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Abstract

In this paper, a hybrid approach coupling ontologies and a
genetic algorithm is presented for realizing knowledge-assisted
semantic image analysis. The employed domain knowledge
considers both high-level information referring to objects of
the domain of interest and their spatial relations, and low-
level information in terms of prototypical low-level visual
descriptors. To account for the inherent in visual information
ambiguity, fuzzy spatial relations have been employed and
the corresponding domain ontology definitions are obtained
though training. A genetic algorithm is applied to decide the
most plausible annotation. Experiments with images from the
beach vacation domain demonstrate the performance of the
proposed approach.

1 Introduction

Given the amount of available visual content, effective and
efficient access at semantic level has become the key-enabling
factor to allow users to benefit from such content and meet
their information needs. As a result, the challenging issue
of bridging the so calledsemantic gapbetween the content
descriptions that can be automatically extracted and the ones
adhering to user perception has received strong interest, leading
to the emergence of numerous methodologies for handling
efficiently the tasks of image analysis, indexing and retrieval
[13, 8, 14].

Initially, the main focus was on the definition of suitable
descriptors that could be automatically extracted and of
appropriate metrics in the descriptor space that would
allow for efficient image retrieval. These approaches did
not target directly the extraction of semantics from visual
content, but rather attempted to imitate the way users
assess visual similarity. To address the resulting limitations,
research interest was shifted from data-driven methodologies
to knowledge-driven ones that utilize high-level domain
knowledge in terms of guiding features extraction, descriptions

derivation and symbolic inference. The relevant literature
considers roughly two types of approaches, depending on the
knowledge acquisition and representation process: implicit,
realized by machine learning methods, and explicit, realized
by model-based approaches.

The main characteristic of learning-based approaches is their
capability to adjust their internal structure according to input
and corresponding output data pairs. Consequently, the use
of machine learning techniques provides a relatively powerful
method for discovering complex and hidden relationships
between image data and higher-level descriptions, resulting
to a variety of image applications targeting semantic analysis.
Among the most commonly used machine learning techniques
are Neural Networks (NNs), Hidden Markov Models (HMMs)
and Support Vector Machines (SVMs) [2, 11]. On the other
hand, model-based image analysis approaches make use of
explicitly defined prior knowledge such as models, rules, etc.,
thus providing a coherent semantic domain model to support
“visual” inference in the context specified [4, 7, 9]. However,
an issue considering approaches that use explicit knowledge is
the complexity that increases exponentially with the number
of objects of interest.

In order to benefit from the advantages of both categories of
knowledge-assisted approaches and overcome their individual
limitations, a hybrid approach to domain-specific automatic
analysis is proposed in this paper. The employed domain
knowledge considers both high- and low-level information, and
in accordance with the recent Semantic Web advances, the
ontology paradigm has been followed for representation. High-
level knowledge refers to the domain objects of interest and
their spatial relations, whereas low-level knowledge consists
of low-level visual information required for the actual analysis
process. To account for the inherent ambiguity in visual
information, fuzzy spatial relations, obtained through training,
have been included in the domain knowledge. Initially, a set
of graded hypothesis is produced based on visual similarity.
These hypotheses along with the extracted segments’ spatial
relations are passed in the sequel to a genetic algorithm that
based on the provided domain knowledge decides the optimal
image interpretation.

Section 2 presents the overall system architecture and details
the individual components. Section 3 presents experimental



results and evaluation in the domain of beach vacation images,
and Section 4 concludes the paper.

2 Ontology-driven genetic algorithm-based image
analysis

In accordance with the principles of knowledge-driven
approaches and acknowledging the individual limitations of
both explicit and implicit knowledge representation, a hybrid
approach to ontology-driven image analysis using a genetic
algorithm (GA) is proposed in this paper. The choice of the
genetic algorithm approach is based on the premise that image
interpretation can be perceived as an optimization problem
of searching the most plausible assignment between a set of
concepts and the respective image segments. Furthermore,
as the mapping between segments and concepts is not a
well-defined one, i.e., concepts cannot in general be associated
with unique nor complete visual definitions, determining a
mapping reduces in finding the mapping that best satisfies
the set of provided concept descriptions. Thereby, since
genetic algorithms [10] have been widely applied in many
fields involving optimization problems and have proved
to outperform other traditional methods, following such
an approach provides certain rationales. Additionally, the
authors’ previous experience with genetic-based visual content
semantic analysis has showed promising results [15].

