
Effectiveness and
Efficiency Optimizations in

Web Search Engines

B. Barla Cambazoglu
Barcelona, Spain

Previous Versions of the Tutorial

• Book chapter
– The Information Retrieval Series, 2011

• Previous tutorials
– Conferences

– SIGIR, 2013
– SIGIR, 2014
– WWW, 2014
– WSDM, 2015

– Summer schools
– COST 804 Training School, 2012
– MUMIA, 2014

• Upcoming
– CIKM, 2015

Outline of the Tutorial

• Background on web search
• Main sections

– web crawling
– indexing
– query processing

• Concluding remarks
• Questions and open discussion

Background on Web Search

Brief History of Search Engines

• Past
– Before browsers

– Gopher
– Before the bubble

- Altavista
- Lycos
- Infoseek
- Excite
- HotBot

– After the bubble
- Google
- Yahoo
- Microsoft

• Current
– Global

– Google, Bing
– Regional

– Yandex, Baidu

• Future
– Facebook ?
– Apple ?
– …

Anatomy of a Search Engine Result Page

Related
entity

suggestions

Movie
direct

display

Video
direct

display

AdsAlgorithmic
search
results

Knowledge
graph

User
query

Actors in Web Search

• User’s perspective: accessing information
– high-quality search results
– fast response to queries

• Search engine’s perspective: monetization
– attract more users
– increase the ad revenue
– reduce the operational costs

• Advertiser’s perspective: publicity
– attract more users to their site
– pay little

• Size

What Makes Web Search Difficult?

• Diversity• Dynamicity

• All of these three features can be observed in
– the Web
– web users

What Makes Web Search Difficult?

• The Web
– more than 190 million Web servers and 700 million host names
– the largest data repository (estimated as 100 billion pages)
– constantly changing
– diverse in terms of content and data formats

• Users
– too many
– diverse in terms of their culture, education, and demographics
– very short queries (hard to understand the intent)
– changing information needs
– little patience (few queries posed & few answers seen)

• Crawl and index a large fraction of the Web
• Maintain most recent copies of the content in the Web
• Scale to serve hundreds of millions of queries every day
• Evaluate a typical query under several hundred milliseconds
• Serve high-quality results for a given user query

Expectations from a Search Engine

Search Infrastructure

• Quality and performance requirements imply large amounts
of compute resources, i.e., very large data centers

• High variation in data center sizes
- hundreds of thousands of computers
- a few computers

Role of Result Quality and Efficiency

Resources

Revenue

Energy
consumption

Income

Response
time

Result
quality

User
engagement

Architectural Components

• Indexing • Query processing• Web crawling

Web
crawling
system

Web

Indexing
system

Query
processing
system

Web
repository

Web
index

query

results user

Structure of the Main Sections

• Definitions
• Success measures
• Issues and techniques

– single node
– multiple node (cluster of computers)
– multiple data centers (multi-site search engine)

Web Crawling

Web Crawling

• Web crawling is the process of locating, fetching, storing, and
maintaining the pages available in the Web.

• Computer programs that perform this task are referred to as
- crawlers
- spider
- harvesters

• Web crawler repositories
- cache the online content in the Web
- provide quick access to the physical copies of pages in the Web
- help to speed up the indexing process

Web Graph

• Web crawlers exploit the hyperlink structure of the Web to discover
new web pages

Incremental Web Crawling

• Crawling process
divides the Web
into three subsets
– downloaded
– discovered
– undiscovered

seed page

discovered
(frontier)

undiscovered

downloaded

Web Crawling

• A commercial web crawler maintains two separate download
queues

– discovery queue
– downloads pages pointed by already discovered links
– tries to increase the coverage of the crawler

– refreshing queue
– redownloads already downloaded pages
– tries to increase the freshness of the repository

Discovery

Web repository

Parser

Web crawler

URL-seen
test

Repository
manager

Frontier of the crawler

Stored pages

Visited URLs
Target page

Target URL

Extracted URLs
Queued URLs

Seen URLs

Web

URL Prioritization

• Random (A, B, C, D)
• Breadth-first (A)
• In-degree (C)
• PageRank (B)

Refreshing

• Random (A, B, C, D)
• PageRank (B)

• Age (C)
• User interest (D) • Longevity (A)

download time order
(by the crawler) A BC D

last update time order
(by the webmaster)

