|

(to be read as d a↵ects metric value more than d0).

Analogously, we will write d wmetric(↵,�) d0 and we
will also use @, v, and ⌘ with similar meanings. A
similar notation holds for queries.
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Ok, ok. Third Axiom 

the reason of Remark 1 about top rank positions. In
Axiom 6, this additional condition is not necessary,
because if both documents are overestimated and sim-
ilarity is higher for the less relevant document, then
no swap is possible.

α σ
d
d’

Figure 7: Critical situation

In the following we will need to write that a met-
ric value is more a�ected by a document d than by
another document d�. Formally, we define:

Definition 1. We write that

d Ametric(�,⇥) d�

if and only if

| metric
q,D⇥{d}

(�,⇥)�metric
q,D

(�,⇥)| >

| metric
q,D⇥{d�}

(�,⇥)�metric
q,D

(�,⇥)|

(to be read as d a�ects metric value more than d�).

Analogously, we will write d  metric(�,⇥) d� and we
will also use @, �, and ⇥ with similar meanings. A
similar notation holds for queries.

Axiom 8 (System relevance). Let q be a query, d
and d� two documents, � a human relevance measure-
ment and ⇥ a system relevance measurement such that
simq,d (�,⇥) = simq,d� (�,⇥), ⇥(d) > ⇥(d�), and

�(d) ⇤ �(d�). (10)

Then
d Ametric(�,⇥) d�.

This means that if system relevance measures on
two documents d and d� are equally correct, and sys-
tem relevance of d is higher than system relevance of
d�, then the e�ectiveness metric should be more af-
fected by d than by d� (provided that d� is not less
relevant than d). As already mentioned, it is usually
stated that early rank positions a�ect a metric value
more than later rank positions. This can be derived as
a corollary of the previous axiom (that states a more
general principle, independent of the scales) simply
by taking scale(⇥) = JRankK.

A symmetric axiom can also be stated on user rel-
evance measurement: a metric should weigh more,
and be more a�ected, by more relevant documents.
This is perhaps less intuitive than the previous one,
but it does indeed seem natural in this framework.
Moreover, it is quite easy for an IRS to evaluate a non-
relevant document as non-relevant, since the vast ma-
jority of documents in the database are non-relevant.
Thus, an IRS stating that a non-relevant document
is non-relevant is somehow doing an “easy job”, and
should not be rewarded too much for it. On the other
hand it should be rewarded when correctly identifying
a relevant document. This is generalized and formal-
ized as follows.

Axiom 9 (User relevance). Let q be a query, d and
d� two documents, � a human relevance measurement
and ⇥ a system relevance measurement such that:
simq,d (�,⇥) = simq,d� (�,⇥), �(d) > �(d�), and

⇥(d) ⇤ ⇥(d�). (11)

Then
d Ametric(�,⇥) d�.

Remark 4. Conditions (10) in Axiom 8 and (11) in
Axiom 9 and are needed to rule out the case in which
the two axioms would result inconsistent.

Finally, the following axiom deals with the last
case.

Axiom 10 (Same relevance). Let q be a query, d
and d� two documents, � a human relevance mea-
surement and ⇥ a system relevance measurement such
that simq,d (�,⇥) = simq,d� (�,⇥). If ⇥(d) = ⇥(d�) and
�(d) = �(d�) then

d ⇥metric(�,⇥) d�.

6.3 Metrics

We now turn to the last set of axioms, that are specif-
ically about metrics.

The following axiom formalizes Swets’s properties
(see Sect. 2). To simplify its formulation we denote
by ⇧ the theoretically worst performance, i.e., the
relevance measure that gives the worst possible per-
formance according to a given assessor relevance mea-
sure.

Axiom 11 (Zero and maximum). An e�ectiveness
metric should have a true zero in 0 and a maxi-
mum value M . The theoretically worst (best) per-
formances ⇧ should give 0 (M) as the metric value.
As a normalization convention let M = 1 such that
⌅metric, range(metric) = [0, 1], metric (�,�) = 1, and
metric (�,⇧) = 0.

Axiom 12 (Document monotonicity). Let q be a
query, D and D� two sets of documents such that
D⌃D� = �, � a human relevance measurement and ⇥
and ⇥� two system relevance measurements such that:1

metric
q,D

(�,⇥) >
(=)

(>)

metric
q,D

(�,⇥�) (12)

and
metric

q,D�
(�,⇥) >

(=)

(=)

metric
q,D�

(�,⇥�). (13)

Then
metric
q,D⇥D�

(�,⇥) >
(=)

(>)

metric
q,D⇥D�

(�,⇥�). (14)

A similar axiom holds for queries, as follows.

