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ontology, fuzzy spatial relations. considers roughly two types of approaches, depending on the
knowledge acquisition and representation process: implicit,
realized by machine learning methods, and explicit, realized
Abstract by model-based approaches.

The main characteristic of learning-based approaches is their
In this paper, a hybrid approach coupling ontologies andcapability to adjust their internal structure according to input
genetic algorithm is presented for realizing knowledge-assist@sd corresponding output data pairs. Consequently, the use
semantic image analysis. The employed domain knowledglemachine learning techniques provides a relatively powerful
considers both high-level information referring to objects ehethod for discovering complex and hidden relationships
the domain of interest and their spatial relations, and lowetween image data and higher-level descriptions, resulting
level information in terms of prototypical low-level visualto a variety of image applications targeting semantic analysis.
descriptors. To account for the inherent in visual informatioAmong the most commonly used machine learning techniques
ambiguity, fuzzy spatial relations have been employed aage Neural Networks (NNs), Hidden Markov Models (HMMs)
the corresponding domain ontology definitions are obtaingéld Support Vector Machines (SVMs) [2, 11]. On the other
though training. A genetic algorithm is applied to decide thgand, model-based image analysis approaches make use of
most plausible annotation. Experiments with images from tegplicitly defined prior knowledge such as models, rules, etc.,
beach vacation domain demonstrate the performance of thes providing a coherent semantic domain model to support
proposed approach. “visual” inference in the context specified [4, 7, 9]. However,

an issue considering approaches that use explicit knowledge is

the complexity that increases exponentially with the number
1 Introduction of objects of interest.

In order to benefit from the advantages of both categories of
Given the amount of available visual content, effective angowledge-assisted approaches and overcome their individual
efficient access at semantic level has become the key-enabjjpitations, a hybrid approach to domain-specific automatic
factor to allow users to benefit from such content and megiaiysis is proposed in this paper. The employed domain
their information needs. As a result, the challenging issfowledge considers both high- and low-level information, and
of bridging the so calledsemantic gagbetween the contentin accordance with the recent Semantic Web advances, the
descriptions that can be automatically extracted and the oB@gology paradigm has been followed for representation. High-
adhering to user perception has received strong interest, leagig| knowledge refers to the domain objects of interest and
to the emergence of numerous methodologies for handlifigir spatial relations, whereas low-level knowledge consists
efficiently the tasks of image analysis, indexing and retrievg} |ow-level visual information required for the actual analysis
[13, 8, 14]. process. To account for the inherent ambiguity in visual

information, fuzzy spatial relations, obtained through training,
Initially, the main focus was on the definition of suitablgave peen included in the domain knowledge. Initially, a set
descriptors that could be automatically extracted and gf graded hypothesis is produced based on visual similarity.
appropriate metrics in the descriptor space that woujthese hypotheses along with the extracted segments’ spatial
allow for efficient image retrieval. These approaches did|ations are passed in the sequel to a genetic algorithm that

not target directly the extraction of semantics from visUgased on the provided domain knowledge decides the optimal
content, but rather attempted to imitate the way useffage interpretation.

assess visual similarity. To address the resulting limitations,

research interest was shifted from data-driven methodologigsction 2 presents the overall system architecture and details

to knowledge-driven ones that utilize high-level domaithe individual components. Section 3 presents experimental
knowledge in terms of guiding features extraction, descriptions