A DCB

(more intense red color indicates higher PageRank)

estimated average
update frequency

never every
minute

every
day

every
year

(more intense blue color indicates larger user interest)

Success Measures

• Quality measures
– web coverage: percentage of the Web discovered or downloaded

by the crawler
– repository quality: percentage of useful pages in the repository
– repository freshness: outdatedness of the local copies of pages

relative to the pages’ original copies on the Web

• Performance measures
– download rate: number of bytes downloaded per unit of time

Issues in Web Crawling

• Dynamic nature of the Web
– web growth
– content change

• Malicious intent
– hostile sites (e.g., spider traps, infinite domain name generators)
– spam sites (e.g., link farms)
– delay attacks

• Web site properties
– unstable sites (e.g., variable host performance, unreliable networks)
– sites with restricted content (e.g., robot exclusion),
– soft 404 pages

Implementation Issues

• DNS caching

• Multi-threading
• Politeness
• Robot exclusion protocol
• Mirror sites
• Data structures

DNS Caching

• Before a web page is
crawled, the host name
needs to be resolved to an
IP address

• Since the same host name
appears many times, DNS
entries are locally cached
by the crawler

Web
server

CrawlerDNS
server

web page
repository

DNS
cache

DNS caching

TCP connection

HTTP connection

Multi-threading

• Multi-threaded crawling
– crawling is a network-bound task
– crawlers employ multiple threads to crawl different web pages

simultaneously, increasing their download rate significantly
– in practice, a single node can run around up to a hundred

crawling threads
– multi-threading becomes infeasible when the number of threads

is very large due to the overhead of context switching

Politeness

• Multi-threading leads to politeness issues

• If not well-coordinated, the crawler may issue too many
download requests at the same time, overloading
– a web server
– an entire sub-network

• A polite crawler
– closes the established TCP-IP connection after the web page is

downloaded from the server
– puts a delay between two consecutive downloads from the

same server (a commonly used delay is 20 seconds)

Robot Exclusion Protocol

• A standard from the early
days of the Web

• A file (called robots.txt) in a
web site advising web
crawlers about which parts
of the site should not be
crawled

• Crawlers often cache
robots.txt files for efficiency
purposes

User-agent: googlebot # all services
Disallow: /private/ # disallow this directory

User-agent: googlebot-news # only the news service
Disallow: / # on everything

User-agent: * # all robots
Disallow: /something/ # on this directory
User-agent: * # all robots
Crawl-delay: 10 # wait at least 10 seconds
Disallow: /directory1/ # disallow this directory
Allow: /directory1/myfile.html # allow a subdirectory
Host: www.example.com # use this mirror

Mirror Sites

• A mirror site is a replica of an existing site, used to reduce the
network traffic or improve the availability of the original site

• Mirror sites lead to redundant crawling and, in turn, reduced
discovery rate and coverage for the crawler

• Mirror sites can be detected by analyzing
– URL similarity
– link structure
– content similarity

Data Structures

• Good implementation of data structures is crucial for the
efficiency of a web crawler

• The most critical data structure is the “seen URL” table
– stores all URLs discovered so far and continuously grows as new

URLs are discovered
– consulted before each URL is added to the discovery queue
– has high space requirements (mostly stored on the disk)

– URLs are stored as MD5 hashes
– frequent/recent URLs are cached in memory

Crawling Architectures

• Single node

– CPU, RAM, and disk becomes a bottleneck
– not scalable

• Multiple nodes
– parallel crawler in a single data center
– scalable

• Geographically distributed
– parallel crawlers in multiple data centers
– scalable
– reduces the network latency

Parallel Web Crawling

• Web partitioning
– typically based on the MD5

hashes
– URLs
– host names

– host-based partitioning is
preferable because URL-based
partitioning may lead to
politeness issues if the crawling
decisions given by individual
nodes are not coordinated Web

