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Videoconference Image Seguences
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Abstract— This paper describes a three-dimensional (3-D) arbitrarily shaped regions (termed the video object planes in
model-based unsupervised procedure for the segmentation of the MPEG-4 verification model), where each of the regions
multiview image sequences using multiple sources of information. may represent a particular content of the video stream [6]. The
The 3-D model is initialized by accurate adaptation of a two- e . ’
dimensional wireframe model to the foreground object of f€atures of each “object” such as shape, motion, and texture
one of the views. The articulation procedure is based on the information can subsequently be coded into the so-called video
homogeneity of parameters, such as rigid 3-D motion, color, object layer for transmission or storage. Although the standards
and depth, estimated for each subobject, which consists of a || provide the needed functionalities in order to compose,
gulgnber of interconnected triangles of the 3-D model. The rigid o i 1ate, and transmit the “object-based” information, the

-D motion of each subobject for subsequent frames is estimated . . .
using a Kalman filtering algorithm, taking into account the production of these objects is out of the scope of the standards
temporal correlation between consecutive frames. Information and is left to the content developer. Thus, the success of any
from all cameras is combined during the formation of the object-based approach depends largely on the segmentation of
equations for the rigid 3-D motion parameters. The threshold e scene based on its image contents. In a videophone-type

used in the object segmentation procedure is updated at eacha lication. for example. an accurate seamentation of the facial
iteration using the histogram of the subobject parameters. PP , 10 pe, accu gme ofthe facia

The parameter estimation for each subobject and the 3-D r€gion can serve two purposes: 1) it can allow the encoder to
model segmentation procedures are interleaved and repeated place more emphasis on the facial region since this area (i.e.,
iteratively until a satisfactory object segmentation emerges. The the eyes and mouth in particular) is the focus of attention of
perfor.mance of the resulting segmentation method is evaluated the human visual system, and 2) it can also be used to extract
experimentally. . ! . .
features so that higher level descriptions can be generated (i.e.,
Index Terms—Multiview image sequences segmentation, rigid personal characteristics, facial expressions, and composition
3-D motion estimation, 3-D model-based analysis. information). In a similar fashion, the contents of a video
database can be segmented into individual objects, where the
|. INTRODUCTION following features can be supported: 1) sophisticated query

IGITAL video is an integral part of many newly emergingand retrieval operations,. 2) adyanced editing and compqsiti_on,
multimedia applications. New video coding standardé‘,nd 3) better compression rgtlos. These issues and objec'tlves
such as MPEG-4, do not concentrate only on efficient compré”§-e currently addressed within the framework of the upcoming
sion methods, but also on providing better ways to represeiff EG-4 and future MPEG-7 standards [1]. _
integrate, and exchange visual information [1]. These efforts S€9mentation methods for two-dimensional (2-D) images
aim to provide the user with greater flexibility for “contentN@y be divided primarily into region-based and boundary-
based” access and manipulation of multimedia data. Mog@2Sed methods [7], [8]. Region-based approaches [9] rely
based methods have been used to enable these functionaliiBsthe® homogeneity of spatially localized features such as
The ability of model-based techniques to describe a SCeg;;lrémy_—level |nt_enS|ty, texture, _mot|on, and other p|xel statistics.
in a structural way has opened up new areas of applicatiof€9ion-growing [10] and split-and-merge techniques [11] also
Very low-bit-rate coding, video production, realistic compute?€ong in the same category. On the other hand, boundary-
graphics, multimedia interfaces and databases, and medR%gT’ed method§ primarily use gradient information to locate
visualization are some of the applications that may benefit Bpiect boundaries. Deformable whole boundary methods [12],
exploiting the potential of model-based schemes [2]-[5]. | 3] rely on the gradient features of parts of an image near an
order to obtain a model-based representation, an input vid@ject boundary. Other techniques include the segmentation
sequence must first be segmented into an appropriate sepyfnisotropic diffusion introduced in [14] and mathematical
morphology [15], [16] methods. Among many morphological
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The present paper addresses a related, but considerably
more difficult problem, which is the coherent simultaneous
segmentation of two or more views of a scene. To this end,
an unsupervised procedure for the segmentation of multiview
image sequences using various sources of information is
proposed. The segmentation procedure is performed at the
triangle level of a 3-D model, as in [23] and [24], using
characteristic properties of the triangle, such as rigid 3-D
motion, color, and depth. Subobjects consist of collections
of one or more interconnected triangles of the 3-D model,
with similar parameters. The 3-D model is initialized by
adapting a 2-D wireframe to the foreground object. The
proposed adaptation of the 2-D wireframe is a novel procedure
resulting in a very accurate representation of the foreground
object. Using depth and multiview camera geometry, the 2-
wireframe is reprojected in the 3-D space, forming a consisterit
wireframe for all views. Information from all cameras isFig. 1. CAHV camera model.
combined to form the equations for the extraction of the rigid
3-D motion parameters. Combined motion, color, and depth

information, extracted from multiview information, is used .
. . : - . enhanced-telepresence videoconference sequences was used.
along with the 3-D motion fields. The rigid 3-D motion of ; .
In these, telepresence was sought by using multicamera set-

each subobject for subsequent frames is estimated usm%p% (and auto-stereoscopic displays), and by permitting the

