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Machine Learning is one of the core tools of IR
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Web Images Videos Maps News Explore

10,900,000 RESULTS Narrow by language v Narrow by region

Thessaloniki Hotels - Visiting Thessaloniki?
Ad - www.tripadvisor.co.uk
Visiting Thessaloniki? Find Deals & Read Hotel Reviews!

Thessaloniki - Wikipedia, the free encyclopedia

en.wikipedia.org/wiki/Thessaloniki v

Thessaloniki, also known in English as Thessalonica, Salonika or Salonica, is the
second-largest city in Greece and the capital of Greek Macedonia, the administrative ...

Etymology - History - Geography - Government - Cityscape - Economy

Thessaloniki, Greece - Lonely Planet
www.lonelyplanet.com » ... » Greece » Northern Greece » Macedonia v

Immensely likable Thessaloniki (thess-ah-lo-nee-kih) has never been more fun, cultured

or affordable than it is right now. Greece's second city has excellent ...
Highlights - Entertainment - Restaurants - Sights - Transport
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Farly work on news classification

-

Classifying News Stories using Memory Based Reasoning

Brij Masand, Gordon Linoff, David Waltz"

Thinking Machines Corporation
245 First Street, Cambridge, Massachusetts, 02142 USA

1 Abstract

We describe a method for classifying news stories using
Memory Based Reasoning (MBR) (a k-nearest neighbor
method), that does not requirec manual topic definitions.
Using an already coded training database of about 50,000
stories from the Dow Jones Press Release News Wire, and
SEEKER ([Stanfill] (a text retrieval system that supports rel-
cvance feedback) as the underlying match engine, codes are
assigned to new, unseen stories with a recall of about 80%
and precision of about 70%. There are about 350 different
codes to be assigned. Using a massively parallel supercom-
puter, we leverage the information already contained in the
thousands of coded stories and are able to code a story in
about 2 seconds.! Given SEEKER, the text retrieval system,
we achieved these results in about two person-months. We
believe this approach is effective in reducing the develop-

ment time 10 imglemcm classification systems involving
L=2

“n Int’l SIGIR “82/Denmark-6/92

[Masand et al. ‘92] acm 0-89791-524-0/92/0006/0059...$1.50

tasks such as extraction of relational information from text
[Young] [Jacobs].

Alternative systems [Biebricher] [Lewis] use statistical
approaches such as conditional probabilities on summary
representations of the documents. One problem with statisti-
cal representations of the training database is the high
dimensionality of the training space, generally at least 150k
unique single features -- or words. Such a large feature
space makes it difficult to compute probabilities involving
conjunctions or co-occurrence of features. It also makes the
application of ncural networks a daunting task. We describe
a new approach for classifying news stories using their full
text that achieves high recall and at least moderate precision
without requiring manual definitions of the various topics,
as required by most of the earlier approaches.

Section 3 describes the problem; Section 4, the main results
and Section S reviews MBR. The classification algorithm
and variations of parameters are described in Sections 7 - 9
and we conclude with a discussion of results and future




Approach and results

Approach: k-nearest neighbor (knn)

FIGURE 2 Sample News Story and Codes

Requires document representation (here:

0023000PR PR 910820 single words — stop / frequent words +

I/AUT I/CPR VELQ M/CYC M/IDU M/TEC " ' ire™ di ' .
R R/FE RAGE NVIA B/AMI RPRM R/TX RIWED cap'ltal pairs ), dlstance'metrlc (here:
Euclidean distance), choice of k

Suggested Codes: = system suggested .
« = editor assigned Results: > 80 % precision / recall,
" - . . .« .
3001 MDY Tt huge increase in efficiency (months vs. years)
*3991 VELQ  Electrical Components & Equipment
*3067 R/MJA  Japan FIGURES Variation by Threshold for
*2813 M/TEC Technology Industry Codes, k=10

* 2813 M/CYC Consumer, Cyclical

* 2813 I/CPR  Computers

*2813 VAUT Automobile Manufacturers
2460 P/MCR Mainframes
1555 R/CA  California
1495 M/UTI Utlities

*1285 R/MI  Michigan

*1178 R/PRM Pacific Rim

*1175 R/EU  Europe

“DAIMLER-BENZ UNIT SIGNS 511,000,000 AGREE- : A S

MENT FOR HITATCHI DATA SYSTEMS DISK DRIVES” P e U 1 A
SANTA CLARA, Callf.-=-(BUSINESS WIRE)--Debis Sys= Threshold
temhaus GmbH, a 100 percent subsidiary of Daim- ~———=& Precision

[Masand et al. ‘92] 9"ed & contract to purchase




An alternative approach

Training Algorithms for Linear Text Classifiers

David D. Lewis Robert E. Schapire James P. Callan Ron Papka
AT&T Laboratories Center for Intelligent Information Retrieval
Murray Hill, NJ 07974 USA Department of Computer Science
{leuns, schapire} @research.att.com University of Massachusetts

Ambherst, MA 01003 USA
{ callan, papka}@cs.umass.edu

Abstract are better understood from a theoretical standpoint, lead-

ing to performance guarantees and guidance on parameter
Systems for text retrieval, routing, categorization and other settings. In addition, we show experimentally that Widrow-
IR tasks rely heavily on linear classifiers. We propose that Hoff and EG are more effective than Rocchio on both routing

two machine learning algorithms, the Widrow-Hoff and EG and categorization tasks.

algorithms, be used in training linear text classifiers. In con-

trast to most IR methods, theoretical analysis provides per- 2 Linear Functions in IR

formance guarantees and guidance on parameter settings for

these algorithms. Experimental data is presented showing IR systems often represent texts as featu ¢ that i
Widrow-Hoff and EG to be more effective than the widely tuplza of valuea:n P Jomiwes. wactors, -

used Rocchio algorithm on several categorization and rout-

T Tee x=(xl!zzv"°9:‘)