repository

Crawling
node

Crawling
node

Crawling
node

Web

Coordination Between Nodes

• Firewall mode
– lower coverage

• Crossover mode
– duplicate pages

• Exchange mode
– communication

overhead

D

D

X

D

D

D

D

X

Duplicate crawling in
the crossover mode

Not discovered in
the firewall mode

Link communicated in
the exchange mode

Geographically Distributed Web Crawling

• Benefits
- higher crawling throughput

- geographical proximity
- lower crawling latency

- improved network politeness
- less overhead on routers

- resilience to network partitions
- better coverage

- increased availability
- continuity of business

Common Fetching Infrastructure

Web

Low-level
fetching
system

DNS
cache

High-level
fetching
system

Page
cache

robots.txt
cache

Main web
crawler

Vertical
crawlers

Research
crawlers

Web
repository

Web
repository

Web
repository

Published Web Crawler Architectures

• Bingbot: Microsoft's Bing web crawler
• FAST Crawler: Used by Fast Search & Transfer
• Googlebot: Web crawler of Google
• PolyBot: A distributed web crawler
• RBSE: The first published web crawler
• WebFountain: A distributed web crawler
• WebRACE: A crawling and caching module
• Yahoo Slurp: Web crawler used by Yahoo Search

Open Source Web Crawlers

• DataparkSearch: GNU General Public License.
• GRUB: open source distributed crawler of Wikia Search
• Heritrix: Internet Archive's crawler
• ICDL Crawler: cross-platform web crawler
• Norconex HTTP Collector: licensed under GPL
• Nutch: Apache License
• Open Search Server: GPL license
• PHP-Crawler: BSD license
• Scrapy: BSD license
• Seeks: Affero general public license

Key Papers

• Cho, Garcia-Molina, and Page, "Efficient crawling through URL ordering",
WWW, 1998.

• Heydon and Najork, "Mercator: a scalable, extensible web crawler", World
Wide Web, 1999.

• Chakrabarti, van den Berg, and Dom, "Focused crawling: a new approach to
topic-specific web resource discovery", Computer Networks, 1999.

• Najork and Wiener, "Breadth-first crawling yields high-quality pages", WWW,
2001.

• Cho and Garcia-Molina, "Parallel crawlers", WWW, 2002.
• Cho and Garcia-Molina, "Effective page refresh policies for web crawlers”,

ACM Transactions on Database Systems, 2003.
• Lee, Leonard, Wang, and Loguinov, "IRLbot: Scaling to 6 billion pages and

beyond", ACM TWEB, 2009.

Indexing

Indexing

• The indexing system performs several tasks

– performs information extraction, filtering, and classification on
downloaded web pages

– provides meta-data, metrics, and other kinds of feedback to the
crawling and query processing systems

– converts the pages in the web repository into appropriate index
structures that facilitate searching the textual content of pages.

Document Processing Pipelines

• An indexing system involves various document processing
pipelines, each performing different tasks on web pages

• Common data structures generated by these pipelines

– web graph
– page attributes
– inverted index

Web Graph

• Web graph
- node: attributes about the page

- URL
- inbound/outbound links
- geographical region
- language

- edges: attributes about the links
- anchor text

• Built at different granularities
- page-level: duplicate detection
- host-level: host quality estimation
- site-level: mirror site detection

Web Graph

Web
repository

Web
graph

HTML
page

Link
extractor

Link spam
detection

HTML parsers

Anchor text
extractor

Duplicate
detection

Content and link analysis

Mirror site
detection

…

…Link quality
estimator

Link Analysis

• PageRank: A link analysis algorithm that assigns a weight to each
web page indicating its importance

• Iterative process that converges to a unique solution
• Weight of a page is proportional to

- number of inbound links of the page

- weight of linking pages

• Other algorithms
- HITS

- TrustRank

Spam Detection

• Types of spam: link spam, content spam, cloaking/redirection
spam, click spam

Duplicate Page Detection

• Detecting pages that have duplicate content
- exact duplicates (solution: computing/comparing hash values)
- near duplicates

- locality sensitive hashing
- shingles

P1: A B C D E F

P2: A B C X D E F

79, 189, 44, 14, 99

79, 189, 278, 68, 14, 99

14, 44, 79

14, 68, 79

near
duplicate

pages

Page Attributes

Page
attributes

Classifiers and feature extractors

Spam
classifier

Text quality
estimator

Adult
classifier

Web
graph

Forward
index

Page
content

Attrib.