Kalman filtering algorithm, taking into account the tempor L ) :
a}ﬁansmlssmn of complex scenes with gestures and motion and

correlation between consecutive frames. Furthermore, in tot‘iiects other than just heads and shoulders. The most practical

present work, the threshold characterizing the homogeneltyoq these multicamera setups uses three cameras, placed on

subobjects is adaptively updated until a satisfactory segmell . “cide and the top of the monitor [27]. All results of

tation emerges. Following region separation, and dependi ; . .
A present paper are derived assuming this camera geometry,
on the application, knowledge-based methods may be used 10 . o
d are evaluated with real multiview sequences produced

. ; a
decide whether a separated region corresponds to a spe%ﬂc :

: : . : A precisely such an arrangement of cameras. However, the
semantic object (e.g., the head in a videoconference image

sequence). The parameter estimation for each subobject naic ideas and results of the paper may be easily extended
N ' P . . ject & onoscopic, stereoscopic, and arbitrary multiview systems
the 3-D model segmentation procedures are interleaved an .
using arbitrary arrangements and numbers of cameras.

repeated iteratively until a satisfactory object segmentatlon.l.he paper is organized as follows. In the following section,

emerges. the three-camera geometry is described, and in Section llI, the

The methodology used overcomes a major obstacle ¢rr]ocedure for the 3-D model initialization is given. The tech-

multiview video analysis, caused by the difficult problem 0nlque used for object articulation is examined in Section IV. In
Sdction V, the estimation of the segmentation parameters is de-

the different views. This is achieved in this paper by deﬂmn@cribed. The object segmentation procedure and the threshold

segmgntation and Obj.ECt articulgtion in the 3-D space, thy date algorithm are presented in Section VI. In Section VII
ﬁqnstzjr:]ng ttri]r?]t filllnenfswnghopebragpni (:o:ne?(:mp:]e,r nr?tldf ? gplication in segmenting monocular and stereoscopic image
otion estimation of each subobject) remain coherent fo 4 guences is described. In Section VIII, experimental results

views of the scene. : .
The proposed algorithm exploits fully both spatial and te are given evaluating the performance of the proposed methods.

poral correlation of the images since neighborhood constrariTrz\:tgnCIUSIOnS are finally drawn in Section IX.
are taken into account (for rigid 3-D motion estimation of
each triangle of the first of a group of frames) and Kalman
filtering is used for tracking the motion in subsequent frames. A camera model describes the projection of 3-D points onto
This combination is shown to be both computationally efficierst camera target. The model used here is the CAHV model
and highly effective. introduced in [28]. This model describes extrinsic camera
The a priori information needed consists only of the deptparameters such as position and orientation and intrinsic cam-
map; all other information is extracted using only the projectesta parameters such as focal length and intersection between
images of all views. In fact, given the depth informationgptical axis and image plane.
the hierarchical algorithm in [24] may be used to create the As mentioned in Section I, in our multiview camera geom-
foreground/background segmentation mask. For depth metpy, three cameras are usedr = left, top, right. For each
estimation, the algorithms presented in [18] or in [25] and [2&Jamerac, the model contains the following parameters shown
can be used. The purpose of the present paper is the definifiofig. 1: 1) position of the camel@., 2) optical axisA., i.e.,
of a method for the segmentation of the resulting complicatéite viewing direction of the camera (unit vector), 3) horizontal
foreground object. camera target vectdl. (x axis of the camera target), and 4)

Xc Image Plane

(Oxc:Oyc) X

Camera—C

World Coordinate System

In order to evaluate the above methodology, a series of

Il. CAMERA MODEL
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vertical camera target vectdf,. (y axis of the camera target), ¢ Nodes of the triangles lying on either side of the boundary
radial distortion, andsz, sy pixel size. of the foreground object are forced to meet this boundary.
In our camera model, we will assume that the radial dis- If a node inside the boundary moves to exactly the same
tortion is compensated. The camera’s setup is previously position as a point outside the boundary, then only the
calibrated and maintained static. In this case, the projection of node outside the boundary is moved.
a 3-D point P, with coordinates relative to world coordinate ¢ The “force” applied for the movement of the nodes is
system, onto the image pla&’’,Y!) is [28] propagated to the remaining nodes so as not to drastically
 (P-CTH, (P-CT.V. alter the regularity of the.wireframe. N
X ="—r—F—, Y =""-——— (1) These steps are described in more detail in the sequel. The
(P-C.)T - A. (P-C.)T - A. A
initial regular grid is of the form
The coordinate$ X!, Y/) are camera centered (image plane ) )
coordinate system) with the unit pel. The origin of the coordi- p= (DX, jDY)
nate system is the center point of the camera. The coordina\;cv%s

of a point relative to the picture coordinate systéRi., Y,) ere DX, DY are the horizontal and vertical distances
is i\?en by (X..Y.) — F()X’ YO Y+ Oy ) w’hecre of the nodes of the wireframe, = 0,---,(5SX/DX) and
g Y \de Xe) = ¢ e vrel i =0,---,(SY/DY). SX,SY are the horizontal and vertical

((:g;}(aigéyfce) ;}s/sttr;(:ncenter of the image plane in the pICtunéizes of the image, respectively. The valudoX, DY defines