results and evaluation in the domain of beach vacation images,

and Section 4 concludes the paper. 14 ovtpern
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In accordance with the principles of knowledge-driven
approaches and acknowledging the individual limitations of
both explicit and implicit knowledge representation, a hybriligyre 1: Overall architecture.
approach to ontology-driven image analysis using a genetic
algorithm (GA) is proposed in this paper. The choice of the
genetic algorithm approach is based on the premise that imageantic analysis and further processing of the extracted
interpretation can be perceived as an optimization problesamantic annotations. Following these considerations, in the
of searching the most plausible assignment between a sepxsfposed framework, the ontology infrastructure introduced in
concepts and the respective image segments. Furthermf@Ehas been used as the means for representing the knowledge
as the mapping between segments and concepts is natoeponents needed. This infrastructure consists of a visual
well-defined one, i.e., concepts cannot in general be associatedcriptor ontology that contains the representations of the
with unigque nor complete visual definitions, determining employed low-level visual descriptors, a multimedia structure
mapping reduces in finding the mapping that best satisfi@stology, and the DOLCE core ontology to harmonize them
the set of provided concept descriptions. Thereby, sinegth the corresponding domain ontology.
genetic algorithms [10] have been widely applied in many
fields involving optimization problems and have proved
to outperform other traditional methods, following sucR.2 Hypothesis generation
an approach provides certain rationales. Additionally, the
authors’ previous experience with genetic-based visual content
semantic analysis has showed promising results [15]. As mentioned above, an initial set of graded hypotheses is
generated for each image segment utilizing the provided
The overall architecture of the proposed framework @omain knowledge prototypical visual definitions. To
illustrated in Fig. 1. First segmentation is applied, angiccomplish this, firstly segmentation needs to be applied
subsequently low-level descriptors and fuzzy spatial relatioasd secondly, the required low-level descriptors have to be
are extracted for the generated image segments. Oegg&acted. In the current implementation, an extension of
the low-level descriptors are available, an initial set dhe Recursive Shortest Spanning Tree (RSST) algorithm has
hypotheses is generated for each image segment based obée:m used for segmenting the image [1], while descriptors
distance between each segment extracted descriptors ancegteaction is based on the guidelines given by the MPEG-7
prototypical descriptors of the domain concepts included @Xperimentation Model (XM) [17]. In order to produce the
the domain knowledge base. The resulting hypotheses with tiywotheses sets, appropriate measures need to be defined
associated degrees of confidence are then passed to the gefutiqualitatively assessing visual similarity between the
algorithm along with the segments extracted spatial relatioesxamined image segments and the defined domain concepts.
Utilizing the provided domain spatial-related knowledge, thds MPEG-7 does not provide a standardized method for
genetic algorithm decides the optimal semantic interpretatioambining different descriptors distances or for estimating a
of the examined image, i.e. the semantic concept assigrsitgle distance based on more than one descriptor, a simple
to each image segment. In the following, the details of theeighted sum approach was followed. Thereby, for each
individual components are presented. segment a similarity degree is produced against each of
the defined domain concepts. The pairs of domain concept
and corresponding degree of confidence that result for each
2.1 Knowledge infrastructure segment comprise its hypothesis set.

Among the possible knowledge representations, ontolog28 Fuzzy spatial relations extraction

[6] present a number of advantages. They provide a formal

framework for supporting explicit, machine-processable,

semantics definition and enable the derivation of nelxploiting domain-specific spatial knowledge in image
knowledge through automated inference. Thus, ontologi@salysis tasks is a common practice as objects tend to occur
appeal to expressing multimedia content semantics in a formathin a particular spatial context, and additionally, spatial
machine-processable representation that will allow automatitowledge can assist in discriminating objects exhibiting



In the subsequent description, the following definitions have
been used:

si,i=0,1,..N—1, 1)

is used to denote thie— th image segment of th& segments
produced by the initial segmentation.

0= {01; 02, 03, }7 (2)

denotes the set of concepts defined in the each time employed
domain ontology.

Figure 2: Reduced MBR spatial relations definition.

The function

similar visual characteristics. In the presented analysis 7 N =T o 3
framework, eight directional relations are supported, namely m(g:) = Iu(si; 05), ®)

above, right, below, left, above-right, above-left, below-righjoyides the degree to which the visual descriptors extracted
and below-left for adjacent regions. ~To account for th§or segment; match the ones of objeof, whereg; represents
complexity in assessing which spatial relations best descrii@ particular assignment of t0 s;. Thus, I (g;) gives the

the examined domain concepts relations, fuzzy relatiogggree of confidence associated with each hypothesis and takes
where preferred. Building on the principles of projection- angyes in the intervaD, 1]

angle based methodologies [16, 12], a combined approach is
employed that consists of the following steps. First, a reducefle set of spatial relations used is denotediy and in the
box from the ground object MBR is computed so as to includ@,irent implementation reduces to

the object in a more representative way, and then cone-based

regions on top of this reduced box corresponding to the eight R, ={N, NW, NE, S, SW, SE, W, E}, (4)
examined relations are defineligure object denotes the one )

whose relative position is to be estimated, whjfeundobject The function:

the reference one. The computation of the reduced MBR is

performed in terms of the MBR compactness vatudf the Try (sir 55) » k€Nandk €18, ©)

currently computed is greater than the given threshold, eighieturns the degree to which satisfies the relatiod?;, with

cone-shaped regions are defined corresponding to the eiglpect tos;; again the resulted degree belong$ital].
supported relations 2. The percentage of the figure object

points that are included in each of the cone-shaped regionse function:
determines the degree to which the corresponding directional
relation is satisfied. If however, the computeds below the Is (9is 95)s (6)

threshold set, the MBR is reduced repeatedly until the desired . ) .
threshold is satisfied. After experimentation, the value of th&{UrNS the degree to which the spatial constraints between the
threshold was set 1©.85. 9i, g; object to segments mappings are satisfied, i.e. the degree

to which the relations extracted between segmepiand s;
comply with the spatial knowledge of the objeetsand o,
respectively that have been assigned to these segments.

