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Abstract—In this paper we present SALIC, an active learning
method that is placed in the context of social networks and
focuses on selecting the samples that are most appropriate to
expand the training set of a binary classifier. The process of
active learning can be fully automated in this social context
by replacing the human oracle with the user tagged images
obtained from social networks. However, the noisy nature of
user-contributed tags adds further complexity to the problem
of sample selection since, apart from their informativeness (i.e.
how much they are expected to inform the classifier if we knew
their label), our confidence about their actual content should also
be maximized (i.e. how certain the oracle is on its decision about
the contents of an image). The main contribution of this work
is in proposing a probabilistic approach for jointly maximizing
the two aforementioned quantities with a view to automate the
process of active learning. Based on this approach the training
set is expanded with samples that maximize the joint probability
of selecting a sample given its informativeness and our confidence
for its true content. In the examined noisy context, the oracle’s
confidence is necessary to provide a contextual-based indication
of the images’ true contents, while the samples’ informativeness
is required to reduce the computational complexity and minimize
the mistakes of the unreliable oracle. We prove the validity and
superiority of SALIC over various baselines and state-of-the-
art methods experimentally. In addition, we show that SALIC
allows us to select training data as effectively as typical active
learning, without the cost of manual annotation. Finally, we argue
that the speed-up achieved when learning actively in this social
context (where labels can be obtained without the cost of human
annotation) is necessary to cope with the continuously growing
requirements of large scale applications. In this respect, we prove
experimentally that SALIC requires 20 times less training data in
order to reach the exactly same performance as a straightforward
informativeness-agnostic learning approach.

Index Terms—active learning, large scale, user tagged images,
social context, image classification, multi-modal fusion.

I. INTRODUCTION

It is commonly accepted that classification models become
more robust when generated by high volumes of training
data. However, the need for manually labelled training corpus
creates an undesirable bottleneck for large-scale classification
problems. In an effort to minimize the labelling effort, active
learning [1] trains an initial classifier with a very small set of
labelled examples and expands the training set by selectively
sampling new examples from a much larger set of unlabelled
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examples (also known as pool of candidates). These examples
are selected based on their informativeness, i.e. how much they
are expected to improve the classifier’s performance. They are
found in the uncertainty areas of the classifier and, in a typical
case, are annotated upon request by an errorless oracle.

On the other hand, the widespread use of on-line social
networks has made available large amounts of user tagged
images that can be obtained at almost no cost and offer
more information than their mere visual content (e.g. tags).
If we could leverage these tags to become indicators of the
images’ actual content, we could potentially remove the need
for a human annotator and automate the whole active learning
process. However, in this case, where the labels are leveraged
from the freely available user tags, actively selecting new
samples might seem superfluous, since there is no labelling
cost to minimize. Indeed, we could simply just add all the
images in the pool instead of actively selecting new ones.
The question we should pose though is, how many more
images will we need to reach the same performance? The
computational overload (i.e. storage, memory and processing
time) of dealing with training sets several times larger might
not seem important in the scale of a few concepts and a few
thousand images. However, as we have witnessed in the past
years, large scale image benchmarks gain an order of scale
almost every year (from the ∼ 10k images of the first Pascal-
VOC competition at 2007 [2], to the ∼ 200k images of NUS-
WIDE [3], to the 1 million images of MIRFLICKR [4], to
the 14 million images of ImageNet [5] and to the 100 million
images of Yahoo [6] nowadays). The situation is similar for
the number of concepts, although the growth is not as steep
as in the case of images (approximately from 20 concepts at
2007 to 20000 nowadays). By incorporating active learning
in the selection process, a smaller part of the pool dataset,
which is deemed as informative, is required to be included
in the training set. In this way, we only need to add samples
that are expected to have a greater impact compared to the
straightforward brute-force methodology of adding all images
from the pool. This scales down the computational complexity
of the proposed method, since it drastically reduces the size of
the training set. Besides the gain in computational complexity,
incorporating active learning requires to annotate (using the
tags) only the small informative part of the pool dataset, which
saves us from the possible mistakes in the annotation process,
considering the noisy nature of tagging information.

However, even though tags can be obtained freely, they
cannot be considered as accurate labels. While simple string
matching could be used to annotate the images, it has been



IEEE TRANSACTIONS ON MULTIMEDIA, VOL. XX, NO. X, NOVEMBER 2015 2

proven that the accuracy of the tags is rather low [7]. This
calls for a more sophisticated way to define a measurement
that indicates the true contents of the images. Essentially, if
we consider the web users as oracles, this measurement can
be considered as the oracle’s confidence, which gauges how
probable is an image to depict a specific concept. The novelty
of SALIC is, in contrast to what has been considered so far
in active learning, a sample selection strategy that maximizes
not only the informativeness of the selected samples but also
the oracle’s confidence about their actual content. In order to
achieve this goal we formulate the selection process as a joint
optimization problem that maximizes a function conditioned
on the samples informativeness and the oracle’s confidence.
However, since this function cannot be estimated analytically,
we propose a probabilistic approximation. Towards quantify-
ing this probability, in this work, we approximate the samples’
informativeness by minimizing their distance from the sepa-
rating hyperplane of the classification model, which is known
to be an effective method for finding informative samples [8].
In order to measure the oracle’s confidence, we propose the
utilization of the popular bag of words approach [9]. The
reason for choosing this approach is its ability to decide about
the content of an image based on a set of tags, thus capturing
important contextual information and reducing the effect of
erroneously provided, ambiguous and misleading tags. Joint
maximization is then accomplished by ranking the samples
based on the probability of a sample being selected given the
two aforementioned quantities (see Fig. 1). This probability
indicates the benefit that our system is expected to gain if the
examined sample is selected and added to the training set.

This work builds on the approach presented in [10], which
proposed adding only positive samples in batch mode to
training sets that were formed by an already significant number
of labelled examples. In this work we introduce a different
sample selection approach that incorporates the following
novel features compared to [10]. The samples are added to
the training set in an iterative manner rather than in batch
mode. Negative examples are also included in the selected
samples making sure to alleviate the effect of the class
imbalance problem. Furthermore, our evaluation study has
been extended along the following axes. First, next to the
enhanced quantitative evaluation we also provide an auxiliary
qualitative evaluation that allows us to grasp intuitively the
pros and cons of each sample selection approach. Second,
experiments are performed in two feature spaces of different
dimensionality and discrimination ability so as to assess the
impact of these aspects in the effectiveness of SALIC. Third,
we prove experimentally that substituting the human oracle
with user tagged images achieves comparable performance
to the typical active learning scenario with a human oracle.
Finally, we show that the straightforward non-active learning
approach, which is equivalent to a random approach, requires
20 times more data to reach the same performance with
SALIC.

II. RELATED WORK

During the past decade, various active learning approaches
have been developed using different sample selection strate-
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Fig. 1: System Overview.

gies [8]. In [11], the selective sampling strategy is driven by
the requirement to reduce the size of the version space by using
an unlabelled sample that halves the version space. In this
way the authors aim to cover the full unexplored space with
the minimum number of queries. In [12] the authors attempt
to attack the insufficient training data problem by initially
employing the semi-supervised approach until they collect a
sufficient number of reliable training samples. Afterwards they
put active learning into force for optimizing the sample selec-
tion process. In [13], the authors propose a method to measure
the expected change of the model outputs and utilize this
measure as the informativeness of the new samples. In [14],
the authors analyse different sampling criteria and propose
a method that adapts the sampling strategy during training
by employing reinforcement learning. In [15], the authors
combine the typical uncertainty measure with an information
density measure in order to define the critical instances to be
labelled by the oracle.