. . . the detail of the segmentation mask. In cases where a coarse
Conversely, given its positiofiX,., Y.) on the camera plane, ; . .
. . . segmentation mask is needed, a 3-D model consisting of large
the 3-D position of a point can be determined by : . i
triangles may be used, making the segmentation procedure
P=C,+1.-8.(X.Y.) (2) much faster, whereas for highly detailed masks, a finer mesh
_ _ o may be used. Such a triangulation covering the full size of the
whereS.(X.,Y.) is the unit vector pointing from the cameramiddle view can be seen in Fig. 4(a).
to the point in the direction of the optical axis amdis the  |n the next step, a background/foreground segmentation
distance between the 3-D point and the center of camera mask is used to separate and discard the triangles that do not
overlap with the foreground object. Such a mask is particularly
lll. 3-D MODEL INITIALIZATION easily calculated if the foreground consists of a moving

The generation of the 3-D model object is based on an initi@Piect in front of a static background without texture (such
adaptation of a 2-D wireframe model to the foreground obje@f In Videotelephony applications). A simple edge-detection
of one of the projected images (left, top, or right). Since trlgorithm sufﬂ_ces t_hen to provide the information on the
2-D wireframe is adapted to the image, the 3-D model cdfreground object silhouette. .
be formed by using depth information (i.e., the distance of 1heré exist many simple methods for the adaptation of
the 3-D point from the specific camera) in (2). The consisteftD Wire grids to segmented objects [29]. In order to avoid
camera geometry allows the 3-D model to be adapted to tHgating very small triangles on the object boundary, and
other views as well. also to avoid disrupting the regularity of the wireframe, the

In the present paper, very few assumptions are made p&l_lowing method was used. A trianglg is retgined.as part of
garding the content of the scene and the motion of its objeci3® Wireframe when at least one of its vertices lies on the
The a priori information needed consists only of the deptfPreground object. All nodes of triangles overlapping with
map; all other information is extracted using only the projectdf]® boundary of the object are attracted to the boundary by
images of all views. In fact, given the depth information‘:forcesn proporthnal to their dlstance_from it. Specifically,
the hierarchical algorithm in [24] may be used to create t&Ch such node is assumed to have eight degrees of freedom:
foreground/background segmentation mask. For depth mbfs: " fs} @s shown in Fig. 2. Following each of the eight
estimation, the algorithms presented in [18] or in [25] andiféctions, a point on the object boundapy is found and
[26] can be used. Without loss of generality, to simplify thé force Fi is defined, having the same direction #sand
subsequent discussion, we will assume that only one obj8é@gnitude equal to the Euclidean distance between pode
exists in the foreground. However, it is emphasized that tR&8d Pointp;:
methodology of the paper remains valid and applicable in the F=|lp— 7| 3)
presence of more than one such objects. For example, if two ! B

distinct foreground objects exist, the same techniques may |p@o point p; on the boundary of the foreground object can
used to segment separately each foreground object. be found in the directiony;, then F; is set to infinity. The

The adaptation of the 2-D wireframe to the foregrounghrce applied to node in order to meet the object boundary
object is a coarse-to-fine procedure consisting of the followiRg chosen to have magnituds,, where

steps.
* A regular grid is first created, covering the full size of k =arg ZE{U{HH 5) F;
the 2-D image. T
¢ Only triangles overlapping with the foreground object oand the direction is the one of the corresponding direcfign
with the boundary of the foreground object are retained. In the special case where a triangle has two of its nodes
The remaining triangles are discarded. lying on the object boundary, forcing the third node on the
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IV. OBJECT ARTICULATION

A novel subdivision method based on characteristic de-
scriptors of each triangle of the 3-D model will be proposed
for the articulation of the foreground object. The model
initialization procedure described above results in a set of in-
terconnecting triangles in the 3-D spaéf3. k=1, -, K},
where K is the number of triangles of the 3-D model. In
the following, S will denote an articulation of the 3-D
model at iteration: of the articulation algorithm, consisting
of {s{?,1 = 1,---, L)} subobjects. Each subobject consists

of {T,(,fl( >),m =1,---, M} triangles.

The object articulation procedure exploits the homogeneity
of a set of characteristic descriptors based on known and
estimated parameters, such as rigid 3-D motion, color, and
depth, for each subobject. The total descriptor value for each

subobject will, in general, be defined as
Fig. 2. Special case where a triangle may be discarded from the wireframe.
r—1
(&)
P =" a4
o

boundary would create a very small triangle (Fig. 2) which
must be discarded. Specifically, the triangle is discarded when
wherez is the value of a specific descriptor, normalized so
wiFwy <t as to lie between 0 and T is the number of characteristic
descriptors used, and

wherewy, w, are the angles between the triangle vertex within P
the object and the tangenis, ¢» to the object boundary at the Z
two nodes on the boundary, amds a threshold. In case of
concavities, some triangles overlapping with the background
may be created as a result of the above procedure. TheseTayg subobject$§i), s will be merged if
discarded in a final postprocessing procedure.