…

7 240 1.7 ...

doc id: 4

term
count

length spam
score

Query-Independent Features

Feature Source Description

Content spam Page content Score indicating the likelihood that the page content is spam

Text quality Page content Score combining various text quality features (e.g., readability)

Link quality Web graph Page importance estimated based on page’s link structure

CTR Query logs Observed click-through rate of the page in search results (if available)

Dwell time Query logs Average time spent by the users on the page

Page load time Web server Average time it takes to receive the page from the server

URL depth URL string Number of slashes in the absolute path of the URL

Inverted Index

Inverted
index

Inverted
index

builder

Text processors

Tokenizer Phrase
extractor

Forward
index

Page
content …

• Text processing may involve
- tokenization
- stopword removal
- case conversion
- stemming

• Example
- original text: Living in America
- applying all: liv america
- in practice: living in america

Sample Document Collection

Doc id Text
1 pease porridge hot
2 pease porridge cold
3 pease porridge in the pot
4 pease porridge hot, pease porridge not cold
5 pease porridge cold, pease porridge not hot
6 pease porridge hot in the pot

Inverted Index

• An inverted index is a
representation for the
document collection over
which user queries are
evaluated.

• It has two parts
– a vocabulary index

(dictionary)
– inverted lists

– document id
– term information

Extended Inverted Index

• Extensions
- position lists: list of all positions a term occurs in a document

- skipping

- title, body, header, anchor text (inbound, outbound links)

(1, 1) (2, 1) (3, 1) (4, 2) (5, 2) (6, 1)

pease
1 1 1 1 4 11 4

6

doc
freq

Page id block Page id block Page id block……# of
blocks

Skip pointers

Success Measures

• Quality measures
- spam rate: fraction of spam pages in the index
- duplicate rate: fraction of near duplicate web pages in the index

• Performance measures
- compactness: size of the index in bytes
- deployment cost: effort needed to create and deploy a new

inverted index from scratch
- update cost: time and space overhead of updating a document

entry in the index

Inverted List Compression

• Benefits
- reduced space consumption
- reduced transfer costs
- increased posting list cache hit rate

• Gap encoding
- original: 17 18 28 40 44 47 56 58

- gap encoded: 17 1 10 12 4 3 9 2

gaps

Compression Algorithms

Compression algorithm Input sequence Output Parameters Encoded values

Unary d-gaps bit-aligned non-parametric individual values

Gamma d-gaps bit-aligned non-parametric individual values

Delta d-gaps bit-aligned non-parametric individual values

Variable byte d-gaps byte-aligned non-parametric individual values

Golomb d-gaps bit-aligned parametric individual values

Simple-9 d-gaps word-aligned parametric blocks of values

PForDelta d-gaps bit-aligned parametric blocks of values

Binary interpolation monotonic sequences bit-aligned parametric bisections

Elias-Fano monotonic sequences bit-aligned parametric entire sequence

Document Identifier Reordering

• Goal: reassign document identifiers so that we obtain many
small d-gaps, facilitating compression

Id mapping:

2 9
1 1

3 2
4 7
5 8

8 6

6 3
7 5

9 4

L1: 1, 3, 6, 8, 9
Original lists:

L2: 2, 4, 5, 6, 9 L3: 3, 6, 7, 9

L1: 1, 2, 3, 4, 6
Reordered lists:

L2: 3, 4, 7, 8, 9 L3: 2, 3, 4, 5

L1: 2, 3, 2, 1
Original d-gaps:

L2: 2, 1, 1, 3 L3: 3, 1, 2

L1: 1, 1, 1, 2
New d-gaps:

L2: 1, 3, 1, 1 L3: 1, 1, 1

Document Identifier Reordering

• Techniques
- traversal of document similarity graph

- formulated as the traveling salesman problem
- clustering similar documents

- assigns nearby ids to documents in the same cluster
- sorting URLs alphabetically and assigning ids in that order

- idea: pages from the same site have high textual overlap
- simple yet effective
- only applicable to web page collections

Index Construction

• Equivalent to computing the transpose of a matrix

• In-memory techniques do not work well with web-scale data

• Techniques
- two-phase
- one-phase

Two-Phase Index Construction

• First phase: read the collection and allocate a skeleton for the index
• Second phase: fill the posting lists

A
B
C
D
E

p3

p3

p3

Web
repository

1: Collect
term

statistics

3: Fill in the
index

template

Term statistics

p3:
B D E

A
B
C
D
E

Web page

2: Create
a template
of the index
on the disk

p3:
B D E

Inverted index

One-Phase Index Construction

• Keep reading documents and building an in-memory index
• Each time the memory is full, flush the index to the disk
• Merge all on-disk indexes into a single index in a final step