Axiom 13 (Query monotonicity). Let Q and Q� be
two query sets such that Q ⌃Q� = �, D a document
set, � a human relevance measurement and ⇥ and ⇥�

two system relevance measurements such that:

metric
Q,D

(�,⇥) >
(=)

(>)

metric
Q,D

(�,⇥�)

1In this axiom the equal = and less than < signs have obviously
to be paired in the appropriate way, “row by row”. We use this
notation for the sake of brevity and to avoid to state three di�erent
and very similar axioms.

(document d affects the metric value more than d’) 

Meaning? 

!  Corollary: 
!  By taking scale(σ) = [[Rank]] we derive that:  

!  Early rank positions affect a metric value more 
than later rank positions 

!  IR metrics should be “top-heavy” 

!  Previous Axiom 8 states a more abstract/
general principle, independent of the scales 

Now, a last Axiom 

the reason of Remark 1 about top rank positions. In
Axiom 6, this additional condition is not necessary,
because if both documents are overestimated and sim-
ilarity is higher for the less relevant document, then
no swap is possible.

α σ
d
d’

Figure 7: Critical situation

In the following we will need to write that a met-
ric value is more a�ected by a document d than by
another document d�. Formally, we define:

Definition 1. We write that

d Ametric(�,⇥) d�

if and only if

| metric
q,D⇥{d}

(�,⇥)�metric
q,D

(�,⇥)| >

| metric
q,D⇥{d�}

(�,⇥)�metric
q,D

(�,⇥)|

(to be read as d a�ects metric value more than d�).

Analogously, we will write d  metric(�,⇥) d� and we
will also use @, �, and ⇥ with similar meanings. A
similar notation holds for queries.

Axiom 8 (System relevance). Let q be a query, d
and d� two documents, � a human relevance measure-
ment and ⇥ a system relevance measurement such that
simq,d (�,⇥) = simq,d� (�,⇥), ⇥(d) > ⇥(d�), and

�(d) ⇤ �(d�). (10)

Then
d Ametric(�,⇥) d�.

This means that if system relevance measures on
two documents d and d� are equally correct, and sys-
tem relevance of d is higher than system relevance of
d�, then the e�ectiveness metric should be more af-
fected by d than by d� (provided that d� is not less
relevant than d). As already mentioned, it is usually
stated that early rank positions a�ect a metric value
more than later rank positions. This can be derived as
a corollary of the previous axiom (that states a more
general principle, independent of the scales) simply
by taking scale(⇥) = JRankK.

A symmetric axiom can also be stated on user rel-
evance measurement: a metric should weigh more,
and be more a�ected, by more relevant documents.
This is perhaps less intuitive than the previous one,
but it does indeed seem natural in this framework.
Moreover, it is quite easy for an IRS to evaluate a non-
relevant document as non-relevant, since the vast ma-
jority of documents in the database are non-relevant.
Thus, an IRS stating that a non-relevant document
is non-relevant is somehow doing an “easy job”, and
should not be rewarded too much for it. On the other
hand it should be rewarded when correctly identifying
a relevant document. This is generalized and formal-
ized as follows.

Axiom 9 (User relevance). Let q be a query, d and
d� two documents, � a human relevance measurement
and ⇥ a system relevance measurement such that:
simq,d (�,⇥) = simq,d� (�,⇥), �(d) > �(d�), and

⇥(d) ⇤ ⇥(d�). (11)

Then
d Ametric(�,⇥) d�.

Remark 4. Conditions (10) in Axiom 8 and (11) in
Axiom 9 and are needed to rule out the case in which
the two axioms would result inconsistent.

Finally, the following axiom deals with the last
case.

Axiom 10 (Same relevance). Let q be a query, d
and d� two documents, � a human relevance mea-
surement and ⇥ a system relevance measurement such
that simq,d (�,⇥) = simq,d� (�,⇥). If ⇥(d) = ⇥(d�) and
�(d) = �(d�) then

d ⇥metric(�,⇥) d�.

6.3 Metrics

We now turn to the last set of axioms, that are specif-
ically about metrics.

The following axiom formalizes Swets’s properties
(see Sect. 2). To simplify its formulation we denote
by ⇧ the theoretically worst performance, i.e., the
relevance measure that gives the worst possible per-
formance according to a given assessor relevance mea-
sure.