The above procedure results in an accurate adaptation of ||p(s§”) _p(sﬁfﬁ)H < th(".
the wireframe to the foreground object boundary. To avoid the
creation of very small triangles and disruption of the regularitfhe selection of the appropriate threshetd” characterizing
of the wireframe, the “force’}" applied to each node is usedthe similarity between different subobjects is critical for the
for the adaptation of the remaining nodes of the wireframdefinition of the object articulation procedure. At each iteration
Specifically, the forcel’ with direction / and magnitudel” 4, this threshold:h(?) is updated according to the histogram of
defined by (3) is propagated according to a Gaussian mod@k parameters: ), as will be explained in Section VI-A.
taking into account the distance between the npdind all  The proposed iterative object articulation procedure is com-
other mesh nodes, following the apprgach in [30]F1fs the posed of the following steps.
force applied to node, then the forcer;, applied to a node  step 1: Seti = 0. Let an initial segmentatios® = {s{*
q with distanced from nodep has the same direction ds
and magnitude:

@y = 1.
§=0

. 500 (0) 7
I=1,---,LO} with LO = K, T}* =TyandM® ) =1.
In this initialization step, each subobject consists of one
1 aop 20 triangle of the 3-D model. Set an initial threshold value:
F,= m e . th® <« 1.
Step 2: Apply the segmentation parameters estimation al-

This means that node is moved to a new positiog’ in the 9orithm to each SUbObjer) to find ptei”) (Section V).
direction f, of 7%, and with distance from its previous position Step 3: Execute the object segmentation procedure that
lg — ¢|| = F,. The mean valug, and standard deviation su(b;jlwdes the mmal objec-t intd.() subobjects, i.eS5@ =
are selected so as to harmonize the resulting wireframe mekh. >/ = 1,---, L(%} (Section VI).

The result of the above procedure is a very accuratelyStep 4: Use the histogram OtU(Slm) to define the new
adapted wireframe over the foreground object in one of thieresholdth(i+1) (Section VI-A).
views [Fig. 4(c)]. By applying (2) to all nodes = (X,Y), Step 5: If |[th() — th(+D| < ¢, wheree¢ is a threshold
the 3-D pointsP = (z,y,z) are found and the 3-D modelaffecting the number of subobjects created, then stop. Else set
is formed [Fig. 4(d)]. Due to the consistency of the cameria= ¢ + 1 and go to Step 2.
geometry, the projection of the 3-D model to the image planesThe procedures for segmentation parameter estimation, ob-
formed by other cameras also leads to 2-D wireframes adapject segmentation, and the threshold value update algorithm
to the foreground object of the other views. are described in the following sections.
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V. PARAMETER ESTIMATION FOR EACH SUBOBJECT system of equations for the rigid motion parameter veatdr

The subdivision criterion is based on the homogeneity §f" Subobjects between timet and? + 1 is formed

characteristic descriptors of each triangle of the 3-D model. b9 = DG g 9)
Although many such descriptors can be used for efficient
segmentation, in this paper, we focus on those based on @mitting, for notational simplicity, dependence on timg
rigid 3-D motion parameters, color and depth information. subobjects, and camera;, D is equal to
. . . de,00]  dooll]  dool2] deol3] de,

A. Rigid 3-D Mation Equation dyol0] dyo[l] dyol2] dyo3] d

For each subobject, the rigid 3-D motion parameters #le=
estimated for a number of frames. In order to exploit temporal | dz,.[0] dzL[l] dor[2] dor[3] do,
correlation between consecutive frames, a Kalman filtering Ldy,[0] dy L[] dy 2] dy ]3]
approach is used. The system of equations describing the rigid (10)
3-D motion parameters is formed, and is used to determln%
the Kalman filter for the estimation and tracking of the r|g|

3-D motion. dac,l[ ] = _Hyzl + szl + (_Zac,lAyzl - (_Zac,lAzyl
It? tt;)he fo<lil>ow'i|l|1% fqr thle Zake 0:; EOta-?r?'nal simplichity, rt.]he dpt[1] = Hozp — Hotg — qog Aozt + qog s,
subobjects;” will be simply denoted by. This means that the _
procedure to be described is applied to all subobjects at any Ao t[2] = —Hayy + Hot + o, ’A’”y’ Qo 1Ay
iteration step of the object articulation algorithm. The rigid dot[3] = Ho — Qo 1A, dog[d] = Hy — qo 14y
motion of each subobject is modeled using three rotation de 1[5 =H. — ¢z 1A
and three translation parameters [31]: and
Py = RYP, +T® 4 i d, PO H
with R® and T being of the form 7 (=07 A
1 — wg(f) For they coordinates
R = wgs()) % ) —w$ (5) dy1[0] = —Vyzi + Vo + quaAyz — gy
:_(T:;y W 1 dy[1] =Vez — Voay — quidez + qyaAza
T _ A ) dy 2] = =Voyr + Vo + (Jy,lAa:Ul — gy 1Ay
N :?5) dy,l[3] V QJ,IATa dJ 1[4] QJ,IA
) dy[5] =V. — qy1A:

where P, = (z¢,4:,2) is a 3-D point on the 3-D planes
defined by the triangIeST,(,f) of subobjects. The rigid and

3-D motion parameters vector for subobjectis a(®) = iy P -O)"-V
() w70 ) 20y, Wi =%t p T A

At time ¢, each pointP; on s is projected to points Also
(Xc1,Yer),c = It,r on the planes of the three cameras.