There have been quite a few works that investigate active
learning with noisy oracles [16], [17], [18]. The objective
of the works dealing with noisy oracles is to model the
expertise of each oracle, so that the most reliable for a specific
instance can be selected. In this direction, the authors of [16]
consider active learning in a multiple oracles scenario, where
the algorithm not only selects the informative samples but
also the oracle to query labels from. The multiple oracles are
simulated by clustering the data and assuming each oracle is an
expert on one cluster. In a similar scenario, the authors of [17]
propose the utilization of transfer learning in order to compute
the reliability of each oracle by transfering knowledge from a
different domain where labelled data can be abundant instead
of depending on a large set of labelled images in the same
domain. The authors of [18] extend the Gaussian Processes
classification scheme to the multiple annotator scenario by
treating the unobserved true labels as latent variables opting
to estimate the different levels of expertise of the multiple
annotators, obtaining in this way better estimates of the ground
truth labels. However, all these works consider that there
is at least one oracle that holds the truth, compared to our
case where the oracle may never be absolutely confident for
its decision. In addition, the sample and oracle selection is
performed in two steps (i.e. first select the most informative
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sample and then the most reliable oracle for the selected
sample). This is in contrast to our work, where we jointly
select the sample which is both informative and our oracle
can reliably annotate it.

The idea of combining the benefits of active learning and the
knowledge generated from the crowds has recently become the
focus of research. In this direction, the authors of [19] propose
to use flickr notes in the typical active learning framework
(i.e. with a human oracle) with the purpose of obtaining a
training dataset for object localization. In a similar endeavour,
the authors of [20] introduce the concept of live learning where
they attempt to combine active learning with crowdsourced
labelling. More specifically, rather than filling the pool of
candidates with some canned dataset, the system itself gathers
possibly relevant images via keyword search on flickr. Then,
it repeatedly surveys the data to identify the samples that are
most uncertain according to the current model, and generates
tasks on MTurk to get the corresponding annotations.

However, although annotations originating from crowd-
sourcing services are closer to expert’s annotation in terms
of labelling accuracy [21], they cannot be considered either
fully automated or free. In contrast, SALIC relies on data
originating from on-line social networks (flickr images and
tags) that, although being more noisy, can be used to support
a fully automatic learning framework. In the direction of
utilizing the free web content, the authors of [22] propose
a weakly supervised approach that collects data from web
searches, applies clustering and outlier detection and trains
a model from every cluster, assuming that it will represent a
different characteristic of the concept. Web images are also
used as the training set in [23], where the authors treat the
associated text as privileged information in a multiple instance
learning scenario. Utilizing an extended set of social data
(images, tags, users, groups) the authors of [24] propose
a method for modeling social strength (i.e. the strength of
social relationship between users) by combining a textual, a
visual and a friend graph in order to provide personalized
recommendations for multimedia content. In a similar vein,
the authors of [25] introduce the need gap, in addition to the
popular semantic gap, which exists between the multimedia
semantics and the user needs for multimedia data. Towards
automatic creation of a training set, the authors of [26] present
a method relying on the results of image search engines, based
on the assumption that search engines tend to return very
relevant images in the first results of a query. More specifically,
the proposed method creates a set of queries, which is given
to image search engines and the top images returned by each
engine for each query are kept as positive examples. The set
of queries is formulated by translating the original concept
to 15 different languages, using hyponyms, hypernyms and
synonyms from WordNet and finding related terms within the
results of the Google text search engine. An extended survey
on tag-based image retrieval methods as well as re-ranking
with visual content can be found in [27].

With the recent widespread adoption of deep learning
techniques, there have also been works that opt to insert the
social context in the deep representations [28], [29], [7]. The
authors of [28] propose a method for embedding the user

intention learning task in the semantic learning task of a
typical convolutional neural network, empowering in this way
personalized image recommendations. Focusing also on the
social context, the authors of [29] based on the assumption
that the features of images in the same category tend to
be similar, propose an additional layer in a deep learning
network that considers the similarities between the training
images. The objective is to find the ideal feature map that has
minimum effect from the tag-originating noises by decreasing
the contribution of the distant images to the gradients. Utilizing
user tagged images in a deep learning scenario, the authors
of [7] propose a noise-resistant version of logistic regression
that can learn model parameters for any tag. The proposed
method, based on stochastic EM, can learn from large volumes
of user tagged images. In principle, SALIC falls under the
weakly supervised learning algorithms umbrella, since it only
uses tagged examples and no human annotator. However, the
novelty of this work comes from the joint consideration of
the samples’ informativeness (active learning) and the oracle’s
confidence (tag relevance). In this way, the visual content of
the user tagged images, apart from being used for training the
classifiers as in the typical weakly supervised learning case,
additionally defines which samples should be added in the
training set in the first place. The advantage of integrating
active learning in the selection process is that we can weed
out the non-useful part of the dataset. This counters the
inclusion of unhelpful and possibly falsely labeled data to the
model, which would increase the computational complexity
and diminish the performance of the model.

More closely related to SALIC are the works presented
in [30], [31], which are examined in the same context as
our work (i.e. active learning in the multimedia domain with
user tagged images). The first approach [30] is based on the
assumption that tags can reliably determine if an image does
not include a concept, thus making social sites a reliable
pool of negative examples. The selected negative samples
are further sampled by a two stage sampling strategy. First,
a subset is randomly selected and then, the initial classifier
is applied to the remaining negative samples. The examples
that are most misclassified (i.e. the examples that received the
highest confidence scores from the classification model) are
considered as the most informative negatives and are selected
to boost the classifier. In [31], the authors present a variation of
this work, by initially selecting a set of positive images in the
first iteration using tag relevance and then putting into work
the negative bootstrapping approach. Compared to these works
that also incorporate active learning in their selection process,
the novelty of SALIC lies in the proposed probabilistic fusion
strategy, unlike the state-of-the-art approaches which rely on
a two-step methodology (i.e. using one modality to filter part
of the pool dataset and then applying the criterion of the other
modality to perform sample selection).

III. PROBLEM FORMULATION

Let us consider the typical active learning scenario where
we have a small set of manually labelled instances L =
{l1, l2, . . . , lNL

}, NL = ‖L‖ accompanied by their corre-
sponding labels Y = {y1, y2, . . . , yNL

}, yi ∈ D, where D
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TABLE I: Notation table

Symbol Definition
L = {l1, l2, . . . , lNL} The set of labelled images.
Y = {y1, y2, . . . , yNL} The labels of L.
D = {+1,−1} The label space.
U = {u1, u2, . . . , uNU} The set of unlabelled images.
T = {t1, t2, . . . , tNU} The tags of U, where ti is the set of tags that correspond to image ui.
ui The visual descriptor of the image ui.
utext
i The textual descriptor of the image ui.

Hm = {wm, bm} The classifier of iteration m (wm is the normal vector to the SVM hyperplane and bm is the bias
term). H0 is the baseline classifier, trained with the initially labelled data.