Axiom 11 (Zero and maximum). An e�ectiveness
metric should have a true zero in 0 and a maxi-
mum value M . The theoretically worst (best) per-
formances ⇧ should give 0 (M) as the metric value.
As a normalization convention let M = 1 such that
⌅metric, range(metric) = [0, 1], metric (�,�) = 1, and
metric (�,⇧) = 0.

Axiom 12 (Document monotonicity). Let q be a
query, D and D� two sets of documents such that
D⌃D� = �, � a human relevance measurement and ⇥
and ⇥� two system relevance measurements such that:1

metric
q,D

(�,⇥) >
(=)

(>)

metric
q,D

(�,⇥�) (12)

and
metric

q,D�
(�,⇥) >

(=)

(=)

metric
q,D�

(�,⇥�). (13)

Then
metric
q,D⇥D�

(�,⇥) >
(=)

(>)

metric
q,D⇥D�

(�,⇥�). (14)

A similar axiom holds for queries, as follows.

Axiom 13 (Query monotonicity). Let Q and Q� be
two query sets such that Q ⌃Q� = �, D a document
set, � a human relevance measurement and ⇥ and ⇥�

two system relevance measurements such that:

metric
Q,D

(�,⇥) >
(=)

(>)

metric
Q,D

(�,⇥�)

1In this axiom the equal = and less than < signs have obviously
to be paired in the appropriate way, “row by row”. We use this
notation for the sake of brevity and to avoid to state three di�erent
and very similar axioms.

(document d affects the metric value more than d’) 

Meaning? 

!  A metric should weigh more, and be more 
affected, by more relevant documents 

!  "α top heavyness", "human top heavyness" 
!  Perhaps less intuitive than previous axiom,  
!  but it does indeed seem natural in the framework 
!  by symmetry (treat α as σ) 
!  To evaluate a nonrelevant document as 

nonrelevant is an easy job (the vast majority of 
documents in a collection are nonrelevant) 

Meaning? 

!  Consequence: linear gain values of 3, 2, 1, 0 
in NDCG (for H, R, P, N) can be questioned 
!  Exponential 100, 10, 1, 0 (or 4, 2, 1, 0) might be 

better 
!  (already proposed in the original paper, but not 

much used…) 
!  And "crazy" 100, 99, 90, 0 is wrong! 

A theorem 

and
metric
Q�,D

(�,⇥) >
(=)

(=)

metric
Q�,D

(�,⇥⇥).

Then
metric
Q⇤Q�,D

(�,⇥) >
(=)

(>)

metric
Q⇤Q�,D

(�,⇥⇥).

These two last axioms can also be interpreted as
constraints on the avgD and avgQ functions, respec-
tively.

7 Theorems

In this section we demonstrate that the axioms can in-
deed be used to derive further properties as theorems.
For space limitations, we show only a few theorems in
this section, and we sketch only one proof; however,
the general idea should be clear. We also omit sev-
eral corollaries that, as already hinted above, can be
derived for specific scales.

Theorem 1 (Unbalanced document). Let q be a
query, D a document set, d /⌅ D a document, � a
human relevance measurement and ⇥ and ⇥⇥ two sys-
tem relevance measurements such that

metric
q,D

(�,⇥) > metric
q,D

(�,⇥⇥) (15)

and
metric
q,D⇤{d}

(�,⇥) � metric
q,D⇤{d}

(�,⇥⇥) (16)

(i.e., ⇥ is more e�ective, according to the metric, than
⇥⇥ on D and the situation is reversed on D ⌥ {d}).
Then

metric
q,d

(�,⇥) < metric
q,d

(�,⇥⇥) (17)

(i.e., ⇥ has to be less e�ective on q as well).

Proof. Let us start by noting that (15) corresponds
to (the first or third row of) (12). Now, by way of
contradiction let us assume that the conclusion (17)
does not hold, i.e.,

metric
q,d

(�,⇥) ⇥ metric
q,d

(�,⇥⇥).

This corresponds to (13), with D⇥ = {d}, and with
either > or =. In both cases, Axiom 12 entails that

metric
q,D⇤{d}

(�,⇥) > metric
q,D⇤{d}

(�,⇥⇥)

((14) with D⇥ = {d}), which contradicts (16).

A similar theorem, with similar proof (omitted),
holds for queries, as follows.