Web
repository

1: Flush a partial
index to the disk

each time the
memory is full

Web page

2: Merge the
partial indexes
on the disk into

a full index

Inverted index

Partial indexes

Parallel Index Construction

• Possible alternatives for creating an inverted index in parallel
- message passing paradigm
- MapReduce framework

Mapper

Reducer

D1: A B C

D2: E B D

D3: B C

Mapper

Mapper

Reducer

 A: D1
 B: D1
 C: D1

 E: D2
 B: D2
 D: D2

 B: D3
 C: D3

 A: D1

 B: D1 D2 D3

 C: D1 D3

 D: D2

 E: D2

Index Maintenance

• Grow a new (delta) index in the memory; each time the
memory is full, flush the in-memory index to disk

• Techniques
- no merge
- incremental update
- immediate merge
- lazy merge

No Merge

• Flushed index is written to disk as a separate index
• Increases fragmentation and query processing time
• Eventually requires merging all on-disk indexes or rebuilding

Delta
index

Memory

Old main
index

Delta
indexDisk

.. .

Incremental Update

• Each inverted list contains additional empty space at the end
• New documents are appended to the empty space in the list
• If the extra space allocated in an inverted list is full

- inverted list may be reallocated on disk
- inverted list is maintained in multiple fragments on disk

Delta
index

Old main
index

Immediate Merge

• Delta index is immediately merged to the old index and written
to a new location on disk

• Only one copy of the index is maintained on disk

Delta
index

Old main
index

New main
index

Lazy Merge

• Maintains multiple generations of the index on disk
• Index generations are lazily merged

Delta
index

Old main
index

1st gen.
index

2nd gen.
index

. . .

Inverted Index Partitioning

• Two alternatives for partitioning an inverted index
– term-based partitioning

– T inverted lists are distributed across P processors
– each processor is responsible for processing the postings of a

mutually disjoint subset of inverted lists assigned to itself
– single disk access per query term

– document-based partitioning
– N documents are distributed across P processors
– each processor is responsible for processing the postings of a

mutually disjoint subset of documents assigned to itself
– multiple (parallel) disk accesses per query term

Term-Based Index Partitioning

Document-Based Index Partitioning

Comparison of Index Partitioning Approaches

 Document-based Term-based
Space consumption Higher Lower
Number of disk accesses Higher Lower
Concurrency Lower Higher
Computational load imbalance Lower Higher
Max. posting list I/O time Lower Higher
Cost of index building Lower Higher
Maintenance cost Lower Higher

Inverted Index Partitioning

• In practice, document-based partitioning is used
– easier to build and maintain
– low inter-query-processing concurrency, but good load balance
– low query processing time
– high throughput is achieved by replication
– more fault tolerant

• Hybrid techniques are possible (e.g., term partitioning inside a
document sub-collection)

Key Papers

• Brin and Page, "The anatomy of a large-scale hypertextual Web search
engine", Computer Networks and ISDN Systems, 1998.

• Zobel, Moffat, and Ramamohanarao, "Inverted files versus signature files for
text indexing". ACM Transactions on Database Systems, 1998.

• Page, Brin, Motwani, and Winograd, "The PageRank citation ranking:
bringing order to the Web", Technical report, 1998.

• Kleinberg, "Authoritative sources in a hyperlinked environment", Journal of
the ACM, 1999.

• Ribeiro-Neto, Moura, Neubert, and Ziviani, "Efficient distributed algorithms
to build inverted files", SIGIR, 1999.

• Carmel, Cohen, Fagin, Farchi, Herscovici, Maarek, and Soffer, "Static index
pruning for information retrieval systems, SIGIR, 2001.

• Scholer, Williams, Yiannis, and Zobel, "Compression of inverted indexes for
fast query evaluation", SIGIR, 2002.