Approach

Linear, model-based learning
Given training instances of the form x = (xy, x5, ... x4), learn a linear model:

d
f(x) =w-x=ijxj
j=1

Training algorithm uses stochastic gradient descent, using the update rule:

Wiy1 = W; —2n(wW; - X; — yi)X;

(stochastic because a single sample x; is used in each update step i;
gradient descent because 2(w; - x; — y;)x; is the gradient dL(w)/ow;;

L is a loss or cost function, here: L(w) = % m.w; - x; — y)?% n = learning rate)

Called “least mean squares” or Widrow-Hoff (WH) learning rule. Compared to
Rocchio and exponentiated gradient (EG) learning rules

[Lewis et al. '96]



Results

Data Set Num Num WIT vs. Rocchio EG vs. Rocchio
Training | DocRep Classes | Features Wins Mean Fy Wins Mean
Al Headline Categorization
10000  bin 20 40820 16 >4 (.45 > .33) 16 >4 (.44 > .33)
10000 if x udf 20 40820 14>76 (48 > 44) | [10 =710 (.44 > .44))
142791  bin 20 40820 15 > 5 (.57 > .40) 18 > 2 (.55 > .40)
142791 tf x udf 20 40820 13 >77 (.58 > .52) [14 >7 6 (.55 > .52))
AP Body Categonization
10000  bin 20 264836 18> 2 (48 > .25) 18 >2 (52> .25)
100000 tf x wdf 20 264836 15 > 5 (.60 > .50} | [10 =7 10 (.52 > .50)]
142791  bin 20 264836 18 > 2 (.65 > .33) 18 > 2 (.61 > .33)
142791 tf x idf 20 264836 16 >4 (72> .63) | [9<711 (.61 <.63)]
OHSUMED Title Categorization (big categories)
10000  bin 49 64781 48> 1 (.29 > .15) 47>2 (29> .15)
10000 ¢f x idf 49 64781 41 > 7 (.34 > .29) | [30 >7 19 (.29 > .29)]
183229  bin 49 64781 47 > 2 (.53 > .26) 48 > 1 (.51 > .26)
183209  ¢f » idf 19 64781 32 > 17 (51> A7) | [36 > 14 (.51 > A4T)]
OHSUMED Title Categorization (small categories)
10000 bin 28 64781 15>4 (04> .02) 23 >3 (.03 >.02)
10000 &f x ddf 28 64781 21 >1 (.06 > .03) [20 > 7 (.03 > .03)]
183229  bin 28 64781 2 >0 (43> .22) 27> 0 (46> .42)
183299  tf x idf 28 64781 | 16> 10 (43> 41) | [21 >4 (46 > .41)]
OHSUMED Abstract Categorization (big categories)
10000 bin 49 135531 45 >4 (.16 > .07) 49 >0 (.27 > .07)
10000 tf x idf 49 135531 45 >4 (28> .18) | [43>6 (27> .18)]
183229  bin 49 135531 49 >0 (.51 >.13) 48 >1 (.50 > .13)
183200  tf x idf 49 135531 44 >5 (55> .44) | [34 > 15 (.50 > .44)]
OHSUMELD Abstract Categorization (small categories)
10000  bin 28 135531 13>1 (.01 >.00) 24> 1  (.02>.00)
10000 ¢f x idf 28 135531 11>1 (03>.000] [24>1 (02> .00)]
183229 bin 28 135531 22 >3 (.29 >.10) 26 >0 (.39 > .10)
183299 tf x idf 28 135531 | 15> 12 (.39 > .33) | (156> 12 (.39 > .33)]
TREC Document Routing (topu:‘.s 51-100)
varies INQUERY Q-+50 34 >16 (.28 > .22) 42 > 8 (.36 > .22)
varies INQUERY 50 Q+1000 | 41>9 (16>.06) | 49>1 (.36 > .06)
TREC Document Routing (toplt:a 101-150)
varies INQUERY Q+50 | 13<?37 (23<.29)| 38>11 (.35>.29)
varies INQUERY 50 Q41000 | 36 > 14 (.13 > .07) 48 > 2 (.19 > .07)

Gradient updates for
WH and EG
theoretically well-
motivated (provide
performance
guarantees)

Outperform Rocchio
(relevance feedback)
empirically

Table 4: Pairwise comparisons of WH vs. Roechio, and EG vs. Rocchio. For each condition we show data set, training set
size, document representation, number of classes, and number of features. Wins shows the number of classes for which each
algorithm had a higher Fy value. Rocchio is significantly worse by one-tailed sign test unless a “?" is shown. Mean F} is the

mean value of F across all classes for each algorithm. Results for EG vs. Rocchio on a f x idf representation are bracketed

“I" to indicate that EG was actually run on a binary representation.

[Lewis et al. '96]



Comparing linear model and knn

Linear model: strong
assumptions on global structure

Linear Regression of 0/1 Response

FIGURE 2.1. A classification ezample in two dimensions. The classes are coded
as a binary variable (ELUE = 0, DRANGE = 1), and then fit by linear regression.
The line is the decision boundary defined by ¥ 3 = 0.5. The orange shaded region
denotes that part of input space classified as 0RANGE, while the blue region is
classified as BLUE.

Image from [Hastie et al. '09]

... but we can fit higher-order

polynomials:

::::::::::::

Image from [Ng '15]

------




Comparing linear model and knn

knn: uses only local structure .. larger k smooth decision
boundaries:

1-Nearest Neighbor Classifier 15-Hearest Neighbor Classifier

FIGURE 2.3. The same classification example in two dimensions as in Fig-
ure 2.1, The classes are coded as a binary variable (ELUE = 0, 0RANGE = 1), and
then predicted by |-nearest-neighbor classification.

FIGURE 2.2. The same classification erample in two dimensions as in Fig-
ure 2.1. The classes are coded as a binary variable (ELUE = 0, 0RANGE = 1) and
then fit by 15-nearest-neighbor averaging as in (2.8). The predicted class is hence
chosen by majority vole amongst the 15-nearest neighbors.

Images from [Hastie et al. '09]



How to select the right model?