T T
Using (1) and (4), the projected 2-D motion vecibf X, Y, G0 (Po - C)T "A—(Py— C)T -H
is determined by Qo -Po—CY'-A—(Po-C)''-V

b= . (1D
dmc(Xc,tyy;,t) = Xc,t—l—l - Xc,t qz,L - (PL - C)T A - (PL - C)T -H
(ROP, + T —C.)T - H, @, (Pr=C)" - A= (P, -CO)-V

- (ROP,+T® —C.)T - A, In the abovel = 0,---,L, where L is the number of

(P, —C)T-H 3-D points P; = [z1,u,]* contained ins (the set of all

(7) 3-D points contained in triangle®? of s), and C, A =
[A., Ay, A)Y, H = [H,,H,,H.]*, andV = [V,.,V,,, V.]*
are the multiview camera parameters. The 2-D motion vectors

B (Pf _CC)T'A(:
dyc(Xc,h Y;,t) = Y;,t+l - Y::,t

_ (RPP, +1T" - C)T -V, [dz.1,dy )" correspond to the projected 3-D poiRti. The set
(ROP,+T® —C)T - A, of 3-D points in each triangle is found by 3-D backprojection
(P, —C.)T -V, of the set of discrete 2-D points contained in the corresponding

- m (8) 2D triapgle. _ _
Equations (9)—(11) define a system 023 x L equations
whered.(X.,Y:) = (doe(Xet, Yo i), dye(Xet, Yo r)). with six unknowns, wherel. is the number of 3-D points
Using the initial 2-D motion vectors, estimated by applyingontained ins since, for each 3-D poinP;, two equations
a block-matching algorithm to the images corresponding to thee formed for theX and Y coordinates for each of the
left, top, and right cameras, and also using (7) and (8), a lingdhree cameras. This system combines the rigid 3-D motion
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parameters, with the camera parameters and the points of the
3-D model, taking as initial values the 2-D motion, using A
available information fronall cameras simultaneously.
Whenever the value df falls below a predefined threshold,
neighboring triangles are also used in order to enhance the
stability and efficiency of the rigid 3-D motion estimation
procedure. In this case, the additional 3-D points contained
in triangles neighboring those &f i.e., triangles sharing at
least two common nodes with any triangle gfare used in
(9). This is normally necessary only in the initial step of the
articulation procedure where each subobject consists of only
one triangle.

threshold = d 1272

B. 3-D Motion Tracking Using Kalman Filtering X1 *2 X3

In order to exploit the temporal correlation between corfig. 3. Update of the threshold based on the histogram of the subobject's
secutive frames, a Kalman filter [32], [33] is applied for th@arameters.
calculation of the 3-D rigid motion parameters at every time
instant. In this way, the computationally complicated solutioR, , describe the covariance matrix of the estimation error
of (9) is needed only for the first of a sequencefoframes. g, and E,,, respectively
In subsequent frames, the estimation of the motion parameters
is based on the initial frame estimation improved by additional
observations as additional frames arrive. Omitting, for the sake E,=(a;—a), R = E{Et EtT}
of further notational simplification, the explicit dependence Ei 1 =(a1 —any), R = E{Et—l—l 'E;‘P+1}-

of the motion parameters to the subobjeﬁf, thus writing
S0y (5D S0 )
a:,b,, C; instead ofa, ™ ),b§ ¢ ),C’i ¢ ), the dynamics of the

system are described as follows: The initial valueay of the filter (first frame ort = 0)
is found by directly solving (9). More specifically, since
2 x 3 x L > 6 for all subobjects (in the worst case,is
Q11 =+ W- ey (12) composed of a single triangle with= 3 and2 x 3 x 3 = 18),
biy1 = D11 +vigs (13) (9) is overdetermined and can be solved by the robust least
median of squares motion estimation algorithm described in
detail in [36]. Erroneous initial 2-D estimates, produced by

wherea is the rigid 3-D motion vector of each subobject anéhe block-matching algorithm, will be discarded by the least
e, is a unit-variance white random sequence. The terg,, Median of squares motion estimation algorithm.

describes the difference of consecutive frames, and a highlhe initial correlation matrixi, is

value of w implies a small correlation between consecutive

frames, and can be used to describe fast-changing scenes,

whereas a low value ofv may be used when the motion Ry = E{“O 'aoT}-

is relatively slow and the temporal correlation is high. The

term v,4, represents the random error of the formation % the abovew andv are assumed to be the same for the whole
the system (9), and is modeled as white zero-mean Gaussiggsh, and hence independent of the subobjedtotice that

. ; ) .
noise, WithE{vy, - vns} = Ru6(n — n'), wherew, is thenth  (g) js solved only once in order to provide the initial values

element 0f”~_ o . o for the Kalman filtering. During the next frameB), andb are
1:he equations giving the estimated valueagf, in terms only formed for use in the Kalman filter procedure.
of a, are [34], [35] The final rigid 3-D motion descriptor characterizing each

subobjects is the sum of the rigid 3-D motion parameters
for framest = 0,---,F — 1, where F' is the total number

1 =+ Kot - (b1 = Digr - @) (14)  of frames used. More specifically, we define for a rigid 3-D
Ky =R +w’I) Dl k! (15) motion vectora, at time ¢ the matrix
k=D R - Dl +Dypy-w’I-DE +R, (16)
Ry =(I—Kiy1 - Dyys) - (R +w?d) (7) 1 _Zfzt Wy, T
M, = | "~ T T (18)
— Wy, W, 1 Tzt
0 0 0 1

wherea;,; anda, are the predictions of the unknown motion
parameters corresponding to the 1th and tth frame, re-
spectively, K, represents the correction matrix, aRg and The total rigid 3-D motion for a number of frames is
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Fig. 4. (a) Regular wireframe covering the full size of the middle view. (b) Coarse adaptation with triangles covering only the foreground obijeet. (c)
adaptation to the foreground object. (d) 3-D model produced by reprojecting the 2-D wireframe to the 3-D space.