Query Processing

Query Processing

• Query processing is the problem of generating the best-
matching answers (typically, top 10 documents) to a given
user query, spending the least amount of time

• Our focus: creating
10 blue links as an
answer to a user
query

Web Search

• Web search is a sorting problem!

daylight saving

example query

giant squid

barla cambazoglu test

sun energy miracle

good Indian restaurant

Honda CRX Yahoo research

my horoscope

SIGIR conference deadline

test drive

download mp3

honey

facebook

user queries the Web

1

6

4

8 10

5

7

3
2

9

good Indian restaurant

f (good Indian restaurant)

Query Processing

user
query

snippet
request

user

Result
retrieval
system

Query
interpretation

system

Result
preparation
system

rewritten
query

SERP

FRONTEND BACKEND

rankings

snippets

Query Interpretation System

Normalization Spell correction Segmentation
(terms, phrases, URLs, …)

O

Stemming

N N

NS
NCS

NST

NS

NCST

NCS

Term expansion
(synonyms, plurals, …)

NSA
NSTA NCSTA

NCSA

Query rewriting

NC

Annotation
(entity extraction, geotagging, …)

R

O: Original
N: Normalized
C: Spell corrected
S: Segmented
T: Stemmed
A: Annotated
R: Rewritten

Query Rewriting Example

• Original user query: amusement arcades in New York
• Internal system query: AND(OR(PHRASE(amusement arcade),
 PHRASE(video arcade)
)
 LOCATION(new york)
)
• Applied modifications

1. stop word “in” is removed
2. term “arcades” is converted into its singular form “arcade”
3. “amusement arcade” is detected as a phrase and expanded to “video arcade”
4. “New York” is detected as a location and converted to lower case

Result Preparation

Page servers

Vertical search
clusters

Main web
search clusters

Forward
index

Web
index

1

1

2

3

3

5

rewritten
query

vertical
search
results

snippets
6

snippet
request 4

main
search
results

BACKENDFRONTEND

Index2

Snippet Generation

• Search result snippets (a.k.a., summary or abstract)
- important for users to correctly judge the relevance of a web

page to their information need before clicking on its link

• Snippet generation
- snippets are computed using the page content or position lists

only for the top 10 result pages
- efficiency of this step is important
- entire page as well as snippets can be cached

Success Measures

• Quality measures
- result quality: the degree to which returned answers meet user’s

information need.

• Performance measures
- latency: the response time delay experienced by the user
- peak throughput: number of queries that can be processed per

unit of time without any degradation on other metrics

Measuring Relevance

• It is not always possible to
know the user’s intent and his
information need

• Commonly used relevance
metrics in practice
- recall
- precision
- DCG
- NDCG

Two-Phase Ranking in a Search Node

k’ k’

Lm

matching simple
ranking heap

complex
ranking

L1

..

.
heap

n n k

First-phase ranking Second-phase ranking

• Two-phase ranking
- simple ranking

- linear combination of query-dependent and query-independent
scores potentially with score boosting

- main objective: efficiency
- complex ranking

- machine learned
- main objective: quality

Efficient Score Computation (using a min heap)

Design Alternatives in First-Phase Ranking

• In practice
- term frequencies: enables compression
- doc-id sorted lists: enables compression
- document-at-a-time list traversal: enables better optimizations
- AND mode: faster and leads to better results in web search

• Alternative models for score computation
- vector-space model
- statistical models
- language models

• They all pretty much boil down to the same thing

Scoring Optimizations

• Techniques
- bounding the number of accumulators
- dynamic index pruning

- WAND
- MaxScore

- early termination

Scoring Optimizations

• Dynamic index pruning
- store the maximum

possible score
contribution of each list

- compute the maximum
possible score for the
current document

- compare with the lowest
score in the heap

- gains in scoring and
decompression time

Scoring Optimizations

• Early termination
- stop scoring documents when it is guaranteed that neither

document can make it into the top k list
- gains in scoring and decompression time

Machine Learned Ranking

• Modeling quality
– relevance
– popularity
– recency
– quality

• Many features
– term statistics (e.g., BM25)
– term proximity

– link analysis (e.g., PageRank)
– spam detection

– click data

– search session analysis

• Popular learners used in
commercial search
engines
– neural networks

– boosted decision trees

• Ranking models
– pointwise

– pairwise

– listwise

• Single node
- not scalable in terms of response time

• Multiple nodes (search cluster)
- large search clusters (low response time)
- replicas of clusters (high query throughput)

• Multiple data centers (multi-site search engine)
- reduces user-to-center latencies