Goal: generalize to unseen samples

So we should pick a model with low generalization error (defined
for a given model h):

£(h) = P(xyy~p(h(x) #y)

However, training (e.g., empirical risk minimization) minimizes the
training error:

m
A 1
&) =— 1{h(x) # i)
mi=
Learning theory relates training and generalization error, e.g.,:

P(le(h;) —E(hy)| >vy) < 2e~2r*M (4 s a fixed threshold, m the sample size)

Empirically, the generalization erroris estimated using cross

validation.
[Ng “15]



How to select the right model?

Goal: generalize to unseen samples

So we should pick a model with low generalization error (defined
for a given model h):

£(h) = Peyy~p(h(x) #y)

Key assumption: training and
test data have the same
distribution, samples are
independently and identically
distributed.

[Ng “15]



summary

Tt main application of ML to IR: automatic text
classification

Supervised ML:
Model-free (knn) and model-based (linear) approaches

Fmpirical and generalization error — assumptions and
ey to generalization

Today: wide range of (supervised) ML
approaches are standard tools for IR




Further reading

See [Hastie et al. '09] for a (mostly)
ATTERN RECOGNITION frequentist perspective, [Bishop ‘07] for
Tevor Haste a (mostly) Bayesian perspective.

Robert Tibshirani
Jerome Friedman

The Elements of

StatiSﬁcal I.eaming‘ Machine Learning

Stanford University

On coursera: https://www.coursera.org/learn/machine-
learning, also see the related course on
http://cs229.stanford.edu

scikit-learn

Machine Learning in Python

See: http://scikit-learn.org
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Motivating learning to rank

INCORFORATING DIFFERENT SEARCH MODELS
INTO ONE DOCUMENT RETRIEVAL SYSTEM

W. Bruce Croft
Department of Computer and Information Science
University of Massachusetts
Amherst, MA 01003

Abstract

Many effective search strategies derived from different models are available for document retrieval
systems. However, it does not appear that there is a single most effective strategy. Instead, different
strategies perform optimally under different conditions. This paper outlines the design of an adaptive
document retrieval system that chooses the best search strategy for a particular situation and user. In.
order to be able to support a variety of search strategies, a general network representation of the
documents and terms in the database is proposed. This network representation leads to efficient methods
of generating and using document and term classifications.

Une of the most desirable features of an adaptive system would be the ability to learn from experience.
A method of incorporating this learning ability into the system is described. The adaptive control

strategy for choosing search strategies enables the system to base its actions on a number of factors,
including a model of the current user.

Finally, some ideas for a flexible interface for casual users are suggested. Part of this interface

is the heuristic search, which is used when searches based on formal models have failed. The heuristic
searrh nrovides a hrowsdine ranahd4litrwy far the user.

(©)1981 ACM 0-89791-052-4/81/0500- 0040 $00.75 [Croft ‘81]




Learning to rank’s success story in web search

thessaloniki sights

Web Images Videos Maps Mews Explore

24000000 RESULTS Marrow by [anguage - Marrow by region -

Sights in Thessaloniki, Greece - Lonely Planet

www._lonelyplanet.com » ... » Greece » Northem Greece » Macedonia

29 sights in Thessaloniki, Greece - including Archaeological Museum, Church of Agios
Dimitrios. and YWhite Tower.

The Top 10 Things to Do in Thessaloniki - TripAdvisor ...

www . tripadvisor.com » ... » Thessaloniki Region » Thessaloniki =

Book your tickets online for the top things to do in Thessaloniki, Greece on TripAdvisor:

See 7,114 traveler reviews and photos of Thessaloniki tourist attractions.

Sights in Greece - Lonely Planet

www_lonelyplanet.com » Europe » Mediterranean Europe =

Best sights in Greece. Including Acropolis, Heraklion Archaeological Museum, Moni
Arkadiou there are over 863 sights.

Hundreds of ranking
signals: BM25, topic
models, title / body /
heading matches, phrase
models, PageRank, HITS,
date of publication / recent
update, author, location ...

Different combinations for
different types of queries:
head / body / tail, spiking
queries, queries related to
news, artists, TV shows,
science, homepage
finding (navigation), long-
term information needs ...

Impossible to tune models by hand for each query type — ML to the rescue ...



Learning to rank’s success story in web search

queryq  |ghts

Web Images Videos Maps Mews Explore

ESULTS Marrow by [anguage - Marrow by region -

Thessaloniki, Greece - Lonely Planet
anet.com » ... » Greece » Morthemn Greece » Macedonia -

N Thessaloniki, Greece - including Archaeological Museum, Church of Agios
d White Tower.

0 Things to Do in Thessaloniki - TripAdvisor ...

sor.com » ... » Thessaloniki Region » Thessaloniki ~

traveler reviews and photos of Thessaloniki tourist aftractions.

Greece - Lonely Planet

anet.com » Europe » Mediterranean Europe =
n Greece. Including Acropolis, Heraklion Archaeological Museum, Moni
e are over 863 sights.

kets online for the top things to do in Thessaloniki, Greece on TripAdvisor:

Hundreds of ranking
signals: BM25, topic
models, title / body /
heading matches, phrase
models, PageRank, HITS,
date of publication / recent
update, author, location ...

Different combinations for
different types of queries:
head / body / tail, spiking
queries, queries related to
news, artists, TV shows,
science, homepage
finding (navigation), long-
term information needs ...

Impossible to tune models by hand for each query type — ML to the rescue ...