Theorem 2 (Unbalanced query). Let Q be a query
set, q /⌅ Q a query, D a document set, � a human
relevance measurement and ⇥ and ⇥⇥ two system rel-
evance measurements such that

metric
Q,D

(�,⇥) > metric
Q,D

(�,⇥⇥)

and
metric

Q⇤{q},D
(�,⇥) � metric

Q⇤{q},D
(�,⇥⇥).

Then
metric

q,D
(�,⇥) < metric

q,D
(�,⇥⇥).

Theorem 3 (Consistent subdocument set). Let Q be
a query set, D a document set, � a human relevance
measurement and ⇥ and ⇥⇥ two system relevance mea-
surements such that

metric
Q,D

(�,⇥) > metric
Q,D

(�,⇥⇥).

Then

⌃S ⇤ D | metric
Q,S

(�,⇥) > metric
Q,S

(�,⇥⇥)

(i.e., if ⇥ is more e�ective than ⇥⇥ on D, it has to be
more e�ective on a subset of D as well).

Remark 5. Recursively applying this theorem we can
derive that there is always at least one document in
D that is consistent with D. A similar theorem holds
for query sets as well.

Theorem 4. Let Q be a query set, D a document
set, � a human relevance measurement and ⇥ and ⇥⇥

two system relevance measurements such that

⇧q ⌅ Q, d ⌅ D,metric
q,d

(�,⇥) > metric
q,d

(�,⇥⇥).

Then
metric

Q,D
(�,⇥) > metric

Q,D
(�,⇥⇥)

Theorem 5 (Monotonicity of documents subsets).
Let q be a query, D a document set, S a subset of D,
� a human relevance measurement and ⇥ a system
relevance measurement such that

⇧d ⌅ S, d⇥ ⌅ D\S, metric
q,d

(�,⇥) >
(�)

metric
q,d�

(�,⇥).

Then

⇧d⇥ ⌅ D\S, metric
q,S

(�,⇥) >
(�)

metric
q,S⇤{d�}

(�,⇥).

Remark 6. A similar theorem can be stated on
queries.

8 Conclusions and Future Work

Building on measure, measurement, and similarity,
we have defined a framework that has been tested by
using it to define some axioms and to derive some the-
orems on IR e�ectiveness metrics. Our contribution
is threefold: (i) the proposal of using measurement
to model in a uniform way both system output and
human relevance assessment, and the analysis of the
di�erent measurement scales used in IR; (ii) the no-
tions of similarity among di�erent measurement scales
and the consequent definition of metric; and (iii) the
axioms and theorems.

A future direction concerns the measurement
scales: we proposed a set of scales specific for IR,
and this proposal has been adequate for this paper;
however, the literature on measurement scales is quite
rich, and the IR case should perhaps be linked more
carefully with it.

For space limitations we have omitted axioms on
diversity, novelty and session metrics, as well as met-
rics taking into account the notion of di⇤culty /
ease of query and documents (something is hinted in
(Busin & Mizzaro 2013)). Strictness of an e�ective-
ness metric is another interesting property: a metric
is strict if having a high value of it implies that also
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A theorem 
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These two last axioms can also be interpreted as
constraints on the avgD and avgQ functions, respec-
tively.

7 Theorems

In this section we demonstrate that the axioms can in-
deed be used to derive further properties as theorems.
For space limitations, we show only a few theorems in
this section, and we sketch only one proof; however,
the general idea should be clear. We also omit sev-
eral corollaries that, as already hinted above, can be
derived for specific scales.

Theorem 1 (Unbalanced document). Let q be a
query, D a document set, d /⌅ D a document, � a
human relevance measurement and ⇥ and ⇥⇥ two sys-
tem relevance measurements such that
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(i.e., ⇥ has to be less e�ective on q as well).

Proof. Let us start by noting that (15) corresponds
to (the first or third row of) (12). Now, by way of
contradiction let us assume that the conclusion (17)
does not hold, i.e.,
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A similar theorem, with similar proof (omitted),
holds for queries, as follows.

Theorem 2 (Unbalanced query). Let Q be a query
set, q /⌅ Q a query, D a document set, � a human
relevance measurement and ⇥ and ⇥⇥ two system rel-
evance measurements such that
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a query set, D a document set, � a human relevance
measurement and ⇥ and ⇥⇥ two system relevance mea-
surements such that
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Then
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(i.e., if ⇥ is more e�ective than ⇥⇥ on D, it has to be
more e�ective on a subset of D as well).

Remark 5. Recursively applying this theorem we can
derive that there is always at least one document in
D that is consistent with D. A similar theorem holds
for query sets as well.