The overall architecture of the proposed framework is
illustrated in Fig. 1. First segmentation is applied, and
subsequently low-level descriptors and fuzzy spatial relations
are extracted for the generated image segments. Once
the low-level descriptors are available, an initial set of
hypotheses is generated for each image segment based on the
distance between each segment extracted descriptors and the
prototypical descriptors of the domain concepts included in
the domain knowledge base. The resulting hypotheses with the
associated degrees of confidence are then passed to the genetic
algorithm along with the segments extracted spatial relations.
Utilizing the provided domain spatial-related knowledge, the
genetic algorithm decides the optimal semantic interpretation
of the examined image, i.e. the semantic concept assigned
to each image segment. In the following, the details of the
individual components are presented.

2.1 Knowledge infrastructure

Among the possible knowledge representations, ontologies
[6] present a number of advantages. They provide a formal
framework for supporting explicit, machine-processable,
semantics definition and enable the derivation of new
knowledge through automated inference. Thus, ontologies
appeal to expressing multimedia content semantics in a formal
machine-processable representation that will allow automatic
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Figure 1: Overall architecture.

semantic analysis and further processing of the extracted
semantic annotations. Following these considerations, in the
proposed framework, the ontology infrastructure introduced in
[3] has been used as the means for representing the knowledge
components needed. This infrastructure consists of a visual
descriptor ontology that contains the representations of the
employed low-level visual descriptors, a multimedia structure
ontology, and the DOLCE core ontology to harmonize them
with the corresponding domain ontology.

2.2 Hypothesis generation

As mentioned above, an initial set of graded hypotheses is
generated for each image segment utilizing the provided
domain knowledge prototypical visual definitions. To
accomplish this, firstly segmentation needs to be applied
and secondly, the required low-level descriptors have to be
extracted. In the current implementation, an extension of
the Recursive Shortest Spanning Tree (RSST) algorithm has
been used for segmenting the image [1], while descriptors
extraction is based on the guidelines given by the MPEG-7
eXperimentation Model (XM) [17]. In order to produce the
hypotheses sets, appropriate measures need to be defined
for qualitatively assessing visual similarity between the
examined image segments and the defined domain concepts.
As MPEG-7 does not provide a standardized method for
combining different descriptors distances or for estimating a
single distance based on more than one descriptor, a simple
weighted sum approach was followed. Thereby, for each
segment a similarity degree is produced against each of
the defined domain concepts. The pairs of domain concept
and corresponding degree of confidence that result for each
segment comprise its hypothesis set.

2.3 Fuzzy spatial relations extraction

Exploiting domain-specific spatial knowledge in image
analysis tasks is a common practice as objects tend to occur
within a particular spatial context, and additionally, spatial
knowledge can assist in discriminating objects exhibiting
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Figure 2: Reduced MBR spatial relations definition.

similar visual characteristics. In the presented analysis
framework, eight directional relations are supported, namely
above, right, below, left, above-right, above-left, below-right
and below-left, for adjacent regions. To account for the
complexity in assessing which spatial relations best describe
the examined domain concepts relations, fuzzy relations
where preferred. Building on the principles of projection- and
angle based methodologies [16, 12], a combined approach is
employed that consists of the following steps. First, a reduced
box from the ground object MBR is computed so as to include
the object in a more representative way, and then cone-based
regions on top of this reduced box corresponding to the eight
examined relations are defined.Figure object denotes the one
whose relative position is to be estimated, whilegroundobject
the reference one. The computation of the reduced MBR is
performed in terms of the MBR compactness valuec. If the
currently computedc is greater than the given threshold, eight
cone-shaped regions are defined corresponding to the eight
supported relations 2. The percentage of the figure object
points that are included in each of the cone-shaped regions
determines the degree to which the corresponding directional
relation is satisfied. If however, the computedc is below the
threshold set, the MBR is reduced repeatedly until the desired
threshold is satisfied. After experimentation, the value of the
threshold was set to0.85.

2.4 Genetic algorithm

As described above, first, an initial set of hypotheses is
generated based solely on visual similarity (subsection 2.2) and
fuzzy spatial relations are extracted for each pair of adjacent
segments (subsection 2.3). This information is then passed
to a genetic algorithm that exploiting the available domain
spatial knowledge determines the optimal image interpretation.
To account for the inherent in visual information ambiguity
and the difficulty in coming up with spatial definitions that
cover every possible domain concept instantiation, appropriate
training was conducted in order to acquire membership
values for each of the spatial relations comprising the domain
knowledge. As explained in the following, these fuzzy spatial
relations serve as constraints with respect to the “allowed”
domain concepts spatial arrangement.

In the subsequent description, the following definitions have
been used:

si , i = 0, 1, ... N − 1, (1)

is used to denote thei− th image segment of theN segments
produced by the initial segmentation.

O = {o1, o2, o3, ...}, (2)

denotes the set of concepts defined in the each time employed
domain ontology.

The function

IM (gi) ≡ IM (si, oj), (3)

provides the degree to which the visual descriptors extracted
for segmentsi match the ones of objectoj , wheregi represents
the particular assignment ofoj to si. Thus,IM (gi) gives the
degree of confidence associated with each hypothesis and takes
values in the interval[0, 1].