E (Hm, u) The informativeness of sample u based on classifier Hm (i.e. the classifier at iteration m).
O(u, t, dk) The confidence of the oracle that the sample u belongs to the label dk based on its tags t.
Si ∈ {0, 1} The random variable (RV) modelling the event of selecting the image ui.
Vi ∈ [0, 1] The RV modelling the probability that ui is informative.
Ti ∈ [0, 1] The RV modelling the probability that ui belongs to the examined concept dk ∈ D.

*we use normal letters (e.g. ui) to indicate individuals of some population and bold face letters (e.g. ui) to indicate vectors
or sets of individuals of the same population

is the label space (the utilized notation is summarized in
Table I). In our case, we consider the binary classification
problem (i.e. D = {+1,−1}), thus the probable labels are
positive (i.e. d1 = +1) and negative (i.e. d2 = −1), with
respect to the concept that we are trying to learn. In addition
to the labelled set, we have a large set of unlabelled instances
U = {u1, u2, . . . , uNU

}, NU = ‖U‖ . Moreover, there is an
oracle O providing labels accurately for the unlabelled set U
on demand (i.e. yi = O(ui)). Initially, a baseline classifier
H0 is trained on the labelled set L. The objective of active
learning is to establish a function E (H0,U), which defines the
informativeness of each instance in the unlabelled set based on
the previous classifier H0. The instance u∗ ∈ U maximizing
this function is selected to be added in the labelled set L
along with its label y∗, which is provided by the oracle O
(i.e. y∗ = O(u∗)).

In our case, the oracle is substituted with the tags of the web
users. Thus, the set of images U is not completely unlabelled
but is associated with a set of tags T = {t1, t2, . . . , tNU

},
where ti is the set of tags associated with image ui. In this
sense, the oracle has already answered for all the instances
in U beforehand (i.e. the web users have already tagged the
images). However, given the noisy nature of the user tags,
we consider the oracle to be of questionable reliability and
instead of providing an accurate label for a specific sample
u∗ as before, it provides its confidence for each sample ui

and label dk ∈ {+1,−1} (i.e. its confidence O(ui, ti, dk)
that the sample ui is positive if dk = +1 and negative if
dk = −1) based on the tags ti of the image ui. The objective
in our case is not only to find the most informative sample,
but also the sample for which the oracle is most confident
for its label, so that we do not add falsely annotated samples
in the training set. In order to do this, we have to jointly
maximize the informativeness of a sample E (H0,U) and the
confidence of the oracle O(U,T , dk) in the label dk. Thus we
have to establish a new function P , which defines the benefit
of selecting a sample ui given its informativeness and the
oracle’s confidence. Maximizing this function, we can select
the optimal sample u∗ with the maximum informativeness and
the higher confidence of the oracle for its label:

u∗ = argmax
ui∈U

P(ui|E (H0, ui),O(ui, ti, dk)) (1)

The instance u∗ that maximizes this function for the ex-
amined label dk is added to the training set as positive if
dk = +1 or negative if dk = −1; The expectation is that
the addition of such samples in the training set will allow
for the maximum performance gain of the classifier. With
this approach, positive and negative instances can be selected
independently, by setting dk = +1 for the positive and
dk = −1 for the negative in Eq. 1.

Considering that active learning is an iterative method, in
the next iterations m ≥ 2 the informativeness is defined as
E (Hm, u). For simplicity, in the following, we will show
the methodology for the first iteration using the baseline
classifier H0, while the full iterative approach can be seen
in Algorithm 1.

IV. ACTIVE LEARNING WITH AN UNRELIABLE ORACLE

Given that the function P(ui|E (H0, ui),O(ui, ti, dk))
cannot be analytically estimated, we choose to approximate
it as a probability. For this reason, let us denote the following
random variables (RV); Si, the RV modelling the event of
selecting the image ui (Si ∈ {0, 1}), Vi, the RV modelling
the probability that ui is informative (Vi ∈ [0, 1]), Ti, the
RV modelling the probability that ui belongs to the examined
concept dk (Ti ∈ [0, 1]). Without loss of generality, we
can assume that the function P(ui|E (H0, ui),O(ui, ti, dk))
is proportional to the probability of selecting an instance
(Si = 1) given its informativeness (Vi) and the confidence
of the oracle (Ti):

P(ui|E (H0, ui),O(ui, ti, dk)) ∼ P (Si = 1|Vi, Ti) (2)

Consequently, in order to find the optimal u∗, instead of
the function P in Eq. 1, we can maximize its proportional
probability function P (Si = 1|Vi, Ti). In order to calculate
this probability, we make the reasonable assumption that the
probability of an image being informative is conditionally
independent from the probability that this image belongs
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to the examined concept (i.e. Vi and Ti are conditionally
independent). Using Bayes rule and based on our assumption
that Vi and Ti are independent we can express the probability
P (S|V, T ) as follows (from now on the subscripts of S, V
and T will be omitted):

P (S|V, T ) = P (V, T |S)P (S)

P (V, T )
=

=
P (S|V )P (S|T )P (V )P (T )

P (V, T )P (S)
(3)

In calculating P (S|V, T ) we may encounter two cases:
a) If P(S = 0|V,T) 6= 0:: In order to calculate the

probability P (S = 1|V, T ) and eliminate the probabilities
P (V ), P (T ) and P (V, T ), we divide the probability of select-
ing an image with the probability of not selecting it, following
the methodology presented in [32].

P (S = 1|V, T )
P (S = 0|V, T )

=

P (S=1|V )P (S=1|T )P (V )P (T )
P (V,T )P (S=1)

P (S=0|V )P (S=0|T )P (V )P (T )
P (V,T )P (S=0)

Then by replacing P (S = 0|V, T ), P (S = 0|V ), P (S = 0|T )
and P (S = 0) with their complements (1−P (S = 1|V, T ), 1−
P (S = 1|V ), 1−P (S = 1|T ) and 1−P (S = 1) respectively),
we get the following equation that computes P (S = 1|V, T ):

P (S = 1|V, T ) = P (S = 1|V )P (S = 1|T )
P (S = 1)− P (S = 1)P (S = 1|T )

· · ·

(1− P (S = 1))

−P (S = 1)P (S = 1|V ) + P (S = 1|V )P (S = 1|T )
(4)

b) If P(S = 0|V,T) = 0:: Assuming that the probabil-
ities P (V ) and P (T ) cannot be 0 (i.e. there is always an
a-priori probability that an image is informative and belongs
to the examined concept respectively), from Eq. 3 we have
that either P (S = 0|V ) = 0 or P (S = 0|T ) = 0 (i.e.
P (S = 1|V ) = 1 or P (S = 1|T ) = 1). Note that, in this case,
Eq. 4 also produces the same result (i.e. P (S = 1|V, T ) =
1⇒ P (S = 0|V, T ) = 0), so from now on we will use Eq. 4
in all cases.

Thus, we only need to estimate three probabilities: P (S =
1), P (S = 1|V ) and P (S = 1|T ). The first one is set to 0.5 as
the probability of selecting an image without any knowledge
is the same with the probability of dismissing it. For the
probability of selecting an image given its informativeness
P (S = 1|V ), we will approximate it using the informativeness
criterion E , which can be any criterion of the Active Learning
theory. In our case, we will be using the popular criterion that
considers the most informative samples to be the ones lying
on the separating hyperplane, since Support Vector Machines
(SVMs) will be used to train the classification models. For the
probability of selecting an image given the oracle’s confidence
P (S = 1|T ), we will approximate it with a textual analysis
algorithm that takes as input the tags of an image and provides
as output the probability of an image being positive or negative
with respect to a concept, as explained below. While any
textual analysis algorithm can be used, in this work, we used
the popular Bag-of-Words scheme (BoW) due to its ability to
additionally consider the context of the tags.