Theorem 4. Let Q be a query set, D a document
set, � a human relevance measurement and ⇥ and ⇥⇥

two system relevance measurements such that
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Theorem 5 (Monotonicity of documents subsets).
Let q be a query, D a document set, S a subset of D,
� a human relevance measurement and ⇥ a system
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8 Conclusions and Future Work

Building on measure, measurement, and similarity,
we have defined a framework that has been tested by
using it to define some axioms and to derive some the-
orems on IR e�ectiveness metrics. Our contribution
is threefold: (i) the proposal of using measurement
to model in a uniform way both system output and
human relevance assessment, and the analysis of the
di�erent measurement scales used in IR; (ii) the no-
tions of similarity among di�erent measurement scales
and the consequent definition of metric; and (iii) the
axioms and theorems.

A future direction concerns the measurement
scales: we proposed a set of scales specific for IR,
and this proposal has been adequate for this paper;
however, the literature on measurement scales is quite
rich, and the IR case should perhaps be linked more
carefully with it.

For space limitations we have omitted axioms on
diversity, novelty and session metrics, as well as met-
rics taking into account the notion of di⇤culty /
ease of query and documents (something is hinted in
(Busin & Mizzaro 2013)). Strictness of an e�ective-
ness metric is another interesting property: a metric
is strict if having a high value of it implies that also

on the query set  Q and the 
document collection  D, and given 
the human relevance judgment α, 
σ is more effective than σ’ 

we add a new query q and then σ 
becomes less effective than σ’ 

σ is less effective than σ’ also on 
the new query q 

When we can’t say anything 
(i.e., we can’t state an axiom) 

GMAP can be defined in an equivalent way as the
average of logarithms:

GMAPQ,D(�,⇥) =
1

|Q|
�

q⇥Q

log APq(�,⇥),

and logitAP and yaAP definitions are similar. The
definition of Precision@n and R-Prec on the basis of
the same sim function is also straightforward.

6 Axioms

We now can list some axioms: they define properties
that, ceteris paribus, any e�ectiveness metric should
satisfy. Axioms can also be interpreted as a set of
constraints on a search space. We formalize as ax-
ioms the properties of similarity between relevance
measurements (Subsection 6.1), we then present some
axioms that define the relationships between similar-
ity and metrics (Subsection 6.2), and we then present
metric-specific axioms (Subsection 6.3).

6.1 Similarity

The first axioms represent basic constraints on simi-
larity, and metrics are not concerned yet.

Axiom 1 (Similarity of documents). Let q be a query,
d and d� two documents, � a human relevance mea-
surement and ⇥ a system relevance measurement such
that �(q, d) = �(q, d�) and ⇥(q, d) = ⇥(q, d�). Then

sim
q,d

(�,⇥) = sim
q,d�

(�,⇥).

Axiom 2 (Similarity of queries). Let q and q� be two
queries, d a document, � a human relevance measure-
ment and ⇥ a system relevance measurement such that
�(q, d) = �(q�, d) and ⇥(q, d) = ⇥(q�, d). Then

sim
q,d

(�,⇥) = sim
q�,d

(�,⇥).

Axiom 3 (Similarity of two systems). Let q be a
query, d a document, � a human relevance measure-
ment and ⇥ and ⇥� two system relevance measure-
ments such that

⇥(q, d) = ⇥�(q, d). (1)

Then
sim
q,d

(�,⇥) = sim
q,d

(�,⇥�). (2)

Let us remark that (2) does not entail (1). Dia-
grams like those in Fig. 3 can be helpful to intuitively
understand the situation: Figs. 3(a) and 3(b) repre-
sent the cases in which ⇥ and ⇥� respectively overesti-
mate and underestimate (or vice-versa) d by the same
amount; then the similarity (represented in the figure
by the two arcs on the right) of the two systems is the
same, but obviously (1) does not hold. Conversely, as
stated by the axiom, when (1) holds then (2) holds as
well (Figs. 3(c) and 3(d)).

6.2 From Similarity to Metric

6.2.1 Di�erent systems

The following axiom sets a constraint on the metric in
one of the two last cases of Fig. 3 (Figs. 3(c) and 3(d)).

α σ σ’

(a) Divergent

α σ σ’

(b) Divergent

α σ σ’

(c) Overestimate

α σ σ’

(d) Underestimate

Figure 3: Two systems having equal similarity to �

Axiom 4 (Systems with equal e�ectiveness). Let q
be a query, d a document, � a human relevance mea-
surement and ⇥ and ⇥� two system relevance measure-
ments such that

⇥(q, d) = ⇥�(q, d).