The set of spatial relations used is denoted byRk, and in the
current implementation reduces to

Rk = {N, NW, NE, S, SW, SE, W, E}, (4)

The function:

IRk
(si, sj) , k ∈ ℵ and k ∈ [1, 8], (5)

returns the degree to whichsi satisfies the relationRk with
respect tosj ; again the resulted degree belongs to[0, 1].

The function:

IS (gi, gj), (6)

returns the degree to which the spatial constraints between the
gi, gj object to segments mappings are satisfied, i.e. the degree
to which the relations extracted between segmentssi and sj

comply with the spatial knowledge of the objectsoi and oj

respectively that have been assigned to these segments.

Training and fuzzy spatial constraints acquisition.

To compute the fuzzy spatial constraints between each pair of
the defined domain objects, a set of images has been assembled
to serve as training set, and respective ground truth annotations
were constructed. For every pair of adjacent segments assigned
to objects(oi, oj), i 6= j, the degrees to which each relationRk

is verified are summed over the set of training images. Thus,
the meanIRkmean and the standard deviationσ2

Rk
(Eq. 7), are

obtained for each of the relations.

σ2
k =

∑N
i=1(IRki − IRkmean)2

N
, (7)



whereN denotes the number thatRk is satisfied for objectsoi

andoj .

Fuzzy spatial relations membership.

The function IS(gi, gj) returns the degree to which the
spatial constraint between the objects involved in thegi andgj

mappings is satisfied.IS(gi, gj) is set to receive values in the
interval [−1, 1], where ‘1’ denotes an allowable relation and
‘−1’ denotes an unacceptable one based on the learnt spatial
constraints. To calculate this value for a specific pair of objects
oi andoj the following procedure is used. For every computed
triplet [Rk IRkmean s2

k] of the corresponding spatial constraint
whereIRkmean 6= 0, a triangular fuzzy membership function
is formed to compute the corresponding degree.

Letdk denote the value resulted from applying the membership
function with respect to relationRk. Once, the corresponding
dk values have been computed for each relations, i.e. for
k = 0, 1, ..8, they are combined to form the degreeIS(gi, gj)
to which the corresponding spatial constraint is satisfied. The
calculation is based on based on Eq. (8), whereRm are the
relations for whichIRmmean 6= 0, andRn are the extracted
relations for whichIRnmean = 0.

IS (gi, gj) =
∑

m
IRm∗dm

IR∑
m dm

−
∑

n

IRn , i 6= j (8)

whereIR stands for

IR =
∑
m

IRm (9)

Implementation of genetic algorithm.

As described above, the developed algorithm uses as input the
initial set of hypotheses, the spatial relations extracted between
between the examined image adjacent segments, and spatial
domain knowledge as produced by the above described training
process. Under the proposed approach, each chromosome
represents a possible solution. Consequently, the number of
the genes comprising each chromosome equals the number
N of the segmentssi produced by the segmentation and its
chromosome assigns a domain concept to an image segment.

A population of200 chromosomes is used, and it is initialized
with respect to the input set of hypotheses. An appropriate
fitness functionis introduced to provide a quantitative measure
of each solution fitness, i.e. to determine the degree to which
each interpretation is plausible:

f(C) = λ× FSnorm + (1− λ)× SCnorm , (10)

where C denotes a particular Chromosome,FSnorm refers
to the degree of low-level descriptors similarity, andSCnorm

stands for the degree of consistency with respect to the
provided spatial domain knowledge. The variableλ is
introduced to adjust the degree to which visual similarity and
spatial consistency should affect the final outcome. After
thorough experimentation,λ was set to0.35, which points out
the importance of spatial context.

The values ofSCnorm andFSnorm are computed as follows:

FSnorm =
∑N−1

i=0 IM (gi)− Imin

Imax − Imin
, (11)

whereImin is the sum of the minimum degrees of confidence
assigned of each region hypotheses set andImax the sum of the
maximum degrees of confidence values respectively.

SCnorm =
SC + 1

2
and SC =

∑M
r=1 Isr

(gi, gj)
M

, (12)

whereM denotes the number of relations in the constraints that
had to be examined.

After the population initialization, new generations are
iteratively produced until the optimal solution is reached. Each
generation results from the current one through the application
of the following operators.

• Selection: a pair of chromosomes from the current
generation are selected to serve as parents for the next
generation. In the proposed framework, the Tournament
Selection Operator [5], with replacement, is used.

• Crossover: two selected chromosomes serve as parents
for the computation of two new offsprings. Uniform
crossover with probability of0.7 is used.

• Mutation: every gene of the processed offspring
chromosome is likely to be mutated with probability
of 0.008. If mutation occurs for a particular gene,
then its corresponding value is modified, while keeping
unchanged the degree of confidence.