A. Incorporating informativeness in the selection (P (S|V ))

The probability P (S = 1|V ) can be approximated using the
informativeness criterion E (H0, u), where H0 is the baseline
classifier. As mentioned above, SVMs were chosen as the
classification scheme for this work. For the SVMs, a popular
informativeness criterion dictates the selection of the samples
closest to the separating hyperplane as the most beneficial
samples [11]. While other criteria could be used (e.g. halving
the version space by explicitly calculating it when a sample
is added), they would require to train a huge number of
SVM models in order to calculate the version space. On
the other hand, the selected criterion can be calculated very
efficiently for linear SVMs since it requires only a dot product
to calculate the distance from the hyperplane, making it very
attractive for large scale pool of candidates.

Initially, the baseline classifier H0 is trained using the
manually annotated set L as a linear SVM classifier (i.e.
H0 = {w, b}, where w is the normal vector to the hyperplane
and b the bias term). Then, for every candidate image in the
pool of candidates ui ∈ U, the distance from the hyperplane
V (H0, ui) is extracted by applying the SVM classifier (ui

here denotes the feature vector of the image ui):

V (H0, ui) = 〈w,ui〉+ b (5)

Based on [11], the samples with the minimum distance to the
hyperplane are considered as the most informative ones while
the samples that lie outside the margin area of the SVM model
are not expected to have any impact on the classifier. Thus the
function E (H0, ui), and consequently the probability P (S|V ),
should be maximized (i.e. P (S|V ) = 1) for the samples lying
at the hyperplane and minimized (i.e. P (S|V ) = 0) for the
samples that are outside the margin area. Based on the above
observation, we approximate the probability P (S|V ) with the
following equation, which is also visualized in Fig. 2a:

P (S|V ) ∼
{

1− |V | if −1 < V < 1
0 else (6)

where |V | is the absolute value of the quantity in 5.

B. Measuring oracle’s confidence (P (S|T ))
In order to measure the oracle’s confidence O(ui, ti, dk) that

the image ui ∈ U belongs to class dk (i.e. is positive if dk =
+1 or negative if dk = −1), we incorporate the associated
textual information that is provided in the form of tags. Opting
to overcome the noisy nature of social tagging (i.e. lack of
structure, ambiguity, redundancy, emotional tagging, etc), we
propose the utilization of the popular bag-of-words scheme [9],
due to its ability to capture the context of the whole set of tags,
instead of only the meaning of each tag independently (e.g. as
in the case of tag-to-tag similarity based on WordNet [33]).

The vocabulary is extracted from a large image dataset
crawled from flickr. Initially the distinct tags of all images
are gathered. The tags that are not included in WordNet are
removed and the remaining tags compose the vocabulary.
Then, in order to represent each image with a vector, a
histogram is calculated by assigning the value 1 to the bins



IEEE TRANSACTIONS ON MULTIMEDIA, VOL. XX, NO. X, NOVEMBER 2015 6

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

V

P
(S

|V
)

(a) P (S|V )

−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T

P
(S

|T
)

(b) P (S|T )

Fig. 2: Probability of selecting a sample based on (a) visual
and (b) textual information.

of the image tags in the vocabulary and 0 to the rest. PCA
is applied to reduce the high dimensionality of the initial
vocabulary (∼ 47k distinct tags) to 7k, which was chosen so
that 95% of the variance is kept. It is worth noting that, based
on internal experiments, PCA has no effect on the performance
of the textual analysis algorithm, while reducing significantly
the dimensionality and the memory requirements for this step.

Afterwards, a linear SVM model (wtext, btext) is trained
using the tag histograms as the feature vectors. In order to
do this, a training set of images that contain both tags and
manual annotations is utilized. The tags are required in order
to calculate the feature vectors and the manual annotations
to provide the class labels for training the model. In the
testing procedure, for every tagged image ui ∈ U the feature
vector utext

i is calculated as above and the SVM model is
applied. This results in a value for each tagged image T (ui),
which corresponds to the distance of utext

i from the textual
hyperplane:

T (ui) = 〈wtext,utext
i 〉+ btext (7)

Thus, the oracle’s confidence O(ui, ti, dk = +1) that the
image ui is positive, and consequently the probability P (S|T )
when selective positive examples, can be calculated using
Platt’s sigmoid [34] as shown in Fig. 2b:

P (S|T ) = O(ui, ti, dk = +1) =
1

1 + exp(AT +B)
(8)

The parameters A and B are learnt on the training set using
cross validation. The probability of Eq. 8 is for selecting a
positive image. In the case that we want to select negative
images, the oracle’s confidence O(ui, ti, dk = −1) that the
image ui is negative, and consequently the probability P (S|T )
when selective negative examples, is set to be the complement
of Eq. 8:

P (S|T ) = O(ui, ti, dk = −1) = 1−O(ui, ti, dk = +1) (9)

C. Re-training

In each iteration, after ranking the images based on the
probability P (S = 1|V, T ), the top b+ positive and b−
negative examples are selected to enhance the training set.
In the case where both positive and negative samples are
selected (as in SALIC), a new classifier is trained using the
union of the old data and the newly selected examples as

training set. However, in the case where either only positive
or only negative examples are selected (as in some baselines
we compare with), the classes become imbalanced, which is
a typical problem in the machine learning field. In order to
cope with the class imbalance problem we also apply a model
aggregation method [30]. For the aggregation method, in each
iteration m a new weak classifier H weak

m = {wweak
m , bweak

m }
is trained on the newly selected examples of class dk = +1 (or
dk = −1) and the original examples from the initial training
set of the other class dk = −1 (or dk = +1). This classifier
is called weak since it is not trained on the whole training
set, but only on a portion of it. Then, in order to compute
the classifier Hm = {wm, bm} for iteration m, all the weak
classifiers [H weak

1 ,H weak
2 , · · · ,H weak

m ] are aggregated by
averaging their parameters:

Hm =
1

m

m∑
i=1

H weak
i =

m− 1

m
Hm−1 +

1

m
H weak

m ⇒

 wm = m−1
m wm−1 + 1

mwweak
m

bm = m−1
m bm−1 +

1
mbweak

m

(10)

By incorporating this method, in each iteration the weak clas-
sifier is trained on equally sized sets of positive and negative
instances and the final model is extracted by averaging the
balanced weak classifiers of all iterations.

The complete algorithmic procedure of SALIC can be seen
in Algorithm 1.

Algorithm 1 SALIC
Input: labelled data L with their labels Y , unlabelled data
U, an oracle O , the number of iterations N , the number
of positive and negative instances selected in each iteration
b+, b−.
Output: a classifier HN .