Then
metric

q,d
(�,⇥) = metric

q,d
(�,⇥�).

Remark 1. Note that by using, in this axiom, a con-
dition like (1) and not like (2) the first two cases of
Fig. 3 are ruled out, and indeed in those cases we
cannot state any constraint on the metric: a recall-
oriented metric would give a higher value to a system
overestimating all the documents (retrieving all doc-
uments means that recall is 1), whereas a precision-
oriented metric would do the opposite.

Axiom 5 (Systems with di�erent e�ectiveness). Let
q be a query, d a document, � a human relevance
measurement and ⇥ and ⇥� two system relevance mea-
surements such that

sim
q,d

(�,⇥) > sim
q,d

(�,⇥�) (3)

and
sim
q,d

(⇥,⇥�) > sim
q,d

(�,⇥�). (4)

Then
metric

q,d
(�,⇥) > metric

q,d
(�,⇥�).

Remark 2. Condition (3) means that ⇥ is less wrong
than ⇥�. The combination of (3) and (4) means that
the two systems are wrong in the same direction: if
⇥ overestimates (underestimates) d, then ⇥� overes-
timates (underestimates) it even more. Figs. 4(a)
and 4(b) show these two cases. Condition (3) rules
out the other two situations, shown in Figs. 4(c)
and 4(d), in which no constraint on the metric can be
stated for the same reasons mentioned in Remark 1.

α σ σ’

(a) Overestimated

α σ σ’

(b) Underestimated

α σ σ’

(c) Divergent

α σ σ’

(d) Divergent

Figure 4: Two systems with di�erent similarity to �

6.2.2 Di�erent documents

We now turn to compare a system measurement for
two documents d and d�. Let us assume, without loss
of generality, that d is more relevant than d� (�(d) >
�(d�)). We can consider two cases:
• simq,d (�,⇥) > simq,d� (�,⇥) (see Fig. 5(a));

• simq,d (�,⇥) < simq,d� (�,⇥) (Fig. 5(b)).
In the first case we have a smaller error in the more
relevant document and a larger error in less relevant
document. In such a case, no constraint can be stated
on the metric since, as it is often stated, earlier rank
positions are more important than later ones. Con-
versely, the second case allows to state some axioms.
We analyze it and we start by observing that, since
the system could overestimate or underestimate the
documents d and d�, the case of Fig. 5(b) can be sub-
divided into four cases:
• ⇥ overestimates both d and d� (see Fig. 6(a));

• ⇥ underestimates both d and d� (Fig. 6(b));

• ⇥ overestimates d and underestimates d�

(Fig. 6(c));

• ⇥ underestimates d and overestimates d�

(Fig. 6(d)).
Only the first two cases allow to express some con-

straints on the metric, again for the same reason of
Remark 1 (and 2). We analyze the first two cases.
Let us start by noting that: if ⇥ overestimates d then

sim (�(d�), ⇥(d)) < sim (�(d), �(d�)); (5)
if ⇥ underestimates d then

sim (�(d�), ⇥(d)) > sim (�(d), �(d�)); (6)

if ⇥ overestimates d� then

sim (�(d), ⇥(d�)) > sim (�(d), �(d�)); (7)

and if ⇥ underestimates d� then

sim (�(d), ⇥(d�)) < sim (�(d), �(d�)). (8)

We can now state the following two axioms. The
first concerns the case of Fig. 6(a).

α σ

d

d’

(a) Best similarity
top

α σ

d

d’

(b) Best similarity
bottom

Figure 5: Two documents with di�erent similarity
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d
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estimated

α σ

d

d’

(b) Both
underestimated

α σ

d

d’

(c) Divergent

α σ

d

d’

(d) Divergent

Figure 6: Four possible cases

Axiom 6 (Overestimated documents). Let q be a
query, d and d� two document, � a human relevance
measurement and ⇥ a system relevance measurements
such that

�(d) > �(d�),
sim
q,d

(�,⇥) < sim
q,d�

(�,⇥)

and (5) and (7) hold (i.e., both d and d� are overesti-
mated), then

metric
q,d�

(�,⇥) > metric
q,d

(�,⇥).

The second axiom concerns the case of Fig. 6(b).

Axiom 7 (Underestimated documents). Let q be a
query, d and d� two documents, � a human relevance
measurement and ⇥ a system relevance measurements
such that

�(d) > �(d�),

⇥(d) > ⇥(d�), (9)
sim
q,d

(�,⇥) < sim
q,d�

(�,⇥),

and (6) and (8) hold (i.e., both d and d� are underes-
timated), then

metric
q,d�

(�,⇥) > metric
q,d

(�,⇥).