Feature representation
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Feature representation, expert labels

query q
X11 X1j
s ) X = ‘ m—) )
emture Xi1 Xij ranking
representation
documenti
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“user satisfaction”




Feature representation, expert labels

query q
X11 xlj
{: ) X, = | - _—) (X))
feature Xix e Xij ranking
representation

(I

"TREC Assessors at work” (2001) —from



Feature representation, expert labels

i feature
i representation

e

4

<

e

training / test data
i for supervised :
i learning

documenti
X
ranking feature j

) (X))

ranking

Goal:
find m € I1 to optimize
"user satisfaction”



Feature representation, expert labels

X11 .- x1]:|
P ) (X))

ranking

i feature
i representation
: documenti

X Goal:
5 rankng feature) find € II to optimize
7o “user satisfaction”

1
< ‘ Y,=|: ‘ What loss function to
Vi optimize?
i expert
 labels Proposed approaches:
+ regression (squared error),
classification (0-1 or hinge
: : loss), ordinal regression,
| training / test data | pairwise loss functions ...
Tor supervised ' problem: mismatch with IR
i learning

metrics!



Breakthrough: optimizing IR
metrics using gradient descent

RankNet, LambdaRank, LambdaMART = family of learning to rank
approaches that directly optimize smooth approximations of
complex cost functions (e.g., NDCG, MAP, ERR)

Ll L OV el Wlet LIV LE DRIeSelss i LILeRL I LA ML DRESCssoell 1LY LLive el
L E J Y
used to train the system. Typical target measures used in IR
Learning to Rank using Gradient D t . . .
eartihg to Hahk using xradient Lescen (see [8] for a detailed list) depend only on the sorted list and
the relevance levels of the listed items. These measures are
Chris Burges CBURGES@MICROSOFT.COM generally either flat everywhere or non-differentiable with
Tal Shaked™ TAL.SHAKED@GMAIL. COM . - H
Erin Renshaw ERINRENGMICROSOFT.COM respect to the model parameters; hence they are difficult
Microsoft Research, One Micr to optimize directly. One way to address this issue is to
an Lasier From RankNet to LambdaRank to find a close smooth approximation to the target measure,
glri‘;‘; Hamilton LambdaMART: An Overview and optimize it via gradient descent. However, this is quite
Microsoft, One Microsoft Way] challenging due to the sort component of the target ranking
Christopher J.C. Burges =
Microsofi Research Technical Report MSR-TR-2010-82 measures. LambdaRank [1] tackles the problem by defining
Abstra a smooth approximation to the gradieni of the target cost
W investigate using grad instead of searching for a smooth approximation to the tar-
o0s 10T learning ranking . . . . .
pose . simple probabilist get cost itself. The basic idea of LambdaRank is to specify
theso Liess using » new rules determining how the rank order of documents should
the underlying ranking fu . . .
test results on toy datad change. These rules are incorporated into a A-gradient that
commercial Wtermel %9 LambdaMART is the boosted tree version of LambdaRank, which is based on | Jefines the gradient of an implicit cost function only at the
RankNet. RankNet, LambdaRank, and LambdaMART have proven to be very suc- . . .
cessful algorithms for solving real world ranking problems: for example an ensem- lentS l:lf mterest [1] . LEHIbdaRﬂllk wWas Drlglﬂall}r pI‘DpDSEd
ble of LambdaMART rankers won Track 1 of the 2010 Yahoo! Learning To Rank | ¢ ATV (AT mramalinad Ticanamn trd M lntirn Mainl ot
Challenge. The details of these algorithms are spread across several papers and re-
ports, and so here we give a self-contained, detailed and complete description of
them.
[Burges et al. ‘05, Donmez et al. ‘09, Burges ‘10]




From RankNet cost to LambdaRank gradients

0-0;

Cost function C;; for 3 ground truth
values and varying score difference
Oij = Sl'-Sj.

With NDCG defined as:
L

1 21 — 1
NDCG@L = —

ZLulog(1+7)
r=1

RankNet cost (w.r.t. changes in score
difference 0;;):

Ci; = —Pyjo;; +log(1 + ePii%)
with ground truth

and derivative

d0ij  14¢Pii%
A-gradients approximate the gradient of the
target cost.

Here: scale the RankNet gradient with the
change in target metric due to document
swaps. E.g., for NDCG:

ANDCG —2
aOij

Lol — 9l - — :
7 (2 2 ]) (log(1+rl-) 10g(1+7”j)) (1+el_3ijoij) .

[Burges et al. ‘05, Donmez et al. ‘09, Burges ‘10]

}\ij = ﬁl]




Results
Excellent performance in Yahoo! learning to rank challenge

Used an ensemble of LambdaRank
and LambdaMART rankers

LEARNINGTO RANK . i/ CHALLENGE

March - May 2010

Table 7: Winners of the challenge along with the ERR :-;cn?:i‘e of their primary submission.
Track 1 §
1 | C. Burges, K. Svore, O. Dekel, Q3. Wu, P. Bennett, | 0.46861
Yahoo! Learning to Rank A. Pastusiak and J. Platt (Microsoft Research)
2 | E. Gottschalk (Activision Blizzard) and D. Vogel | 0.46786
Olivier Chapelle® (Data Mining Solutions)
s 3 | M. Parakhin (Microsoft) — Prize declined 0.46695
Sunnyvale, CA 4 | D. Pavlov and C. Brunk (Yandex Labs) 0.46678
5 | D. Sorokina (Yandex Labs) 0.46616
Track 2
Abstrag 1 | I. Kuralenok (Yandex) 0.46348
T 2 | P. Li (Comell Usiversiy) 046317
publicly release two datasets used internally at Y. 3 | D. Pavlov and C. Brunk (Yandex Labs) 0.46311
S, T Mool e 1| P. Geurts (University of Licge) 0.46169
This paper provides an overview and an analysi = =
description of the released datasets.

+ enormous practical impact on web search engines!
[Chapelle & Chang ‘11]
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Part 2: learning from user interactions



Are we there yet?

What would it take to
actually learn from and
for users?




Example applications

Science News D ‘

London Dining - Beat the Crowd, Book A Table Now! ™

Top Stories U.s. World Local Entertainment ScifTech Business

Technology Science

Aerial laser discovers ancient Roman gold mines

F— ) Researchers in Spain have used sophisticated aerial laser technology to confir
ancient Roman gold mines. The team from the University of Salamanca discove|
the province of Ledn in ... FOX News - 3 hours ago

. Scientists have produced a new version of what is perhaps NASA's best view of
* .. X covered moon, Europa. The mosaic of color images was obtained in the late 19
Galileo spacecraft. This ...