To ensure that chromosomes with high fitness will contribute
in the next generation, the overlapping populations approach
was adopted. More specifically, assuming a population ofm
chromosomes,ms chromosomes are selected following the
employed selection method, and through the application of
the crossover and mutation operatorsms new chromosome
are produced. Upon the resultedm + ms chromosomes, the
selection operator is applied once again in order to select the
m chromosomes that will comprise the new generation. After



experimentation, it proved that selectingms = 0.4m resulted
in higher performance and faster convergence. The above
iterative procedure continues until the diversity of the current
generation is equal or less than0.001.

3 Experimental results

In this section, we present experimental results from testing the
proposed approach in the domain of beach vacation images.
First, a domain ontology had to be developed to represent
the domain concepts of interest and their spatial relations.
The beach vacation domain was selected for experimentation,
and under the current implementation four concepts, namely
Sky, Sea, Sandand Person. A variety of images from the
beach vacation domain was selected then in order to assemble
a training set of50 images for the acquisition of low-level
visual descriptors prototypes and membership values for the
spatial relations. Each image of the training set was manually
annotated according to the domain ontology. Subsequently,
segmentation was performed as described above, and the
Dominant Color and the Region Shape descriptors, i.e., the
two currently supported descriptors, of the annotated segments
were extracted. Approximately, 10 prototype descriptor
instances resulted for each of the defined domain concepts
after the elimination of the redundant ones, i.e., of prototypes
almost identical to each other that do not offer any additional
discriminative power. Additionally, for each pair of adjacent
segments the degree to which each spatial relation is satisfied
was estimated and thus, following the procedure described
in Section 2.4 for each possible combination of the defined
domain concepts, the domain ontology spatial relations were
enhanced with fuzzy degrees.

Having available the needed domain knowledge, semantic
annotation of images can be performed following the proposed
approach. Based on the extracted prototype instances, initial
hypotheses are generated for the examined image segments as
described in Section 2.2, which are then passed in the genetic
algorithm along with the fuzzy spatial constraints in order to
determine the final interpretation. In Fig. 3 indicative results
are given showing the input image, the annotation resulted
from the initial hypotheses set taking for each image segment
the hypothesis with the highest degree of confidence and the
final interpretation after the genetic algorithm application.
As illustrated, the proposed system achieves satisfactory
results, justifying the use of a genetic algorithm to reach an
optimal image interpretation given degrees of confidence for
visual similarity and spatial consistency against the domain
definitions. In Table 3, quantitative performance measures
are given in terms of precision and recall over a test set of
200 beach vacation images. It must be noted that for the
numerical evaluation, any concept present in the examined
test set images that was not included in the domain ontology
concept definitions, such as umbrellas, sailing boats, etc., was
not taken into account. As this affects directly the evaluation

Figure 3: Exemplar results for the beach domain.

Initial Hypothesis Final interpretation
Object precision recall precision recall

Sky 56.0% 77.7% 80.0% 98.8%
Sea 83.6% 60.0% 85.7% 70.6%

Sand 43.0% 82.2% 56.9% 91.1%
Person 78.9% 56.9% 91.7% 67.9%

Table 1: Numerical evaluation for the beach vacation domain.

results, it is within the authors’ future intentions to introduce
a threshold in the acquired degrees of confidence to represent
the “unknown” concept in order to account for such cases and
obtain more accurate indications of the attained performance.

4 Conclusions

In this paper, an approach to semantic image analysis that
couples ontologies with a genetic algorithm is presented.
The employed knowledge considers both high- and low-level
information, and in accordance with the recent Semantic
Web advances, the ontology paradigm has been followed for
representation. High-level knowledge includes the domain
objects of interest and their spatial relations, whereas low-level
knowledge consists of low-level visual descriptors required for
the analysis process. To account for the inherent ambiguity in
visual information, fuzzy spatial relations are employed and
the corresponding domain relations definitions are obtained
though training. Based on the low-level domain ontology
definitions, initial hypotheses sets are generated including
the domain concepts possibly depicted to each of the image
segments and their respective degrees of confidence. These
hypotheses along with the segments’ spatial relations form



the input to a genetic algorithm that decides the optimal
image interpretation based on the provided spatial domain
knowledge.

Future work includes the exploitation of spatial constraints
involving more than two objects, so that the employed spatial
knowledge provides contextual knowledge not only at local
level, i.e., adjacent regions, but instead, at a more global
level taking into account objects co-occurrence. By encoding
such knowledge into the domain knowledge and adapting
appropriately the defined fitness function, the extraction of the
image semantics would become more reliable as the presence
of certain objects in a given topology would provide hints for
reaching a correct decision in cases of higher ambiguity.
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