1: H0 = {w0, b0} = train(L, Y )
2: for m = 1 : N do

// Get Positive Instances
3: dk = +1;
4: for j = 1 : b+ do
5: Choose u∗ = argmax

u∈U
P(u|E (H0, u),O(u, t, dk))

P is calculated using equations 2, 4, 6 and 8
6: {L, Y } ← {L, Y } ∪ {u∗, y∗ = dk}
7: U← U \ u∗
8: end for

// Get Negative Instances
9: dk = −1;

10: for j = 1 : b− do
11: Choose u∗ = argmax

u∈U
P(u|E (H0, u),O(u, t, dk))

P is calculated using equations 2, 4, 6 and 9
12: {L, Y } ← {L, Y } ∪ {u∗, y∗ = dk}
13: U← U \ u∗
14: end for
15: Hm = {wm, bm} = train(L, Y )
16: end for
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V. EXPERIMENTAL SETUP

A. Datasets

Three datasets were employed for the purpose of our exper-
iments. The imageCLEF dataset [35] (Imageclef ) consists of
25000 manually labelled images and was split into two parts,
Imagecleftrain and Imagecleftest consisting of 15k train
and 10k test images respectively. The dataset was annotated
by a vocabulary of 94 concepts which belong to 19 general
categories (age, celestial, combustion, fauna, flora, gender,
lighting, quality, quantity, relation, scape, sentiment, setting,
style, time of day, transport, view, water, weather). The images
of this dataset originate from flickr and the tags were also
provided. From this dataset we obtained the manually labelled
dataset L and the evaluation set (Imagecleftest)

The MIRFLICKR-1M dataset (Mirflickr) [4] consists of
one million user tagged images harvested from flickr. The
images of Mirflickr were tagged with 862115 distinct tags
of which 46937 were meaningful (included in WordNet). The
tags that were not included in WordNet were removed and the
images ending up with no tags were removed from this dataset
(out of the 1 million, 131302 images had no tags). In addition,
given that the Imageclef dataset is a subset of Mirflickr,
the images that are included in both sets were removed from
Mirflickr. In our experiments, this dataset constitutes the
pool of loosely tagged images.

The third dataset (Imagenet) includes images from the
manually labelled ImageNET database [5]. The vocabulary
of Imagenet consists of the 34 concepts that were in-
cluded in both the synsets of ImageNet and the vocabu-
lary of Imageclef . For every concept in the vocabulary of
Imagenet, the images in the corresponding ImageNet synset
were downloaded. This dataset consists of approximately 500k
images.

B. Implementation details

For the visual representation of the images, we have used
two popular approaches in order to verify the effectiveness of
SALIC in different conditions; one that results in very high
dimensional features that are of medium performance and one
for low dimensional features that have shown remarkable per-
formance. Our objective is to examine whether this difference
in the discrimination ability of the two feature spaces will lead
to particular requirements with respect to the sample selection
process.

First, for the high dimensional features we have used the
approach that was shown to perform best in [36]. More
specifically gray SIFT features were extracted at densely
selected key-points at four scales, using the vl-feat library
[37]. Principal component analysis was applied on the SIFT
features, decreasing their dimensionality from 128 to 80. Then,
Fisher vector encoding (256 GMM components) and spatial
pyramids (1× 1, 3× 1, 2× 2 regions) were applied, resulting
in a 327680− dimensional feature vector per image.

Second, the low dimensional features are extracted from
Convolutional Neural Networks (CNNs), which have shown
remarkable performance in the past years in both image
annotation and object detection [38]. The implementation

and the pre-trained CNN models of [39] were used. More
specifically, the models for extracting the lowest dimensional
feature vectors were utilized (model CNN M 128 for the uti-
lized implementation [39] or vgg-m-128 for the MatConvNet
implementation [37]), resulting in only 128 dimensions.

Linear SVM models were trained for both feature spaces
using the LIBSVM library [40] and were evaluated by mean
Average Precision (mAP). The code for the implementation of
the presented approach and the data to reproduce the results
can be downloaded from1.

Considering that the utilized datasets consist of images
labelled for multiple concepts, in order to conform with the
binary classification requirements of SALIC, we transformed
the multi label scheme to binary using the one-vs-all approach.
More specifically, for every concept, as positive samples were
considered all images including this concept in their list of
annotated labels, leaving all the rest of the images as negative
samples. Thus, the same image could serve as a positive
sample for more than one concepts. In our experimental study,
100 positive and 100 negative images from the 15k training
images of Imagecleftrain were randomly selected to train
the baseline classifiers (from now on called the Imageclefinit
dataset). The same initial examples were used for all experi-
ments to allow a fair comparison. Then in each iteration, 100
images were selected from the pool of candidates to enhance
the training set. Based on our experiments in Section VII-D,
a good choice for the size of the initial training set is 100
positive and 100 negative manually labeled examples and for
the size of the batch 100 examples (i.e. in each iteration we
add either i) 100 positive or ii) 100 negative or iii) 50 positive
and 50 negative depending on the training set expansion
strategy). Finally, 50 iterations were conducted in all cases, i.e.
in total, 5k images were added for each independent binary
classification problem (i.e. concept).

VI. EXPANDING WITH POSITIVE, NEGATIVE OR BOTH

Our motivation to search whether positive or negative ex-
amples should be selected is based on the following intuitive
and experimental observations. Intuitively, negative examples
are expected to be more informative than the positive ones,
since they tend to cover a larger part of the concept space and
as a consequence of the feature space (i.e. they depict a larger
variety of objects compared to the positive examples which
depict just one). In order to verify our intuitive observation
experimentally, we developed the following experimental set
up; Initially, by training a classifier on the Imageclefinit and
applying it on Imagecleftest we achieved the performance
of 17.43% in terms of mAP by averaging the performance
of the 34 binary classification problems (i.e. one for each
concept). Adding all the remaining positive examples of the
Imageclefinit dataset, so essentially using all positive vs 100
negative examples for each concept, the performance only
increased to 18.38%. Adding all negative examples instead to
the training set, i.e. using 100 positive vs all negative examples
for each concept, the performance increased to 23.62%. On the
other hand, if we use the full training set, the performance of

1http://mklab.iti.gr/research/salic
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the classifiers reaches the value of 29.67%. We can see that
although the addition of negative examples is indeed more
beneficial than the positive examples, it is far from achieving
the performance obtained by using both positive and negative
examples. The previous numerical results are for the Fisher
based features. Similar conclusions can be reached for the
CNN based features.

In order to test the contribution of each example type (i.e.
positive or negative) in an iterative active learning scenario, we
apply the active learning paradigm using the Imageclefinit
dataset to train the initial models and the Imagenet dataset
as the pool of candidates. The reason is that Imagenet is
manually annotated, removing the additional factor of how ac-
curately the new samples are annotated. Only the 34 concepts
of the Imagenet dataset were tested in this section. Then for
every concept, 100 images were selected to enhance the initial
training set; positive images were selected from the manually
annotated Imagenet dataset and negative examples from the
remaining negatives of the Imagecleftrain dataset. In each
iteration, a total of 100 images are selected based on their
informativeness. In Fig. 3 the following five configurations
are compared; i) 50 positive and 50 negative images were
added in the training set, ii) 100 positive images were added
in the training set, iii) 100 negative images were added in
the training set, iv) 100 positive images were selected and
the model aggregation method described in Section IV-C was
used, and v) 100 negative images were selected and the model
aggregation method described in Section IV-C was used. The
aggregation method was used only with the addition of only
one type of examples to alleviate the class imbalance problem.
On the contrary, this was not required for the addition of
both positive and negative examples since in this case class
imbalance is not an issue.