Remark 3. The condition (9) rules out the critical
case in which both documents d and d� are underesti-
mated but there is a “swap” as shown in Fig. 7. In
such a case, although the similarity is higher for d�,
no constraint can be imposed on the metric, again for

Why we can’t say anything 

“P-oriented” 
“R-oriented” “Top-heavy” 

GMAP can be defined in an equivalent way as the
average of logarithms:

GMAPQ,D(�,⇥) =
1

|Q|
�

q⇥Q

log APq(�,⇥),

and logitAP and yaAP definitions are similar. The
definition of Precision@n and R-Prec on the basis of
the same sim function is also straightforward.

6 Axioms

We now can list some axioms: they define properties
that, ceteris paribus, any e�ectiveness metric should
satisfy. Axioms can also be interpreted as a set of
constraints on a search space. We formalize as ax-
ioms the properties of similarity between relevance
measurements (Subsection 6.1), we then present some
axioms that define the relationships between similar-
ity and metrics (Subsection 6.2), and we then present
metric-specific axioms (Subsection 6.3).

6.1 Similarity

The first axioms represent basic constraints on simi-
larity, and metrics are not concerned yet.

Axiom 1 (Similarity of documents). Let q be a query,
d and d� two documents, � a human relevance mea-
surement and ⇥ a system relevance measurement such
that �(q, d) = �(q, d�) and ⇥(q, d) = ⇥(q, d�). Then

sim
q,d

(�,⇥) = sim
q,d�

(�,⇥).

Axiom 2 (Similarity of queries). Let q and q� be two
queries, d a document, � a human relevance measure-
ment and ⇥ a system relevance measurement such that
�(q, d) = �(q�, d) and ⇥(q, d) = ⇥(q�, d). Then

sim
q,d

(�,⇥) = sim
q�,d

(�,⇥).

Axiom 3 (Similarity of two systems). Let q be a
query, d a document, � a human relevance measure-
ment and ⇥ and ⇥� two system relevance measure-
ments such that

⇥(q, d) = ⇥�(q, d). (1)

Then
sim
q,d

(�,⇥) = sim
q,d

(�,⇥�). (2)

Let us remark that (2) does not entail (1). Dia-
grams like those in Fig. 3 can be helpful to intuitively
understand the situation: Figs. 3(a) and 3(b) repre-
sent the cases in which ⇥ and ⇥� respectively overesti-
mate and underestimate (or vice-versa) d by the same
amount; then the similarity (represented in the figure
by the two arcs on the right) of the two systems is the
same, but obviously (1) does not hold. Conversely, as
stated by the axiom, when (1) holds then (2) holds as
well (Figs. 3(c) and 3(d)).

6.2 From Similarity to Metric

6.2.1 Di�erent systems

The following axiom sets a constraint on the metric in
one of the two last cases of Fig. 3 (Figs. 3(c) and 3(d)).

α σ σ’

(a) Divergent

α σ σ’

(b) Divergent

α σ σ’

(c) Overestimate

α σ σ’

(d) Underestimate

Figure 3: Two systems having equal similarity to �

Axiom 4 (Systems with equal e�ectiveness). Let q
be a query, d a document, � a human relevance mea-
surement and ⇥ and ⇥� two system relevance measure-
ments such that

⇥(q, d) = ⇥�(q, d).

Then
metric

q,d
(�,⇥) = metric

q,d
(�,⇥�).

Remark 1. Note that by using, in this axiom, a con-
dition like (1) and not like (2) the first two cases of
Fig. 3 are ruled out, and indeed in those cases we
cannot state any constraint on the metric: a recall-
oriented metric would give a higher value to a system
overestimating all the documents (retrieving all doc-
uments means that recall is 1), whereas a precision-
oriented metric would do the opposite.

Axiom 5 (Systems with di�erent e�ectiveness). Let
q be a query, d a document, � a human relevance
measurement and ⇥ and ⇥� two system relevance mea-
surements such that

sim
q,d

(�,⇥) > sim
q,d

(�,⇥�) (3)

and
sim
q,d

(⇥,⇥�) > sim
q,d

(�,⇥�). (4)

Then
metric

q,d
(�,⇥) > metric

q,d
(�,⇥�).

