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Abstract— This paper describes a three-dimensional (3-D)
model-based unsupervised procedure for the segmentation of
multiview image sequences using multiple sources of information.
The 3-D model is initialized by accurate adaptation of a two-
dimensional wireframe model to the foreground object of
one of the views. The articulation procedure is based on the
homogeneity of parameters, such as rigid 3-D motion, color,
and depth, estimated for each subobject, which consists of a
number of interconnected triangles of the 3-D model. The rigid
3-D motion of each subobject for subsequent frames is estimated
using a Kalman filtering algorithm, taking into account the
temporal correlation between consecutive frames. Information
from all cameras is combined during the formation of the
equations for the rigid 3-D motion parameters. The threshold
used in the object segmentation procedure is updated at each
iteration using the histogram of the subobject parameters.
The parameter estimation for each subobject and the 3-D
model segmentation procedures are interleaved and repeated
iteratively until a satisfactory object segmentation emerges. The
performance of the resulting segmentation method is evaluated
experimentally.

Index Terms—Multiview image sequences segmentation, rigid
3-D motion estimation, 3-D model-based analysis.

I. INTRODUCTION

DIGITAL video is an integral part of many newly emerging
multimedia applications. New video coding standards,

such as MPEG-4, do not concentrate only on efficient compres-
sion methods, but also on providing better ways to represent,
integrate, and exchange visual information [1]. These efforts
aim to provide the user with greater flexibility for “content-
based” access and manipulation of multimedia data. Model-
based methods have been used to enable these functionalities.

The ability of model-based techniques to describe a scene
in a structural way has opened up new areas of applications.
Very low-bit-rate coding, video production, realistic computer
graphics, multimedia interfaces and databases, and medical
visualization are some of the applications that may benefit by
exploiting the potential of model-based schemes [2]–[5]. In
order to obtain a model-based representation, an input video
sequence must first be segmented into an appropriate set of
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arbitrarily shaped regions (termed the video object planes in
the MPEG-4 verification model), where each of the regions
may represent a particular content of the video stream [6]. The
features of each “object” such as shape, motion, and texture
information can subsequently be coded into the so-called video
object layer for transmission or storage. Although the standards
will provide the needed functionalities in order to compose,
manipulate, and transmit the “object-based” information, the
production of these objects is out of the scope of the standards
and is left to the content developer. Thus, the success of any
object-based approach depends largely on the segmentation of
the scene based on its image contents. In a videophone-type
application, for example, an accurate segmentation of the facial
region can serve two purposes: 1) it can allow the encoder to
place more emphasis on the facial region since this area (i.e.,
the eyes and mouth in particular) is the focus of attention of
the human visual system, and 2) it can also be used to extract
features so that higher level descriptions can be generated (i.e.,
personal characteristics, facial expressions, and composition
information). In a similar fashion, the contents of a video
database can be segmented into individual objects, where the
following features can be supported: 1) sophisticated query
and retrieval operations, 2) advanced editing and composition,
and 3) better compression ratios. These issues and objectives
are currently addressed within the framework of the upcoming
MPEG-4 and future MPEG-7 standards [1].

Segmentation methods for two-dimensional (2-D) images
may be divided primarily into region-based and boundary-
based methods [7], [8]. Region-based approaches [9] rely
on the homogeneity of spatially localized features such as
gray-level intensity, texture, motion, and other pixel statistics.
Region-growing [10] and split-and-merge techniques [11] also
belong in the same category. On the other hand, boundary-
based methods primarily use gradient information to locate
object boundaries. Deformable whole boundary methods [12],
[13] rely on the gradient features of parts of an image near an
object boundary. Other techniques include the segmentation
by anisotropic diffusion introduced in [14] and mathematical
morphology [15], [16] methods. Among many morphological
transformations, the watershed transformation [17] has re-
ceived considerable attention for image segmentation. Methods
for the segmentation of image sequences have been pre-
sented in, among others, [18]–[22]. In most of these methods,
region-growing and merging techniques are used, depending
on the homogeneity of the 2-D or three-dimensional (3-D)
motion.
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The present paper addresses a related, but considerably
more difficult problem, which is the coherent simultaneous
segmentation of two or more views of a scene. To this end,
an unsupervised procedure for the segmentation of multiview
image sequences using various sources of information is
proposed. The segmentation procedure is performed at the
triangle level of a 3-D model, as in [23] and [24], using
characteristic properties of the triangle, such as rigid 3-D
motion, color, and depth. Subobjects consist of collections
of one or more interconnected triangles of the 3-D model,
with similar parameters. The 3-D model is initialized by
adapting a 2-D wireframe to the foreground object. The
proposed adaptation of the 2-D wireframe is a novel procedure
resulting in a very accurate representation of the foreground
object. Using depth and multiview camera geometry, the 2-D
wireframe is reprojected in the 3-D space, forming a consistent
wireframe for all views. Information from all cameras is
combined to form the equations for the extraction of the rigid
3-D motion parameters. Combined motion, color, and depth
information, extracted from multiview information, is used,
along with the 3-D motion fields. The rigid 3-D motion of
each subobject for subsequent frames is estimated using a
Kalman filtering algorithm, taking into account the temporal
correlation between consecutive frames. Furthermore, in the
present work, the threshold characterizing the homogeneity of
subobjects is adaptively updated until a satisfactory segmen-
tation emerges. Following region separation, and depending
on the application, knowledge-based methods may be used to
decide whether a separated region corresponds to a specific
semantic object (e.g., the head in a videoconference image
sequence). The parameter estimation for each subobject and
the 3-D model segmentation procedures are interleaved and
repeated iteratively until a satisfactory object segmentation
emerges.