The results are shown in Fig. 3a for the Fisher based
features and in Fig. 3b for the CNN based features. We can
see that, in both cases, the addition of negative examples is
more beneficial than that of positive ones which confirms
our previous findings as well as our intuitive explanation.
Moreover, tackling the imbalance issue with the aggregation
method increases the performance for the low dimensional
CNN based features while it does not improve the performance
for the Fisher based features. On the other hand, we can
see that adding negative examples without aggregation (red
line with circles) increases the classifier’s performance at the
initial iterations (i.e. ∼ up to 5) when the class imbalance
problem is mild, but deteriorates significantly later as the
classes get severely imbalanced. The addition of both positive
and negative examples (blue line) outperforms greatly all the
other variations for the Fisher based features, as shown in
Fig. 3a, demonstrating the importance of adding examples
from both classes. For the CNN based features, the addition
of negative examples with aggregation performs similarly with
adding both positive and negative examples (Fig. 3b). At the
initial iterations, adding only negative examples with aggre-
gation provides a higher boost in the classifiers’ performance.
However, after the 15th iteration their performance starts to
deteriorate, while adding both positive and negative provides
a more stable increase in the performance of the classifiers.

This difference in performance between the two feature
spaces can be attributed to their discrimination ability. The
CNN based features are expected to be much more descriptive
than the Fisher based features, judging by their relative per-
formance. However, a better performing classifier is expected
to be confident for more samples from the pool of candidates
and thus leave a smaller area in the sample space for which
it is uncertain. This evidently means that there will be fewer
informative samples in this case. In order to examine if this
is the case, we plot the average distance to the hyperplane for
each iteration, for both approaches, i.e. positive and negative
and negative with aggregation, for both feature spaces. The
average distance to the hyperplane is an indication of the
average informativeness of the selected samples (i.e. when the
selected samples have an average distance from the hyperplane
less than 1, it means that most of them are within the margin
area and therefore they are informative). Thus, we would
expect that the distance from the hyperplane in the case of
the Fisher based features to stay below 1 for most concepts
and iterations, compared to the CNN based features, where
we expect the distance to grow quickly beyond 1 for the
positive examples and stay below or around 1 for the negative
examples.

The results can be seen in Fig. 4 for the Fisher based
features and in Fig. 5 for the CNN based features. Each line
in all plots corresponds to a different concept, thus there are
34 lines in each plot. We can see that in the case of the
CNN based features and for the negative with aggregation
method (Fig. 5b), the average distance stays below 1 for the
first iterations and around 1 later on, which means that we
continuously select informative samples (i.e. samples close
to the hyperplane). In the case of positive and negative
method (Fig. 5a), we can see that for many concepts, we
start selecting samples far from the hyperplane even from the
early iterations (i.e. the average distance to the hyperplane
grows beyond 1 quickly). Practically, this means that after the
positive informative samples end, we only add half informative
samples for the blue line (i.e. adding both positive and negative
examples) compared to the magenta line (i.e. adding negative
examples with aggregation). Indeed, if one looks closer at
the results in Fig. 3b, the blue line shows great performance
increase and potential in the first 5 iterations and suddenly
converges. On the other hand, this happens much later in
the case of the high dimensional Fisher features (Fig. 4a),
which explains the superiority of the blue line compared to
the magenta line in Fig. 3a. From the above, it is evident that,
for more discriminant and low dimensional feature spaces,
it is sufficient to just add negative images with aggregation,
while for the less discriminant and high dimensional feature
spaces adding both positive and negative images provides a
significant performance increase. For the next experiments the
first configuration was selected (i.e. both positive and negative
examples are added in the initial training set), since a more
robust performance is achieved with this configuration across
the two feature spaces.
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(a) Positive and negative approach.
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(b) Negative with aggregation approach.

Fig. 4: Average distance from the hyperplane, at each iteration, of the selected samples - Fisher. Training set: Imageclefinit
for 34 concepts, Pool of candidates: Imagenet for positive and Imagecleftrain \ Imageclefinit for negative, Test set:
Imagecleftest for 34 concepts.
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(a) Positive and negative approach.
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(b) Negative with aggregation approach.

Fig. 5: Average distance from the hyperplane, at each iteration, of the selected samples - CNNs. Training set: Imageclefinit
for 34 concepts, Pool of candidates: Imagenet for positive and Imagecleftrain \ Imageclefinit for negative, Test set:
Imagecleftest for 34 concepts.

VII. EXPERIMENTAL RESULTS

The objective of this section is to compare the proposed
active sample selection strategy against various baselines
and state-of-the-art approaches. For the experiments of this
section, all 94 concepts of Imageclef were used. The first
iteration is based on the initial models that were generated
using Imageclefinit. Afterwards, in each iteration, the initial
models are enhanced with 50 positive and 50 negative samples
from Mirflickr.

A. Comparing with sample selection approaches

1) Quantitative evaluation of the proposed selective sam-
pling approach: In this section, we want to compare the per-
formance boost that is achieved by SALIC with two selective
sampling baselines; a) self learning [41], where the images that
maximize the certainty of the SVM model (Eq. 5) trained on
visual information are selected to expand the training set and
b) a text-based approach, where the images that maximize the
oracle’s confidence (Eq. 8) are selected. In our case, where the
pool of candidates consists of user tagged images instead of
the typical manually labelled images, the text based approach

is equivalent to the random baseline that every active learning
approach compares with, since it neglects completely the
samples’ informativeness. It was favoured over a completely
random approach (i.e. adding samples completely randomly
without taking into account if they are actually positive or
negative) in order to avoid adding false positives/negatives.

The results can be seen in Fig. 6. We can see that self
learning does not provide any benefit to the models; this can
be explained by the fact that adding examples far away from
the hyperplane does not add any information to the model.
Moreover, the fact that SALIC outperforms both the text based
and the self training approaches, indicates the importance
of incorporating the informativeness of new images in the
selection strategy. With respect to the two utilized feature
spaces, we can see that the results are very similar, with
the only difference of self learning. In the case of the CNN
features, the updated models do not gain in performance
compared to the baseline ones. This can be attributed to
the high discrimination ability of these features that forces
self learning to select images far away from the hyperplane
and thus not producing additional support vectors (i.e. the
hyperplane is the same in all iterations). This also agrees
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Fig. 3: Iteratively adding positive, negative or both exam-
ples. Training set: Imageclefinit for 34 concepts, Pool of
candidates: Imagenet for positive and Imagecleftrain \
Imageclefinit for negative, Test set: Imagecleftest for 34
concepts.

with our observations in Section VI. Furthermore, in order to
demonstrate the effectiveness of SALIC, it is worth noting that
the fully supervised result (i.e. using all the 15000 images of
Imagecleftrain to train the classification models) achieves a
performance of 27.74% in terms of mAP, while SALIC yields
a maximum performance of 31.5%.

On the other hand, in the case of the Fisher features,
although the hyperplane of the self learning approach changes
through the iterations, showing that the selected images are
not necessarily far from the hyperplane, we can see that
instead of increasing its performance it deteriorates. This can
be attributed to the fact that the confidence of the oracle is not
taken into account and thus the algorithm selects false posi-
tives/negatives to add to the training set. Finally, in this case,
the fully supervised result achieves a performance of 28.06%
in terms of mAP, while SALIC yields a maximum performance
of 25%, requiring only a small portion of annotated samples
(∼ 1.3% of the total training set).