2.4 Genetic algorithm

As described above, first, an initial set of hypotheses 1£iNing and fuzzy spatial constraints acquisition.

generated based solely on visual similarity (subsection 2.2) and . _ .
fuzzy spatial relations are extracted for each pair of adjacei COMPUte the fuzzy spatial constraints between each pair of
segments (subsection 2.3). This information is then pasd8 defined domain objects, a set of images has been assembled
to a genetic algorithm that exploiting the available domaf? SETVe as training set, and respective ground truth annotations

spatial knowledge determines the optimal image interpretatig$'e constructed. For every pair of adjacent segments assigned
To account for the inherent in visual information ambiguit}® OPIects(0i, 0;), 7 # j, the degrees to which each relatifip
verified are summed over the set of training images. Thus,

and the difficulty in coming up with spatial definitions that® oe
cover every possible domain concept instantiation, approprifié M&aM ,mean @nd the standard deviatier,, (Eq. 7), are
tained for each of the relations.

training was conducted in order to acquire membersh
values for each of the spatial relations comprising the domain
knowledge. As explained in the following, these fuzzy spatial
relations serve as constraints with respect to the “allowed” s SN (Inyi — Inpmean)?

domain concepts spatial arrangement. Of = N 5 ()




whereN denotes the number th&; is satisfied for objects; stands for the degree of consistency with respect to the

ando;. provided spatial domain knowledge. The variableis
introduced to adjust the degree to which visual similarity and
Fuzzy spatial relations membership. spatial consistency should affect the final outcome. After

thorough experimentation\, was set td).35, which points out
The function Is(g;, g¢;) returns the degree to which thethe importance of spatial context.
spatial constraint between the objects involved inghandg;
mappings is satisfiedls(g;, g;) is set to receive values in theThe values o5C,, o1, aNdF'S,,,,,, are computed as follows:
interval [—1, 1], where 1’ denotes an allowable relation and
‘—1'" denotes an unacceptable one based on the learnt spatial
constraints. To calculate this value for a specific pair of objects N_1
o0; ando; the following procedure is used. For every computed FS,,. = >ico 1 (9i) — Imin (11)
triplet [Ry, Ir, mean s3] Of the corresponding spatial constraint Invaw — Imin 7
wherelr, mean 7 0, @ triangular fuzzy membership function
is formed to compute the corresponding degree.

wherel,,;, is the sum of the minimum degrees of confidence
he}ssigned of each region hypotheses setland the sum of the

Letd, denote the value resulted from applying the members n?aximum degrees of confidence values respectively

function with respect to relatioR;. Once, the corresponding
d values have been computed for each relations, i.e. for

k =0,1,..8, they are combined to form the degrbgg;, g;)

to which the corresponding spatial constraint is satisfied. The SC +1
calculation is based on based on Eq. (8), whirg are the SCrorm =
relations for whichlg,  .can 7 0, and R,, are the extracted

relations for which/ g, ,;,cqn = 0.

M
Is Y95
and SC = 2r=11::(9::9)) M(g %) | (12)

whereM denotes the number of relations in the constraints that
had to be examined.
IR, *dm
Is (gi, 9j) = Zmim — ZIR" L iA] (8) After the population initialization, new generations are
> m " iteratively produced until the optimal solution is reached. Each
generation results from the current one through the application

wherel R stands for of the following operators.

IR=> 1Ig, 9)
m e Selection: a pair of chromosomes from the current
generation are selected to serve as parents for the next
Implementation of genetic algorithm. generation. In the proposed framework, the Tournament

Selection Operator [5], with replacement, is used.

As described above, the developed algorithm uses as input the .
L . : e Crossover: two selected chromosomes serve as parents
initial set of hypotheses, the spatial relations extracted between . . :
: . . . for the computation of two new offsprings. Uniform
between the examined image adjacent segments, and spatial . " .
crossover with probability of.7 is used.

domain knowledge as produced by the above described training
process. Under the proposed approach, each chromosome Mutation: every gene of the processed offspring
represents a possible solution. Consequently, the number of chromosome is likely to be mutated with probability
the genes comprising each chromosome equals the number of (0.008. If mutation occurs for a particular gene,

N of the segments; produced by the segmentation and its  then its corresponding value is modified, while keeping
chromosome assigns a domain concept to an image segment. ynchanged the degree of confidence.