Query Processing Architectures

Inverted Index Partitioning/Replication

• In practice, the inverted index is
– partitioned on thousands of computers in a large search cluster

– reduces query response times
– allows scaling with increasing collection size

– replicated on tens of search clusters
– increases query processing throughput
– allows scaling with increasing query volume
– provides fault tolerance

Parallel Query Processing

Broker

Index

P1 P2

Index

P1 P2

Index

P1 P2

Query and
global phase 1

results

Local
phase 2
results

Broker

Index

P1 P2

Index

P1 P2

Index

P1 P2

Query

Local
phase 1
results

• Document-based partitioning • Term-based partitioning

Static Index Pruning

• Idea: to create a small version
of the search index that can
accurately answer most search
queries

Full web
index

Pruned
index

1

56

3

2 4

• Techniques
- term-based pruning

- doc-based pruning

• Result quality
- guaranteed

- not guaranteed

Tiering

• A sequence of sub-indexes
- former sub-indexes are small and

keep more important documents

- later sub-indexes are larger and
keep less important documents

- a query is processed selectively only
on the first n tiers

• Two decisions need to be made
- tiering (offline): how to place

documents in different tiers

- fall-through (online): at which tier to
stop processing the query 3rd tier

index

1st tier
index

1

3

2nd tier
index

5 7

8

9

2

4

6

Tiering

• Tiering strategy is based on some
document importance metric
- PageRank

- click count
- spam score

• Fall-through strategy
- query the next index until there are

enough results

- query the next index until search result
quality is good

- predict the next tier’s result quality by
machine learning 3rd tier

index

1st tier
index

1

3

2nd tier
index

5 7

8

9

2

4

6

Selective Search

• Documents are clustered and a
separate index is built
- similarity between documents

- co-click likelihood

• A query is processed on the
indexes associated with the most
similar n clusters

• Reduces the workload
• Suffers from the load imbalance

problem
- query topic distribution may be

skewed

- certain indexes have to be
queried much more often

Federator

Index on
page

cluster 1

Index on
page

cluster 3

1

2

Index on
page

cluster 2

2

4

3 3

Multi-site Web Search Architectures

• Replicated • Partitioned• Centralized

Data
center

Users

Search clusters

A local
index

Replicated Index

• Key points
- multiple, global data centers (sites)
- user-to-center assignment
- replicated web index

• Enables
- local web crawling
- energy price optimizations

Partitioned Search Architectures

• Key points
- multiple, regional data

centers (sites)
- user-to-center

assignment
- partitioned web index

- partial document
replication

• Enables
- local web crawling
- query processing with

selective forwarding

Caching

• Skewed distribution in query
frequency
– few queries are issued many

times (head queries)
– many queries are issued

rarely (tail queries)

• Skewed distribution in query
inter-arrival time
– low inter-arrival time is for

many queries

– high inter-arrival time for
few queries

Caches Available in a Web Search Engine

• Main caches in search engines: result cache, score cache,
intersection cache, inverted list cache, page cache

Page
cache

Forward
index

Document server (or search node)

Inverted list
cache

Intersection
cache

Inverted
index

Search node

Score
cache

Result
cache

Broker (or frontend)

Caching Techniques

• Static caching
– built in an offline manner
– prefers items that are accessed often in the past
– periodically re-deployed

• Dynamic caching
– maintained in an online manner
– prefers items that are recently accessed
– requires removing items from the cache (eviction)

• Static/dynamic caching
– shares the cache space between a static and a dynamic cache

Result Cache Freshness

• In practice
– index is continuously

updated or re-built
– result caches are almost

infinite capacity

– staleness problem

Solutions

• Naïve solution: flushing the cache at regular time intervals
• Common solution: setting a time-to-live value for each item
• Advanced solutions

– cache refreshing: stale results are predicted and scheduled for
re-computation in idle cycles of the backend search system

– easy to implement
– little computational overhead
– not very accurate

– cache invalidation
– hard to implement
– incurs communication and computation overheads

– highly accurate

Open Source Search Engines

• DataparkSearch: GNU general public license
• Lemur Toolkit & Indri Search Engine: BSD license
• Lucene: Apache software license
• mnoGoSearch: GNU general public license
• Solr: based on Lucene
• Elasticsearch: based on Lucene
• Seeks: Affero general public license
• Sphinx: free software/open source
• Terrier Search Engine: open source
• Zettair: open source

Key Papers

• Turtle and Flood, "Query evaluation: strategies and optimizations",
Information Processing and Management, 1995.