2) Qualitative evaluation of the proposed selective sam-
pling approach: In this section, we want to compare SALIC
with the typical self learning approach qualitatively. In order
to do so, we show visually the positive and negative samples
that have been selected by the two approaches for the concept
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(b) CNN based features.

Fig. 6: Comparing with sample selection baselines. Training
set: Imageclefinit, Pool of candidates: Mirflickr, Test set:
Imagecleftest

coast. The CNN based features are used for this visualization
(Fig. 7). In each figure we show 20 randomly positive (or
negative) examples from the initial training set and the top
20 positive and negative images that were chosen by each
strategy. For the positive examples (Fig. 7a), we can see
that the initial training set mostly consists of calm beaches
depicting the sea, the sun and the sky, without many additional
objects. As expected the self learning strategy also selects
very similar images to the training set, whereas the proposed
approach selects images that depict rocky beaches or wavy
seas with more objects (e.g. house, boat, lifeguard tower, surf
boards and people). By adding images with larger content
variety, the generalization ability of the enhanced classifiers
is maximized. Similarly for the negative examples (Fig. 7b),
we can see that the proposed approach selects more relevant
negatives (e.g. underwater images, blue buildings, skies with
fields, etc.), whereas the self learning approach mostly selects
indoor images that are completely irrelevant to the examined
concept.

B. Comparing with fusion approaches

In this section, in order to show the benefit of utilizing
the proposed probabilistic approach presented in Section IV
for fusing the informativeness of the samples (P (S|V )) and
the oracle’s confidence (P (S|T )), we compare it with three
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(a) Positive Images

(b) Negative Images

Fig. 7: Selected positive and negative examples by active
learning and self training for the concept coast. Training set:
Imageclefinit, Pool of candidates: Mirflickr.

baseline fusion strategies: a) the arithmetic mean, where the
arithmetic mean is used to combine the two probabilities
P (S|V ) and P (S|T ) into the selection probability P (S|V, T ),
b) the geometric mean, where the geometric mean is used to
combine the two probabilities P (S|V ) and P (S|T ) into the
selection probability P (S|V, T ) and c) a two step approach
that simulates the typical way that active learning is performed,
while also keeping the classes balanced. In this case, in
the first step, the tagged images in the pool of candidates
are annotated as positive or negative based on the oracle’s
confidence (P (S|T )). In the second step, the most informative
of the positive and negative images are selected (i.e. the images
that maximize the probability P (S|V )). The results are shown
in Fig. 8 both for Fisher (8a) and CNN (8b) based features. We
can see that using the simplistic arithmetic and geometric mean
approaches the initial models do not improve significantly,
showing that the selected samples are either not informative
or false positives/negatives. On the other hand, the two step
approach yields a higher performance boost, which is probably
due to the strict filtering it applies to the tagged images so
that false positives/negatives are not selected, while keeping
the notion of informativeness in the selection process. On the
contrary, SALIC greatly outperforms all the baseline fusion
strategies by selecting the samples that will have a higher
impact when added in the training set, showing the importance
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Fig. 8: Comparing with fusion baselines. Training set:
Imageclefinit, Pool of candidates: Mirflickr, Test set:
Imagecleftest.

of maximizing the joint probability P (S|V, T ).

C. Comparing with batch mode AL

In this section, our objective is to investigate the effect of
iteratively selecting examples compared to the simple batch
mode (followed by [10]), where all the samples are selected
in one iteration. In order to examine this effect in a fair way,
we compare two variations of SALIC; a) selecting samples
iteratively by adding 100 samples in each iteration (i.e. a total
of 100×m samples in the mth iteration) and b) selecting the
same number of 100 × m examples in a single iteration. In
Fig. 9 we plot the mAP for both approaches with respect to the
total number of examples added (#samples). We can see the
benefit of iterative active learning in both feature spaces. More
specifically, in the case of the Fisher based vectors (Fig. 9a),
the iterative approach gives a performance of ∼ 1% higher
compared to the batch mode, with the exception of when
adding very few examples (up to 400 samples), while in the
case of the CNN based vectors (Fig. 9b), the iterative approach
consistently outperforms the batch mode one with a difference
of 2% in mAP.

D. Parameter sensitivity investigation

In this section, we want to investigate the sensitivity of the
proposed approach to various parameters. More specifically,
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Fig. 9: Comparing iterative with batch mode AL. Training
set: Imageclefinit, Pool of candidates: Mirflickr, Test set:
Imagecleftest.

we want to examine how the size of the initial training set
and the number of the images added in each iteration affects
the performance of the resulting models. In order to investigate
this, we run SALIC using 20, 50, 100, 200 and 400 manually
labeled images in the first iteration (half positive and half
negative) and add 20, 50, 100, 200 and 400 images in each
iteration respectively (half positive and half negative). In order
to visualize the results, we plot the performance of each run
with respect to the total number of samples used in the training
set. The results can be seen in Fig. 10. It is obvious that, as
it would be expected, selecting more manually labeled images
in the first iteration the performance of the initial models
is significantly higher. For example, in the case of CNN-
based features (Fig. 10b), the models created with 20 labeled
examples - black line - have a performance of 18% mAP,
while when we have 400 labeled examples - magenta line -
the performance rises to 26%. However, by adding training
data with the help of SALIC, all the lines tend to converge
to a similar performance (i.e. the black line grows from 18%
mAP to 30% mAP, while the magenta line grows from 26%
mAP to 32% mAP). Moreover, as expected, each classifier
trained with a larger number of initially manually labeled data
converges to a slightly higher performance and is much faster
since only a few iterations are required. However, we also
have to consider that these models require much more effort
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Fig. 10: Parameter Sensitivity. Training set: Imageclefinit,
Pool of candidates: Mirflickr, Test set: Imagecleftest.

in order to acquire manually the increased number of labels
that are needed to train the initial classifier. We can see that
selecting 100 samples for the initial and the batch size seems
a good compromise between training time, performance and
annotation cost. Similar conclusions can be drawn for the
Fisher based features (Fig. 10a)

E. Comparing with an errorfree oracle

In order to investigate the impact of replacing the errorfree
human oracle with web users, we compare the results of
SALIC, which employs user tagged images as the pool of
candidates, with the ones obtained in Section VI using the
manually annotated Imagenet as the pool of candidates. Note
that these numbers correspond to the 34 concepts used in
Section VI so that the results of the two approaches are
directly comparable. In Fig. 11, we plot the performance of
the classification models for all iterations, a) when enhanced
by a human oracle (blue line) and b) when enhanced by the
proposed approach (green line). In Fig. 11a the results for the
Fisher based features are shown, while in Fig. 11b the results
for the CNN based features are shown. We can see that, for
both feature spaces, SALIC performs comparably well with
the typical case of having a human oracle. This means that
both the selection of bag-of-words for reducing the noise of
tags and the approximation of the sample selection function
with the probability of Eq. 2 are appropriate choices.
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Fig. 11: The impact of substituting the human oracle with
web users. Training set: Imageclefinit for 34 concepts, Pool
of candidates: a) for SALIC (green line) Mirflickr and
b) for manually labelled (blue line) Imagenet for positive
and Imagecleftrain \ Imageclefinit for negative, Test set:
Imagecleftest for 34 concepts