A population 0f200 chromosomes is used, and it is initialized
with respect to the input set of hypotheses. An appropriafe ensure that chromosomes with high fitness will contribute
fitness functions introduced to provide a quantitative measuri@ the next generation, the overlapping populations approach
of each solution fitness, i.e. to determine the degree to whiglas adopted. More specifically, assuming a populatiomof
each interpretation is plausible: chromosomesm, chromosomes are selected following the
employed selection method, and through the application of
F(C) = Ax FSnorm + (1= A) X 5Cnorm , (10) thepcrgssover and mutation operators ?1ew chropnr’)losome
are produced. Upon the resulted+ m, chromosomes, the
where C' denotes a particular ChromosomgS,,,, refers selection operator is applied once again in order to select the
to the degree of low-level descriptors similarity, afid’,,,., m chromosomes that will comprise the new generation. After



experimentation, it proved that selecting, = 0.4m resulted
in higher performance and faster convergence. The above ... =
iterative procedure continues until the diversity of the current A

generation is equal or less thau®01.

3 Experimental results

In this section, we present experimental results from testing the
proposed approach in the domain of beach vacation images.
First, a domain ontology had to be developed to represent
the domain concepts of interest and their spatial relations. £
The beach vacation domain was selected for experimentation,

and under the current implementation four concepts, namely
Sky Sea Sandand Person A variety of images from the

beach vacation domain was selected then in order to assemb

- EN&E
a training set of50 images for the acquisition of low-level

visual descriptors prototypes and membership values for the

spatial relations. Each image of the training set was manuqﬂbgure 3: Exemplar results for the beach domain.
annotated according to the domain ontology. Subsequently,

segmentation was performed as described above, and the Initial Hypothesis | Final interpretation
Dominant Color and the Reg|on Shape descriptors, i.e., the Object | precision| recall | precision| recall

two currently sgpported de;crlptcl)rs, of the annotateg segments Sky 56.0% | 77.7% | 80.0% | 98.8%
were extracted.  Approximately, 10 prototype descriptor Sea | 83.6% 160.0%| 857% | 70.6%

instances resulted for each of the defined domain concepts
after the elimination of the redundant ones, i.e., of prototypes
almost identical to each other that do not offer any additional
discriminative power. Additionally, for each pair of adjacent
segments the degree to which each spatial relation is satisfia@lle 1: Numerical evaluation for the beach vacation domain.
was estimated and thus, following the procedure described

in Section 2.4 for each possible combination of the defined

domain concepts, the domain ontology spatial relations wégSUlts, it is within the authors’ future intentions to introduce
enhanced with fuzzy degrees. a threshold in the acquired degrees of confidence to represent

the “unknown” concept in order to account for such cases and

Having available the needed domain knowledge, semarfifetain more accurate indications of the attained performance.

annotation of images can be performed following the proposed

approach. Based on the extracted prototype instances, initial

hypotheses are generated for the examined image segments agonclusions

described in Section 2.2, which are then passed in the genetic

algorithm along with the fuzzy spatial constraints in order to

determine the final interpretation. In Fig. 3 indicative resulte this paper, an approach to semantic image analysis that
are given showing the input image, the annotation resulteduples ontologies with a genetic algorithm is presented.
from the initial hypotheses set taking for each image segmdrite employed knowledge considers both high- and low-level
the hypothesis with the highest degree of confidence and thiarmation, and in accordance with the recent Semantic
final interpretation after the genetic algorithm applicatioWeb advances, the ontology paradigm has been followed for
As illustrated, the proposed system achieves satisfactoepresentation. High-level knowledge includes the domain
results, justifying the use of a genetic algorithm to reach abjects of interest and their spatial relations, whereas low-level
optimal image interpretation given degrees of confidence fomowledge consists of low-level visual descriptors required for
visual similarity and spatial consistency against the domaime analysis process. To account for the inherent ambiguity in
definitions. In Table 3, quantitative performance measureisual information, fuzzy spatial relations are employed and
are given in terms of precision and recall over a test set thie corresponding domain relations definitions are obtained
200 beach vacation images. It must be noted that for thieough training. Based on the low-level domain ontology
numerical evaluation, any concept present in the examingeffinitions, initial hypotheses sets are generated including
test set images that was not included in the domain ontolotipe domain concepts possibly depicted to each of the image
concept definitions, such as umbrellas, sailing boats, etc., vg@gments and their respective degrees of confidence. These
not taken into account. As this affects directly the evaluatidrypotheses along with the segments’ spatial relations form

Sand | 43.0% |82.2%| 56.9% | 91.1%
Person| 78.9% |56.9%| 91.7% | 67.9%
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