• Barroso, Dean, and Holzle, "Web search for a planet: the Google
cluster architecture", IEEE Micro, 2003.

• Broder, Carmel, Herscovici, Soffer, and Zien, "Efficient query
evaluation using a two-level retrieval process", CIKM, 2003.

• Chowdhury and Pass, “Operational requirements for scalable search
systems”, CIKM, 2003.

• Moffat, Webber, Zobel, and Baeza-Yates, "A pipelined architecture
for distributed text query evaluation", Information Retrieval, 2007.

Key Papers

• Turpin, Tsegay, Hawking, and Williams, "Fast generation of result
snippets in web search. SIGIR, 2007.

• Baeza-Yates, Gionis, Junqueira, Plachouras, and Telloli, "On the
feasibility of multi-site web search engines", CIKM, 2009.

• Cambazoglu, Zaragoza, Chapelle, Chen, Liao, Zheng, and
Degenhardt, "Early exit optimizations for additive machine learned
ranking systems", WSDM, 2010.

• Wang, Lin, and Metzler, "Learning to efficiently rank", SIGIR, 2010.
• Cambazoglu, Junqueira, Plachouras, Banachowski, Cui, Lim, and

Bridge, “A refreshing perspective of search engine caching”, WWW,
2010.

• Macdonald, Tonellotto, Ounis, "Learning to predict response times for
online query scheduling", SIGIR, 2012.

Concluding Remarks

Summary

• We presented a high-level overview of the challenges faced by
search engines.

• We provided a summary of commonly used success measures.

• We discussed some architectural and algorithmic optimizations
employed in search engines.

• We provided references to available software and key research
work in literature.

Observations

• Unlike the past research, the current research on information
retrieval is mainly driven by the needs of commercial search
engine companies.

• Lack of hardware resources, real-life query logs, and ground-
truth datasets render information retrieval research somewhat
difficult, especially for researchers in academia.

• Efficiency and effectiveness of web retrieval systems are
likely to be a research challenge for some more time (at least,
in the foreseeable future). But, we believe that certain limits
will be reached at some point in time.

Suggestions to Newcomers

• Follow the trends in the Web, user bases, and hardware parameters
to identify the real bottlenecks in web retrieval efficiency
effectiveness.

• Watch out newly emerging techniques whose primary target is to
improve the search quality and think about their impact on search
performance.

• Reuse or adapt existing solutions in more mature research fields,
such as databases, computer networks, distributed computing, and
natural language processing.

• Know the key people in the field (the community is small) and follow
their work.

Surveys on Related Topics

• M. R. Henzinger, R. Motwani, and C. Silverstein. “Challenges in web search
engines”, SIGIR Forum, 2002.

• J. Zobel and A. Moffat, “Inverted files for text search engines”, ACM
Computing Surveys, 2006.

• T-Y. Liu, “Learning to rank for information retrieval”, Foundations and Trends
in Information Retrieval, 2009.

• C. Olston and M. Najork: “Web Crawling”, Foundations and Trends in
Information Retrieval, 2010.

• F. Silvestri, “Mining Query Logs: Turning Search Usage Data into Knowledge”,
Foundations and Trends in Information Retrieval, 2010.

• B. B. Cambazoglu and Ricardo Baeza-Yates, “Scalability Challenges in Web
Search Engines”, The Information Retrieval Series, 2011.

• N. Spirin and J. Han. “Survey on web spam detection: Principles and
algorithms”. SIGKDD Exploration Newsletter, 2012.

Related Books

Coverage

Reference Web crawling Indexing Query processing Perspective

[Witten et al., 1999]  None High Medium Information retrieval

[Chakrabarti, 2002]  High High High Web retrieval

[Grossman and Frieder, 2004] None Medium High Information retrieval

[Manning et al., 2008]  Low High High Information retrieval

[Croft et al., 2009]  Low High High Web retrieval

[Chowdhury, 2010]  None High Medium Library science

[Buttcher et al., 2010]  Low High High Information retrieval

[Baeza-Yates and Ribeiro-
Neto, 2011]

High High High Information retrieval