Astronomy Magazine - 9 minutes ago

Be 'Friends in Space' with Astronaut Cristoforetti As She Explores ISS

Espresso
Italian astronaut Samantha Cristoforetti arrived at the Intemational Space Statiol
an espresso coffee maker with her to the orbiting outpost. Upon arrival at the orf
Cristoforetti became the first ...
techfimes.com - 1 hour ago

opentable.co.uk/London
21,100+ followers on Twitter
Beat the Crowd, Book A Table Now! Reviews For The Best Restaurants.

Cruise Dinner In London | viator.com ™
www.viator.com/london-dinner-cruise

Book elegant dinner cruises along the Thames in London on Viator.
viator.com is rated on Bing (1465 reviews)

5-Star Rated London Tours London Double Decker Bus Tours

Tickets to TDp London Shows Thames River Cruises
London short breaks | London.TripAdvisor.co.uk ™
London. TripAdvisor.co.uk
Research London Hotels and L
tripadvisor.co.uk is rated
Award-Winning Attractions

don Attractions!
on Bing (1522 reviews)
Award-Winning Beaches

Award-Winning Hotels
Best Places to Eat

Best Bargain Hotels
Find a Cheap Flight

London Cruise Dinner - Latest Deals 2014. ™
Gmx.co.uk/London Cruise Dinner
Latest Deals 2014. London Cruise Dinner - Don't Miss This!

News recommendation

Find best news articles to
match the users’ current
interest; optimize, e.g., click-
through rate.

Online advertising

Tune ad display parameters
(e.g., mainline reserve) to
optimize revenue.

search

search solutions

search engines

search history

search engine optimization
search engines that don't track
search people

search all of craigslist

search facebook

Web search

Adapt the search interface
and results to individual
users and their context;
optimize search
satisfaction.



Learning from user interactions

query

interaction with search
interface and result list

N

N

v*

result ranking



Mapping to reinforcement / bandit learning

query = context x;

interaction with search =~ reward ;
interface and result list

N

environment agent

generates context x;~X acts according to policy m(x)

=

.V

result ranking = action a; = m(x;)

Goal: take actions that maximize discounted cumulative reward € = Y72,y 1 (ay)

v - discount factor



Bandit / RL challenges

Need to generalize
query = context x;  across context.

interaction with search = reward r;
interface and result list

N

environment agent

acts according to policy m(x)

generates context x,~X

Partial feedback (need to learn v

through trial and error, no i.i.d.
labeled examples) —exploration-
exploitation trade-off.

result ranking = action a; = m:(x¢)

Goal: take actions that maximize discounted cumulative reward C = Y52, vt 1r:(as)

7y - discount factor



IR challenges

Need to generalize

query = context x;  across context.
interaction with search =~ rewardr;  Need to infer feedback
interface and result list for learning from noisy,
biased user interactions
(relative feedback).

environment agent

generates context x;~X acts according to policy mw(x)

=

Partial feedback (need to learn v

through trial and error, no i.i.d.
labeled examples) —exploration-
exploitation trade-off.

result ranking = action a, = m,(x,) Need to deal with
large action spaces.

Goal: take actions that maximize discounted cumulative reward C = Y52, vt 1r:(as)

7y - discount factor



Approaches for learning from user
Interactions

Approach Explore-exploit  Generalize Relative Large action

across context feedback spaces

K-armed bandits + - = +/-
Dueling K-armed bandits + - + +/-
Online learning to rank (implicit) (only linear) + +
Contextual bandits + + = -

Contextual dueling bandits + -4 -+ -




Approaches for learning from user
interactions — this lecture

Approach Explore-exploit  Generalize Relative Large action
across context feedback spaces

K-armed bandits

Dueling K-armed bandits + - + +/-
Online learning to rank (implicit) (only linear) + +
Contextual bandits <+ + - -

Contextual dueling bandits + -+ -+ -



K-armed banadits

Balance exploration and exploitation,
e.q.,

argmax 1:(a) w.prob.1—¢

e-greedy: my(x;) =4 a€A
rand(a) W. pTOb. € [Sutton & Barto ‘98]
UCB (upper confidence bound): m;(x;) = argmax #;(a) + ¢ Int
acA Ne(a)
[Auer et al. '02a]
Thompson sampling Easy to
T : e implement and
Maintain distribution P(r|a). At time t sample from this distribution, flesible ice
and take the optimal action according to the sample; update P. theoretlical

[Thompson ‘33, Chapelle & Li ‘11, Russo & Van Roy ‘14] characteristics.

Exponential weights (EXP3)

Performance
Maintain a distribution over actions, p,, sample from it to take actions. guarantees in
Updates: compute estimated cumulative reward R;; = R; ._; + 2 (a;; adversarial
Pit settings!

e MRt

is the action taken in round t). Update p; ;41 = ST o

k=1
[Auer et al. '02b]



Example: Thompson Sampling

Example: 3-armed bandit

Posteriors After 1 pull

Balances exploration-

PR : ; W = |
exploitation using a simple < B H
principle: '

Posteriors After 2 pulls

i i i i i i i i
-0 Etl.l] oz 04 06 0.8 10 -0 Etl.l] 0z 0.4 06 08 10

Posteriors After 5 pulls

1. maintain reward distribution 2 >
(eg, per actlon) E 'E
D'%.O 02 04 06 08 10 D'%.l] 02 04 06 [k} 10

2. when taking an action, ; posterpr Afer 1 ] i S i
sample from that __ . __
distribution and act e ﬁl o B e,
optimally according to the
sample

Posteriors After 15 pulls

;m 02 04 06 038 T 02 04 06 08 10
3. u Se O bse rved rewa rd tO z Posteriors After 400 pulls n ig Posteriors After 1000 pulls E
CL . . » It
update reward distribution . iAoz f
; [\ : . BN
%0 02 04 06 08 10 %o 02 04 06 08 10

[Thompson ‘33, Chapelle & Li ‘11, Russo & Van Roy ‘14]



For IR:

need to address context and relative feedback

1 - Query-document
pairs are represented
as feature vectors

documenti
X
ranking feature j

? - Relative feedback (interleaved
comparison is more reliable than
absolute metrics):

Best trade-off between high agreement with long-
term AB metrics (85%) and sample efficiency.