(© (d)

Fig. 5. “Ludo3” sequence. (a) Top view. (b) Left view. (c) Right view. (d) 3-D model produced by the model initialization procedure.

described by is found from
M=]] M (19 1wl wf
O N MONO
and the rigid 3-D motion parameters for descripadt) are M = () () 1’” 1)
extracted fromM, which is of the form ofM,. i.e., the motion _“6?/ wg 0 Tzl

descriptor
() — (08 (3 (3 (8 L(s) (s) . . .

a (ww Wy HW T2 T Ty T ) where M is determined using (18) and (19).



554 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 8, NO. 5, SEPTEMBER 1998

(c) (d)

Fig. 6. “Ludo8” sequence. (a) Top view. (b) Left view. (c) Right view. (d) 3-D model produced by the model initialization procedure.

(© (d)

Fig. 7. “Gwen9” Sequence. (a) Top view. (b) Left view. (c) Right view. (d) 3-D model produced by the model initialization procedure.
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Fig. 8. “Ludo3” sequence: (a) 3-D translation parameters of each triangle. (b) 3-D rotation parameters of each triangle. (c) Histogram of ttte subobje
parameters after some few iterations. (d) Final segmentation of the 3-D model.

C. Color and Depth Descriptor Estimation Similarly, in order to assign a depth descriptor to each
In addition to the rigid 3-D motion descriptor of each triantfiangle, we define

gle, other observations can be used for efficient segmentation. NEED
More specifically a color descriptor can be assigned to each ey _ 1 1 E
subobjects. For each triangld’?’ contained ins, let "7y z_:o NED) ; de(i, i) (1)
) ATED wherec = 0, 1,2 corresponds te = left, top, right cameras,
Yo (s)y . ) . .
y(Tfﬁ) _1 Z % Z I(%0:) (20) N s t_he number of 2-D projected points for each triangle
3\ NT for each viewc, andd.(z;,y;) are the projected depth maps

to each view. For each subobject the depth descriptor is
then defined by
wherec = 0,1, 2 corresponds te = left, top, right cameras,

(=) M
N(ng ) is the number of 2-D projected points for each triangle dG) — 1 Z 4T
for each viewc, and I, (x;, ;) is the intensity value of each M) £~
projected view. The color descriptor for subobjects then
defined by VI. OBJECT SEGMENTATION
At each iteration of the object articulation method, the
M) homogeneity of the descriptor of each subobject is exploited.
(s) _ 1 (Ty(,f>) . . - . .
v = Z y . For the motion descriptors, the rigidity constraint imposed

m=1 on each rigid object component is exploited. This constraint
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Fig. 9. “Ludo8” sequence: (a) 3-D translation parameters of each triangle. (b) 3-D rotation parameters of each triangle. (c) Histogram of tite subobje
parameters after some few iterations. (d) Final segmentation of the 3-D model.

requires that the distance between any pair of points ofwaights corresponding to the rigid 3-D motion descriptors
rigid object component must remain constant at all times astould be higher than the others.
configurations. Thus, the motion of a rigid model object com- In the region-growing algorithm described next, the sim-
ponent represented by a mesh of triangles can be completiidyity of descriptors of subobjects is checked only between
described by using the same six motion parameters. Therefareighboring subobjects. Two subobjects are considered to be
to achieve object articulation, neighboring subobjects whicteighbors if at least one triangle of one of the subobjects
exhibit similar 3-D motion parameters are joined together. khares two common vertices with a triangle from the other
the same way, neighboring subobjects which exhibit similaubobject. Of course, if these triangle exist, they must lie on
color and depth descriptors are merged to the same subobjtéa. “boundary” of each subobject.
For each triangle, the following total descriptor value is Thus, the following iterative algorithm is proposed.

estimated: Step 1: Set! = 1. ‘ ‘

p(s) :aomgj) n alwés) n @mgs) n a?j;s) n azﬁés) Step 2: Find subobjecteg,”l) that is neighboringsg”). If
+ a5t + a7 + azd"” (22) P — petD| < th®

where7z is the normalized value of between 0 and 1 and

7 thens{” = s Us{ L® = L — 1 and go to Step 2. Else,
Z a; = 1. go to Step 2 and search for another neighg(@r. If no such
=0 neighbor exists, go to Step 3.

The choice of values for; depends on the weight given Step 3:Setl =1+1.If I < L, go to Step 2. Else stop.
to each specific descriptor in each specific application. ForThe above algorithm is a region-growing procedure based
example, if rigidly moving components must be found, then the triangles of the 3-D model.
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(© (d)

Fig. 10. “Gwen9” sequence. (a) 3-D translation parameters of each triangle. (b) 3-D rotation parameters of each triangle. (c) Histogram ofettte subobj
parameters after some few iterations. (d) Final segmentation of the 3-D model.

A. Threshold Update Procedure value of threshold is not found using the histogram because

A critical parameter for the convergence and efficiency &@ach subobject consists of only one triangle and the parameter
the algorithm is the choice of the threshold vaksé?. This €stimation procedure is not expected to be very reliable. For
value is calculated on the basis of the histogram function of tHiS first iteration, a small value is given insteadtfa and

parameters of each subobject. More specifically, the histogratobjects with very similar descriptors are first created, thus
function is given by making the descriptor estimation procedure more reliable in

the following iterations.

The histogram information is also used for the selection of
the values of; in (22). More specifically, the weights for each
descriptor are chosen in proportion to the maximum distance
wherec is the number of subobjects Witzb‘fszw) = . between maxima in the histogram of this specific descriptor.