Remark 2. Condition (3) means that ⇥ is less wrong
than ⇥�. The combination of (3) and (4) means that
the two systems are wrong in the same direction: if
⇥ overestimates (underestimates) d, then ⇥� overes-
timates (underestimates) it even more. Figs. 4(a)
and 4(b) show these two cases. Condition (3) rules
out the other two situations, shown in Figs. 4(c)
and 4(d), in which no constraint on the metric can be
stated for the same reasons mentioned in Remark 1.

α σ σ’

(a) Overestimated

α σ σ’

(b) Underestimated

α σ σ’

(c) Divergent

α σ σ’

(d) Divergent

Figure 4: Two systems with di�erent similarity to �

6.2.2 Di�erent documents

We now turn to compare a system measurement for
two documents d and d�. Let us assume, without loss
of generality, that d is more relevant than d� (�(d) >
�(d�)). We can consider two cases:
• simq,d (�,⇥) > simq,d� (�,⇥) (see Fig. 5(a));

• simq,d (�,⇥) < simq,d� (�,⇥) (Fig. 5(b)).
In the first case we have a smaller error in the more
relevant document and a larger error in less relevant
document. In such a case, no constraint can be stated
on the metric since, as it is often stated, earlier rank
positions are more important than later ones. Con-
versely, the second case allows to state some axioms.
We analyze it and we start by observing that, since
the system could overestimate or underestimate the
documents d and d�, the case of Fig. 5(b) can be sub-
divided into four cases:
• ⇥ overestimates both d and d� (see Fig. 6(a));

• ⇥ underestimates both d and d� (Fig. 6(b));

• ⇥ overestimates d and underestimates d�

(Fig. 6(c));

• ⇥ underestimates d and overestimates d�

(Fig. 6(d)).
Only the first two cases allow to express some con-

straints on the metric, again for the same reason of
Remark 1 (and 2). We analyze the first two cases.
Let us start by noting that: if ⇥ overestimates d then

sim (�(d�), ⇥(d)) < sim (�(d), �(d�)); (5)
if ⇥ underestimates d then

sim (�(d�), ⇥(d)) > sim (�(d), �(d�)); (6)

if ⇥ overestimates d� then

sim (�(d), ⇥(d�)) > sim (�(d), �(d�)); (7)

and if ⇥ underestimates d� then

sim (�(d), ⇥(d�)) < sim (�(d), �(d�)). (8)

We can now state the following two axioms. The
first concerns the case of Fig. 6(a).

α σ

d

d’

(a) Best similarity
top

α σ

d

d’

(b) Best similarity
bottom

Figure 5: Two documents with di�erent similarity
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Figure 6: Four possible cases

Axiom 6 (Overestimated documents). Let q be a
query, d and d� two document, � a human relevance
measurement and ⇥ a system relevance measurements
such that

�(d) > �(d�),
sim
q,d

(�,⇥) < sim
q,d�

(�,⇥)

and (5) and (7) hold (i.e., both d and d� are overesti-
mated), then

metric
q,d�

(�,⇥) > metric
q,d

(�,⇥).

The second axiom concerns the case of Fig. 6(b).

Axiom 7 (Underestimated documents). Let q be a
query, d and d� two documents, � a human relevance
measurement and ⇥ a system relevance measurements
such that

�(d) > �(d�),

⇥(d) > ⇥(d�), (9)
sim
q,d

(�,⇥) < sim
q,d�

(�,⇥),

and (6) and (8) hold (i.e., both d and d� are underes-
timated), then

metric
q,d�

(�,⇥) > metric
q,d

(�,⇥).

Remark 3. The condition (9) rules out the critical
case in which both documents d and d� are underesti-
mated but there is a “swap” as shown in Fig. 7. In
such a case, although the similarity is higher for d�,
no constraint can be imposed on the metric, again for

Hopefully you got the point 
!  By relying on measurement theory, 
!  one can define relevance measurement, 
!  that in turn allows to define similarity 

between (human and system) 
measurements, 

!  that in turn allows to define Axioms and 
Theorems on metrics 

!  that seem somehow interesting 
!  not (always) trivial, more general, even inspiring 

… 

Outline + wrap-up 
!  Evaluation [5’] 

!  Yes, it's complex! 
!  Measures / metrics [15’] 

!  Oh dear, so many metrics? 
!  Measurement theory [15’] 

!  Maybe a useful tool… 
!  Metrics analysis [5’] 

!  Are we doing it wrong?! 
!  Axiometrics framework [15’] 

!  Attempt to shift focus from metric A vs. B to metric 
properties 
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