0.6

0.4

0.2

# Samples
required for
stat-sig AB
test

0.0
w102 108 1wt 108 1w0f 10" 108 10 109 1011 1012

Number of samples

Power as a function of sample size, assuming the

target test is a two-sided t-test with p = 0.05.

[Schuth et al. 2015]



Online learning to rank

Reusing Historical Interaction Data for Faster
Online Learning to Rank for IR

Katja Hofmann Anne Schuth
k.nofmann@uva.nl  a.g.schuth@uva.nl

Shimon Whiteson ~ Maarten de Rijke

sawhiieson@uva.nl  derijke@uva.nl

ISLA, University of Amstardam

ABSTRACT

Online ke aming to rank for information erizval (1R) holds promiss
for slbowing the development of “sif-leaming ™ search engines that
can automaticaily adjust o their users. With the tarpe samount of e.g..
click data that can be collectsd in web search ssitings, such tech-
miques could enshle highty scalable ranking optimization. However,
feedback obtmined from wser interactions is noisy, and developing
approaches that can leam from this feedback quickly and relishly is
@ major challenge.

In this paper we investigate whether and how previously collecied
(historical) imeraction dats can be wsed to speed wp leaming in online
leaming to rank for IR. We devise the first two methods that can
uiilize historical data (1) o make feedback available during lesming
more relizhie and (2) to preselect candidae ranking functions o
e evalusied in interactions with users of the etrieval system. We
evaluaie bath approaches on ¥ leaming to rank daia sets and find
that historical data can speed up leaming. eading 0 substantially
and significanily higher online performance. In pariicular, our pre-
sebection method proves highly effective at compensating for noise
in mser feedback. Our msults show that historical data can be used
o make online leaming o rank for IR much more effective than
prviously possible, especially when feadback is noisy.

Categories and Subject Descriptors

H.3 [Information Storage and Retrieval]: H.3.3 Information Search
and Retrieval

Keywords
Information retrieval, Interleaved comparisons, Leaming to Rank

1. INTRODUCTION

In recent years, leaming bo rank methods have become popalar in
information retrieval (IR) 25 2 means of taning retrieval sysems to
ithe requirements of specific search environments, groups of users,
or individual users [18]. However, most cumment approaches work
afftine, meaning that manually annotated data peeds to be collected
heforehand, and that, cnce deployed, the system cannot continue 1o
adjust to weer neads, unless it is retrained with additional daia

Termission to make digital or hard copies of all or past of s work far
permonal or classroom wse is graied without fo provided thal copics am
ot made or distribuied for profit or commersial advantage and that copics
bear this notice and the full citation on the frst page. To copy céherwise, 1o
= publish, Io post an servers ar Lo mdistribete 1o lists, mquiss prior specific
permissicn andar a fee.

WSDM 14, February 4§, 2013, Rome, lialy.

Copyright 2013 ACM 0TS | 4500- 1863 V1302 _$15.00.

An alternative seifing is online leaming to rank, where the sys-
tem keamns directly from interactions with its wsers [10]. Thesz
approaches are typically based on reinforcement leaming (RL) tech-
nigues [25], meaning that the system tries out new ranking fanctions
{also calked rankers), and keams from feedback inferred from users”
interactions with the presnied rankings In contrast to offline keam-
ing to rank zpproaches, online approaches do nod require any initial
iraining material, but rather swlomatically improve rankers while
they are heing u=d.

A main challenge that online leaming to rank for IR approaches
have o address is o learn as guickly as possible from the limited
quality and quantity of feedback that can be infermed from user
imtersctions. Leaming speed is particularty important in terms of the
number of nser ineractions. The beter the system’s performance
is afier a smaller number of interactions, the mone likely wsers are
to be satisfied with the sysiem. Also, the mom effective an online
leaming to rank algorithm is. the more & asibie it is to adapt to
smaller groups of wsers, or even individual users.! Furthermeare,
wser feedback is limied because the leaming algorithm shoubd be
invisibe to sysem users, ie., feedback is infermed from natural
{noisy) user inieractions.

In this paper, we address the following question: Can previowsty
observed (his oricall inferaciion data be reused 1o speed up online
leamimg ro rank? Cument online leaming to rank approaches for
IR utilize each observed data sample (consisting of a query, the
diisplayed results. and observed wser clicks on the msult list) only
once. This was necessary becawse. until recently, it was not clear
heww feedback from previous nser interactions (that were collecied
with different rankers) could be reused. However, a recently devel-
oped probabilistic method for inferring retative feedback [9] has
been shown to allow data re-use [11] for ranker evalustion. 1t was
found to be effective for making ranker comparisons more rliable,
especizlly when large amounts of historical data wer availabie.
Here. we investigate whether and how this evaluation method can
b inteprated with online leaming to rank approaches, and whether
and in what way these additional (historical, and possibiy noisier or
biased) evaluations can lead o faster keaming.

Specifically, we make the follow ing contibutions.

= We propose the first two approaches for reusing historical
ista in online kearning to rank for IR reliable hisorical com-
parisons (RHC), which uses historical data directly to make
feedback more relisble. and candidate preselection (CPS),
which uses historical data io prese lect candidate rankers.

= Inexiensive experiments using § leaming o rank dats sets, we

"In this paper we focus on theefiectiveness of the leaming algorithm,
and assame & sysem is used by 8 group of users with similar sarch
behavior and preferences. The question of how to form user groups
to which to adapt is orthogona] to this work

[Hofmann et al. "13b]

3 insights allow effective learning
from relative, listwise feedback:

1 — Comparison

Interleaved comparison methods [Joachims et al. ‘05,
Radlinski et al. '08], infer listwise relative feedback.