At each iterationi of the algorithm, the maxima of this For example, if the value of a specific descriptor is constant
function are estimated, and the threshold is found as the h@yer all subobjects, then the histogram produced based on
distance between the two maxima closest to each other. Hyig descriptor is a delta function, and the maxima extraction
the estimation of the maxima, the method presented in [37]psocedure will fail. So if the weight;; associated with this
used, following a smoothing procedure using a median filtefescriptor is set to be very small, other descriptors with more
In other words, if the maxima occur at;,« = 1,---,M characteristic distributions over the subobjects will dominate,
andd;; = ||z; — ;|| is the minimum distance between anyand a more “segmentable” histogram will be produced. More
(xi,z;), thenth = (d;;/2) (Fig. 3). Fori = 0, the initial specifically, the set of parametegs are determined so as to

c=h(z)
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(c) (d)

Fig. 11. “Claude” sequence. (a) Left channel of the “Claude” stereoscopic image sequence. (b) Right channel of the “Claude” stereoscopic imeage seque
(c) 3-D translation parameters of each triangle. (d) 3-D rotation parameters of each triangle.

maximize the following function: obvious simple modifications. More specifically, (7) and (8)
are calculated for = 0 or ¢ = 0,1 in the monoscopic and
Z Z |lx; — x;]] — max. . : . .
— £ stereoscopic case, respectively. All other operations remain
! the same since they are directly defined in the 3-D space.
VIl. A PPLICATIONS IN MONOCULAR, STEREOSCOPIC The Only Change is the dimension of the system (9), which
AND GENERAL MULTIVIEW IMAGE SEQUENCES becomes, respectively,x L and2x 2x L in the monoscopic

L . and stereoscopic cases. This system remains overdetermined
The multiview image sequence segmentation method pfﬁ'these cases also since a triangle usually consists of more
sented may be modified so as to also be applied in monoscopic ; . 9 y

n three points (in the worst monocular cades 3 = 6).

nd st ic im n if -D model i
and stereoscopic image sequences if a 3 odel describ in, if the number ofL. falls below a predefined threshold,

the views is produced. In monoscopic image sequences, m ) . ) ) i
techniques may be used to adapt a 3-D model to the foregrodh neighborhood expansion technique described in the last

object in videoconference image sequences. Knowledge-baB8§graph of Section V-A is applied. Equations (20) and (21)
methods [38] use explicit human head models for this purpo&&€ also calculated for = 0 or ¢ = 0,1 and the sums are
Analysis-by-synthesis methods [2], [22], [39] are suitable fétvided by 1 or 2, respectively. . _
coding more general classes of images since the model creatiohN® camera geometry also remains the same since the
procedure is based on extracted features such as shap&AV model is a general format that can describe various
motion. In stereoscopic vision, depth information can be fouf@mera arrangements. For example, the simple perspective
as in the multiview case, using disparity estimation and stereg@mera geometry, usually used in monocular image systems,
scopic camera geometry [18]. The model can be initializédn be described in CAHV format as follows. In perspective
as in the multiview case using the technique described pojection, the 3-D point is projected on the 2-D plane using
Section IIl. X = flz/2),Y = f(y/z), where (z,y,z) is the 3-D
Once a 3-D model becomes available, the segmentatipoint, (X,Y) is the 2-D projection, andf is the focal
procedure of the present paper can be applied directly, widngth. In CAHV format, this simply assigns the valu@s=
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00T, H=[100%,V=[010Y, andA=[00 (1/£)]"
to the parameters of (1).

The segmentation procedure is trivially extendable so as to
apply for an arbitrary number of cameras and corresponding
projected viewsC. As explained above, (7) and (8) are
calculated forc =0, ---,C — 1. The dimension of the system
(9) becomeg x C' x L, and remains overdetermined even in
the worst case where only one or two 3-D points are defined.
Equations (20) and (21) are calculated foe= 0,---,C — 1
with the sums (20) and (21) divided hy.

VIII. EXPERIMENTAL RESULTS Fig. 12. Final segmentation of the 3-D model for “Claude.”

The proposed 3-D model-based segmentation algorithm was
evaluated for the segmentation of the 3-D model creatgthe table is separated from the body even though neither
from real multiview image sequences. The interlaced mulighject moves. In these areas, the motion descriptor is zero,
view videoconference sequences of “Ludo3,” “Ludo8,” angnd the dominant descriptors are the color and depth ones,
“Gwen9” of size 720x 576" were used. All experiments werewhich are efficiently used for the separation of the body from
performed at the top field of the interlaced sequences, thie table and the arms from the rest of the body.
using images of size 726 288. The visualization of the rigid 3-D motion of each subobject

The 3-D model was formed using the techniques describggiterationi = 0 for “Ludo8” is shown in Fig. 9(a) and (b).
in Section Ill. A regular wireframe was first created coveringhe histogram after a few iterations is shown in Fig. 9(c).
the full size of the top view image, as shown in Fig. 4(a) fon.udo8” is moving both his head and body toward the
the “Ludo3” sequence. Only triangles lying on the foregroungght, with greater motion in the area of the arms. The final
object were then retained, providing a coarse adaptation d@gmentation is shown in Fig. 9(d), where it can be seen that
the foreground object [Fig. 4(b)]. The wireframe was thepharacteristic parts of the body and the environment (table)
finely adapted to the foreground object [Fig. 4(c)], and thgre correctly recognized and separated using the combined
force applied to each node was propagated all over theotion, color, and depth information.
wireframe in order not to alter the regularity of the mesh The visualization of the rigid 3-D motion of each subobject
near the boundary [Fig. 4(d)]. Using depth information, thgt iterationi = 0 for “Gwen9” is shown in Fig. 9(a) and (b).
2-D wireframe was reprojected to the 3-D space giving thEhe histogram after a few iterations is shown in Fig. 10(c).
3-D model [Fig. 5(d)]. The same procedure was followed feGwen9” is moving toward the viewer while raising her hands.
the other multiview image sequences. The 3-D model for tigjain, the face was successfully separated from the body
sequences “Ludo8” and “Gwen9” are shown in Figs. 6(d) arthd from the table. Parts of the table with different color
7(d), respectively. characteristics were separated into different subobjects.