F. Why active learning when tags are free?

In this section, we want to demonstrate the gain in scala-
bility achieved by actively forming the training set compared
to adding positive and negative images in an informativeness-
agnostic manner. For this experiment, the text-based approach
plays the role of the informativeness-agnostic learning algo-
rithm. For demonstrating the gain in scalability, we compute
the ratio of the images that are required by the text based
approach to the images that are required by SALIC in order
to achieve the exact same performance. In Fig. 12, the plot
of this ratio with respect to the achieved performance boost is
shown. We can see that, for the CNN based features, in order to
achieve a 4% boost in mAP, the text based methods requires 20
times more images than SALIC (Fig. 12b). Similarly, for the
Fisher based features, the informativeness-agnostic approach
requires 9 times more instances to reach the same performance
with SALIC for a 3% boost in mAP (Fig. 12a). The fact that
we need an order of scale more data instances to achieve
the same performance gain, shows the importance of active
learning even in the case where labels can be obtained for
free. Moreover, it is interesting to note that the text based
approach was not able to reach the maximum performance
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Fig. 12: Ratio of samples, required to achieve the same
performance between the text-based approach and SALIC.
Training set: Imageclefinit, Pool of candidates: Mirflickr,
Test set: Imagecleftest.

of SALIC, even after 200 iterations (within the first 50
iterations, it approximately achieved half of the performance
boost compared to SALIC as it can be seen in Fig. 6).

G. Comparing with state-of-the-art

1) Comparing with Active Learning: In this section we
want to compare SALIC with the negative bootstrapping
approach presented in [30] (i.e. selecting in each iteration the
100 negative images that are most misclassified and utilizing
the model aggregation approach presented in Section IV-C to
cope with the class imbalance problem). The results can be
seen in Fig. 13. We can see that SALIC continuously increases
the performance of the classifiers and constantly outperforms
the other approach in both cases.

It is also worth viewing in parallel the comparison be-
tween SALIC and [30] along with the comparison in Fig. 3b
(Section VI) between adding positive+negative (blue line)
and negative with aggregation (magenta line), which is also
used by [30]. While in Fig. 3b using positive and negative
produces similar performance to only using negative with
aggregation, SALIC performs much better compared to [30]
(Fig. 13b). This can be attributed to the proposed probabilistic
fusion strategy between the two modalities, i.e. the samples’
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Fig. 13: Comparing with active learning. Training set:
Imageclefinit, Pool of candidates: Mirflickr, Test set:
Imagecleftest.

informativeness and the oracle’s confidence, compared to [30],
which is closer to a two step fusion.

2) Comparing with Weakly Supervised Learning: In this
section we want to compare with weakly supervised methods
that also learn classification models based on freely available
images on the web. More specifically, we compare with two
types of methods; one that selects images by querying search
engines [26] (SE) and another that uses flickr images and tags
in a deep learning scenario (DL). The first approach is based
on the observation that search engines tend to provide accurate
results for the top retrieved images. The proposed method
constructs a set of queries by i) translating the original query
to 15 different languages, ii) using hyponyms, hypernyms and
synonyms from WordNet and iii) finding related terms within
the results of the Google text search engine. Then, they query
image search engines (i.e. Google, Bing and flickr) with each
term in the previously constructed set and retrieve the top 24
images of each query (24 was found to be optimal in [26]).
The second method [7] proposes a noise-resistant version of
logistic regression that can learn model parameters for any tag,
called robust logistic regression (RLR). This is accomplished
by introducing a parameter, which models the probability that
a user will supply a tag, conditioned on the tag being true for
the image. This layer of robust logistic regression is added
after the last fully connected layer of a deep neural network.

In order to learn the parameters of the proposed network the
model weights are initialized from AlexNet, a network trained
previously on the manually labeled images from ImageNet and
then they are refined using the user tagged images.

In order to compare SALIC with [26], [7], we applied our
method to the dataset used in [26], which consists of 40
ImageNet concepts. As there was no manually labelled set
for these concepts, we selected the initial 100+100 images
to train H0 from the Mirflickr dataset using the text-
based approach. In Fig. 14, we compare between the pro-
posed approach (SALIC), the search engine-based method
presented in [26] (SE) and the deep learning based method
presented in [7] (DL). In order to obtain comparable results,
all methods used deep learning-based features with a fully
sized penultimate layer (i.e. 4096). In addition, the number
of iterations in the DL method were set to 8000 so that
all four approaches require similar computational time (i.e.
∼ 6 hours for the whole training procedure, including feature
extraction for SALIC and SE). With respect to SE, we can
see that SALIC outperforms this approach for 28 out of 40
concepts, yielding a mAP of 63.03%, compared to 60.3% for
SE. With respect to DL, we can see that SALIC compares
slightly favorably to DL (63.03% for SALIC versus 62.7%
for DL), outperforming it for 23 concepts out of 40. It is also
worth noting that there are three concepts, namely animal,
rhino and vehicle, where SALIC fails to gather good quality
training samples. For the concepts animal and vehicle, this can
be attributed to their generic nature partly, since they include
many diversiform sub-concepts (e.g. dogs, cats, insects, fish,
etc for animal and boats, buses, cars, airplanes for vehicle). In
addition, Mirflickr seems to be unfit for these concepts. This
can be verified if we note the SE outperforms significantly both
SALIC and DL for these concepts, which is the only method
of the three based on search engines rather than Mirflickr.

VIII. CONCLUSIONS

In this paper, we propose SALIC, an automatic active
learning approach for image classification, where the oracle is
replaced with web users and the pool of candidates with user
tagged images. The contribution of SALIC is a probabilistic
approach for joint maximization of the samples’ informative-
ness and the oracle’s confidence. Experimental results show
the superiority of SALIC compared to baselines and state-
of-the-art approaches. Moreover, we argue that despite the
abundant availability of user tagged images that can be labelled
with no cost, the existence of methods like SALIC is necessary
to ensure the scalability of image classification applications to
the constantly increasing demands. In the future, we plan to
investigate the utilization of ensemble and on-line learning
in the training process, in order to better accommodate the
current scalability challenges.
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Québec, Canada., 2014, pp. 1809–1815.

[18] F. Rodrigues, F. C. Pereira, and B. Ribeiro, “Gaussian process classifi-
cation and active learning with multiple annotators,” in Proceedings of



IEEE TRANSACTIONS ON MULTIMEDIA, VOL. XX, NO. X, NOVEMBER 2015 16

the 31th International Conference on Machine Learning, ICML 2014,
Beijing, China, 21-26 June 2014, 2014, pp. 433–441.

[19] L. Zhang, J. Ma, C. Cui, and P. Li, “Active learning through notes
data in flickr: an effortless training data acquisition approach for object
localization,” in Proceedings of the 1st ACM International Conference
on Multimedia Retrieval, ser. ICMR ’11. New York, NY, USA: ACM,
2011, pp. 46:1–46:8.

[20] S. Vijayanarasimhan and K. Grauman, “Large-scale live active learning:
Training object detectors with crawled data and crowds,” International
Journal of Computer Vision, vol. 108, no. 1-2, pp. 97–114, 2014.
[Online]. Available: http://dx.doi.org/10.1007/s11263-014-0721-9
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