2 — Learning

Dueling bandit gradient descent (DBGD) [Yue &
Joachims '09] optimizes a weight vector for weighted-
linear combinations of ranking features.

3 — Data reuse

Use probabilistic interleave [Hofmann et al. "13a] and
importance sampling to compare candidate rankers on
historical data and focus exploration [Hofmann et al.
"13b], approach called candidate pre-selection (CPS).



Online learning to rank

document 1
document 2
document 3
document 4

d

¢t document2 |
I/

Interleaved comparisons:

1) Generate interleaved (combined)
ranking

Observe user clicks

w N
N— N

Credit clicks to original rankers to
infer outcome o € {—1,0,+1}

3 insights allow effective learning
from relative, listwise feedback:

1 — Comparison

Interleaved comparison methods [Joachims et al. ‘05,
Radlinski et al. '08], infer listwise relative feedback.



Online learning to rank

sample unit
sphere to
generate
candidate
ranker

v feature 1

\
\
N
\
\

’

current best -7 | 27
V4

vv\;elght vector / feature 2
. ,

7
/
/
/

generate candidate vector
w; =w; + du,

compare w; and w; using
interleaving; if w; wins, update:
Wip1 = W + allg

3 insights allow effective learning
from relative, listwise feedback:

Interleaved comparison methods
. infer listwise relative feedback.

2 — Learning

Dueling bandit gradient descent (DBGD) [Yue &
Joachims '09] optimizes a weight vector for weighted-
linear combinations of ranking features.

Use probabilistic interleave and
importance sampling to compare candidate rankers on
historical data and focus exploration

, approach called candidate pre-selection (CPS).



Online learning to rank

generate
many
candidates
and select the
most
promising one

feature 1

feature 2

Generate several candidate rankers, and
select the best one by running a
tournament on historical data

Use probabillistic interleave and importance
sampling for ranker comparisons during

the tournament

3 insights allow effective learning
from relative, listwise feedback:

Interleaved comparison methods
. infer listwise relative feedback.

Dueling bandit gradient descent (DBGD)
optimizes a weight vector for weighted-
linear combinations of ranking features.

3 — Data reuse

Use probabilistic interleave [Hofmann et al. “13a] and
importance sampling to compare candidate rankers on
historical data and focus exploration [Hofmann et al.
"13b], approach called candidate pre-selection (CPS).



Results: candidate pre-selection (CPS)

online performance (% of max)

80
70
60
50
40
30
20
10

CPS achieves 10% higher
performance than the baseline
under perfect user feedback

Without data reuse, online performance
suffers from noisy feedback

perfect navigational

low noise

Under CPS, online
performance

under high noise
drops by only 4%

N

informational

high noise
[Hofmann et al. "13b]



Moving beyond linear models: contextual

dueling bandits e

Contextual Dueling Bandits

Miroslav Dudik MOUDIK B MICROS0FT. COM

Learn from partial relative i e

Microsafi Research, Cambridge. Unired Kingdom

feedback in the form of pairwise | &=t me o—

Microsaft Research, New York, N¥ USA

comparisons; use supervised ML | s “" ©
for generalization.

Ahbstract

‘W consider the problem of learning to choose actions using contex tugl information when provided
with limited feedback in the form of relative pairwise comparisons. We study this problem in the
dueling-bandits framework of Yue et al. (2009), which we extend to incorporate context. Roughly,
the learner’s goal is to find the best policy, or way of behaving. in some space of policies. although
“hest” is not always so clearly defined. Here, we propose a new and natural selution concept, rooted
in game theory, called & vom Neumana winner, a randomized policy that beats or ties every other
1 2 3 4 policy. We show that this notion overcomes important limitations of existing solutions, particularly
the Condorcet winner which has typically been used in the past, but which requires strong and
often unrealistic assumptions. ‘We then present three efficient algorithms for online leaming in
our satting, and for approximating a von Meumann winner from batch-like data. The first of these
O O 1 _O 2 _O 9 algorithms achieves particularly low regret, even when data is adversarial, although its time and
M M M space requirements are linear in the size of the policy space. The other two algorithms require time
and space only logarithmic in the size of the policy space when provided access to an oracle for
solving classification problems on the space.
- O 1 O O 4 O Keywords: contextual dusling bandits, online learning, bandit algorithms, game theory.

1. Introduction

0.2 _0.4 O 1 ,O We study how to leamn to act based on contextual information when provided only with partial,
relative feedback. This problem naturally arises in information retrizval (IR) and mcommender

systems, where the user feedback is considerably more reliable when interpreted as relative com-
O 9 O _ 'I O O parisons rather than absoluie labels (Radlinski et al., 2008). For instance, in web search, for a

. . particular query, the IR system may have several candidate rankings of documents that could be
presented, with the best option being dependent upon the specific user. By presenting a mix or
interleaving of two of the candidate rankings and observing the user's response (Chapelle et al.,

Example preference matrlx for a 4_armed 2012; Hofmann et al.. 2003), it is possible for such a system to get feedback about user preferences,

* On leave from Princeton University.

dueling bandit problem. ol i e o condcied i o with icosof ey
(€ 2015 M. Dudik, K. Hofmann, R E. Schapire, & SEvkins & Y. 7 [Dudik et al. '1 5]
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Contextual Dueling Bandits

Learn from partial relative feedback in the form of
palrwise comparisons

In each round:

select two actions a, b € A = {1...K}
observe outcome o of a stochastic duel:

o — +1 if a beats b
—1 if b beats a

Goal: learn to select the best action, given context.

[Dudik et al. “15]



Contextual Dueling Bandits

Learn from partial relative feedback in the form of
pairwise comparisons, given context.

In each round:
environment chooses context x € X
select two actions a, b € A = {1...K}
observe outcome o of a stochastic duel:

o — +1 if a beats b
—1 if b beats a

Goal: learn to select the best action, given context.