The rigid 3-D motion for each subobject was estimated The segmentation procedure was also applied to stereo-
using the methods described in Section V-B. The rigid 3-Bcopic and monocular image sequences using the approach
motion for each triangle (iteration = 0 of the algorithm, described in Section VII. The left and right channels of the
where each subobject consists of a single triangle) for tiigerlaced stereoscopic videoconference seqi¢taude” of
“Ludo3” sequence is shown in Fig. 8(a) and (b). More specitize 360x 288 are shown in Fig. 11(a) and (b), respectively.
ically, in Fig. 8(a), the translation parameters for each triangigepth was estimated using the algorithm described in [18].
are shown. The color of the triangle shows the magnitud@e visualized 3-D motion is shown in Fig. 11(c) and (d).
of the translation vector, with darker areas corresponding “‘Glaude” is moving his head back to the left as is shown. The
regions with greater motion. The vector shows the directigasulting segmentation is shown in Fig. 12.
of the translation. In Fig. 8(b), the rotation parameters areThe algorithm was also tested on the monocular video-
depicted. The color of the triangle corresponds to the valgenference image sequence “Claire” of size 1%6 144
of the angle of rotation (with darker areas corresponding fpig. 13(a)]. The visualized 3-D motion shown in Fig. 13(b)
larger angles) and the vector shows the axis of rotation. Thad (c), approximates the real motion quite accurately since
motion of the “Ludo3” sequence is a rotation of the heattlaire” is raising her head while turning it to the back. The
toward the right with almost no movement of the rest of theiodel was created using the technique in [22]. The resulting
body. As can be seen, the estimated motion approximates gagmentation is shown in Fig. 13(d).
real motion quite accurately. All of the above articulations and rigid 3-D motion vi-

The histogram used in order to provide the decision for thgalizations are available in both VRML 2.0 and OFF files
threshold after the initial iteration is shown in Fig. 8(c). Théormat, for direct viewing in the 3-D space, at the WWW
final articulation of the 3-D model is shown in Fig. 8(d). Asserver http://uranus.ee.auth.gr/'segmentation.
can be seen, all characteristic subobjects appear segmented.

1These sequences were prepared by the CNET Rennes (former CCET®This sequence was prepared by the Thompson Broadcasting Systems for
for use in the PANORAMA ACTS Project. use in the DISTIMA RACE project.
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segmentation mask is needed, a 3-D model consisting of large
triangles may be used, making the segmentation procedure
much faster, whereas for highly detailed masks, a finer mesh
may be used. This is not possible with segmentation algorithms
working at the pixel level.

The algorithm combines an arbitrary number of subobject
descriptors. Based on the available information and the type
of application, different sources with different weights can be
used.

The important connectivity constraint for each subobject
produced is implicitly imposed in the segmentation algorithm
since each subobject is merged with only neighboring sub-
objects. Thus, no special postprocessing is needed in order
to fill “holes” in the resulting subobjects. In fact, the only
postprocessing procedure necessary is the merging of very
small regions with larger ones.

Possible applications of the algorithm (apart from segmen-
tation) includerigid 3-D motion estimationin model-based
coding. The subobjects defined in the algorithm, along with
their estimated rigid 3-D motion parameters, can be used to
update the model in the next time instance [24]. The only

@)

£

ey EERH

©

“Claire” sequence: (a) First frame of “Claire.” (b) 3-D translation

(d)

Fig. 13.

parameters that need to be transmitted are the rigid motion
parameters since the 3-D model is transmitted only at the
beginning. In this manner, significant bit-rate savings may
potentially be achieved. The rigid 3-D motion of each triangle,
used in iterationi = 0 of the algorithm, can be used in a
manner similar to that in [40] fononrigid or flexible 3-D

parameters of each triangle. (c) 3-D rotation parameters of each triangle. '@Ption estimatiorof each node of the wireframe. A flexible

Final segmentation of the 3-D model.

3-D motion can be assigned to each node by taking into

account the rigid 3-D motion of all triangles having as a vertex

IX. CONCLUSIONS the

In this paper, an unsupervised procedure for the segmen-
tation of multiview image sequences using multiple sources
of information was presented. The 3-D model is initialized
by adapting a 2-D wireframe to the foreground object. Usind?!]
depth and multiview camera geometry, the 2-D wireframe ig)
reprojected in the 3-D space, forming a consistent wireframe
for all views. The articulation is based on the homogeneityf3
of parameters estimated for each subobject, which consists o}
a number of interconnected triangles of the 3-D model. Th%]
rigid 3-D motion of each subobject for subsequent frames i
estimated using a Kalman filtering algorithm. Information from
all cameras is combined during the formation of the equation@]
for the rigid 3-D motion parameters. The threshold used in

specific node.
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