[Dudik et al. “15]



Challenges & Contributions

How to define the "best” action?

Introduce new solution concept: the von Neumann winner
(simple, natural, guaranteed to exist).

How to use context effectively?

Extend the von Neumann winner to the contextual dueling bandit
setting.

Present learning algorithms for computing, approximating, or
performing as well as the "best” solution.

[Dudik et al. “15]



Solution Concept

Previous solutions

Make assumptions about
preference structure.

Example: transitivity
P(a,b) >0AP(b,c) >0< P(a,c) >0

Example: Condorcet assumption
da€eA VbeEA P(ab)=0

All are frequently violated in
practice.

Define P(a,b) = E [outcome of duel between a and b]

"a beats b” when P(a,b) > 0; “a ties b” when P(a,b) = 0 [Dudik et al. “15]



Solution Concept

Contextual dueling bandits

Make assumptions about |dea: Sample actions from a

preference structure. distribution w.

Example: Goal: find w such that:

P(a,b) >0AP(b,c) >0« P(a,c) >0 vb : E [outcome] = Ew(a)P(a, B) >0

Example: a

Ja€A VbeA P(ab)=0 When this holds, w is called the
. . von Neumann winner

practice.

Define P(a,b) = E [outcome of duel between a and b]

"a beats b” when P(a,b) > 0; "aties b” when P(a,b) = 0 [Dudik et al. “15]



Contextual Se

Goal: find the "best” policy T € 11

Extend von Neumann winner to contextual dueling bandits:
Randomized policy (distribution over II) that beats or ties every

-

(igle

other policy p - guaranteed to exist

[Dudik et al. “15]



Contextual Setting
Goal: find the "best” policy T € 11

Extend von Neumann winner to contextual dueling bandits:

Randomized policy (distribution over II) that beats or ties every
other policy p - guaranteed to exist

Challenges

I1 typically huge! Need to solve a
[TT| % |IT] game matrix M.

Even representing von Neumann
winner seems to require O (|I1])
space

Wanted: time, space, data in
poly(log|I1|)

[Dudik et al. “15]



Contextual Setting
Goal: find the "best” policy T € 11

Extend von Neumann winner to contextual dueling bandits:

Randomized policy (distribution over II) that beats or ties every
other policy p - guaranteed to exist

Challenges Algorithms

I1 typically huge! Need to solve a Full-explore-exploit setting

|IT| x [TT] game matrix M. Optimal regret but 0(|1]) time and
Even representing von Neumann space.

winner seems to require O (|11]) Explore-first setting

space

. . Suboptimal regret/approximation
Wanted: time, space, data in bound, poly(log|I|) time and space.
poly(log|I|)

[Dudik et al. “15]



Contextual Setting
Goal: find the "best” policy T € 11

Extend von Neumann winner to contextual dueling bandits:

Randomized policy (distribution over II) that beats or ties every
other policy p - guaranteed to exist

Challenges Algorithms

I1 typically huge! Need to solve a Full-explore-exploit setting

|IT| x [TT] game matrix M. Optimal regret but 0(|1]) time and
Even representing von Neumann space.

winner seems to require O (|11]) Explore-first setting

space

. . Suboptimal regret/approximation
Wanted: time, space, data in bound, poly(log|I|) time and space.
poly(log|I|)

Open problem: optimal-regret or optimal-approximation
algorithm with poly(log|II|) time and space! [Dudik et al. *15]



Approaches for learning from user
interactions — this lecture

Approach Explore-exploit  Generalize Relative Large action
across context feedback spaces

K-armed bandits

Dueling K-armed bandits + - + +/-
Online learning to rank (implicit) (only linear) + +
Contextual bandits <+ + - -

Contextual dueling bandits + -+ -+ -



Further reading

Background in reinforcement
learning [Sutton & Barto '98]
online learning theory, contextual
bandits [Cesa-Bianchi & Lugosi
'06]

Learning

Reinforcement

PREDICTION, LEARNING, AND GAMES

Nicolo Cesa-Bianchi Gabor Lugosi

Richard S, Sutton and Andrew G. Barto

K-armed dueling bandits [Zoghi et al. "15]
Bandit overview and theory [Bubeck &
Cesa-Bianchi]

Complementary view: counterfactual
analysis and reasoning [Bottou et al. "13]

| user_intent w I—-{ query x ‘ ‘ ad_inventory v

[ ads a bids b
Intervention
. scores g
Y

clicks y revenue z




Future

Trends and directions



Supervised ML for IR

3 Structure learning: how to represent /
R0 =< learn about rankings, or more complex

composite actions? [Tenenbaum et al. ‘11]

Representation learning for

documents, users, information needs?
[Mikolov et al. 13,

Country and Capital Vectors Projected by PCA

/ 2 - — .
Huang et al. "13] - —
! 15 Russias
Data Japary
1F Moscow ]
Turkey shnkara Tokyo
0.5
Paland:
Image from T e .
[Tenenbaum et al. "11] a5k e . e
Graetes xﬁ shthens
A4+ Spam ama
Image from -1.5 | Portugal o Mani
[Mikolov et al. “13] .,

I I 1 1 1 1
-2 -1.5 -1 0.5 i] 05 1 1.5



Interactive learning for IR

Efficient approaches to
generalizing across context in
arge action spaces query

interaction with search
interface and result list

& |
~_

result ranking

Modeling long-term

depeﬂdeﬂdes [Yang et al. 14,
Sloan & Wang "12]

Challenges in evaluation
[Balog et al. "14]



Interactive learning for IR

Efficient approaches to generalizing across
context in large action spaces

\Y%

Try online learning

Try open-source code samples;

odeling long-te

Challenges in eva

Living labs challenge allows
experimentation with interactive Code:
learning and evaluation methods https://bitbucket.org

'm dependencies

uation

/ilps/lerot

Living Labs
for IR evaluation

Challenge:
http://living-

labs.net/challenge/
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