The methodology used overcomes a major obstacle in
multiview video analysis, caused by the difficult problem of
determining and handling coherently corresponding objects in
the different views. This is achieved in this paper by defining
segmentation and object articulation in the 3-D space, thus
ensuring that all ensuing operations (for example, rigid 3-D
motion estimation of each subobject) remain coherent for all
views of the scene.

The proposed algorithm exploits fully both spatial and tem-
poral correlation of the images since neighborhood constraints
are taken into account (for rigid 3-D motion estimation of
each triangle of the first of a group of frames) and Kalman
filtering is used for tracking the motion in subsequent frames.
This combination is shown to be both computationally efficient
and highly effective.

The a priori information needed consists only of the depth
map; all other information is extracted using only the projected
images of all views. In fact, given the depth information,
the hierarchical algorithm in [24] may be used to create the
foreground/background segmentation mask. For depth map
estimation, the algorithms presented in [18] or in [25] and [26]
can be used. The purpose of the present paper is the definition
of a method for the segmentation of the resulting complicated
foreground object.

Fig. 1. CAHV camera model.

In order to evaluate the above methodology, a series of
enhanced-telepresence videoconference sequences was used.
In these, telepresence was sought by using multicamera set-
ups (and auto-stereoscopic displays), and by permitting the
transmission of complex scenes with gestures and motion and
objects other than just heads and shoulders. The most practical
of these multicamera setups uses three cameras, placed on
either side and the top of the monitor [27]. All results of
the present paper are derived assuming this camera geometry,
and are evaluated with real multiview sequences produced
by precisely such an arrangement of cameras. However, the
basic ideas and results of the paper may be easily extended
to monoscopic, stereoscopic, and arbitrary multiview systems
using arbitrary arrangements and numbers of cameras.

The paper is organized as follows. In the following section,
the three-camera geometry is described, and in Section III, the
procedure for the 3-D model initialization is given. The tech-
nique used for object articulation is examined in Section IV. In
Section V, the estimation of the segmentation parameters is de-
scribed. The object segmentation procedure and the threshold
update algorithm are presented in Section VI. In Section VII,
application in segmenting monocular and stereoscopic image
sequences is described. In Section VIII, experimental results
are given evaluating the performance of the proposed methods.
Conclusions are finally drawn in Section IX.

II. CAMERA MODEL

A camera model describes the projection of 3-D points onto
a camera target. The model used here is the CAHV model
introduced in [28]. This model describes extrinsic camera
parameters such as position and orientation and intrinsic cam-
era parameters such as focal length and intersection between
optical axis and image plane.

As mentioned in Section I, in our multiview camera geom-
etry, three cameras are used: For each
camera the model contains the following parameters shown
in Fig. 1: 1) position of the camera 2) optical axis i.e.,
the viewing direction of the camera (unit vector), 3) horizontal
camera target vector axis of the camera target), and 4)
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vertical camera target vector axis of the camera target),
radial distortion, and pixel size.

In our camera model, we will assume that the radial dis-
tortion is compensated. The camera’s setup is previously
calibrated and maintained static. In this case, the projection of
a 3-D point with coordinates relative to world coordinate
system, onto the image plane is [28]

(1)

The coordinates are camera centered (image plane
coordinate system) with the unit pel. The origin of the coordi-
nate system is the center point of the camera. The coordinates
of a point relative to the picture coordinate system
is given by where

is the center of the image plane in the picture
coordinate system.

Conversely, given its position on the camera plane,
the 3-D position of a point can be determined by

(2)

where is the unit vector pointing from the camera
to the point in the direction of the optical axis and is the
distance between the 3-D point and the center of camera

III. 3-D M ODEL INITIALIZATION

The generation of the 3-D model object is based on an initial
adaptation of a 2-D wireframe model to the foreground object
of one of the projected images (left, top, or right). Since the
2-D wireframe is adapted to the image, the 3-D model can
be formed by using depth information (i.e., the distance of
the 3-D point from the specific camera) in (2). The consistent
camera geometry allows the 3-D model to be adapted to the
other views as well.

In the present paper, very few assumptions are made re-
garding the content of the scene and the motion of its objects.
The a priori information needed consists only of the depth
map; all other information is extracted using only the projected
images of all views. In fact, given the depth information,
the hierarchical algorithm in [24] may be used to create the
foreground/background segmentation mask. For depth map
estimation, the algorithms presented in [18] or in [25] and
[26] can be used. Without loss of generality, to simplify the
subsequent discussion, we will assume that only one object
exists in the foreground. However, it is emphasized that the
methodology of the paper remains valid and applicable in the
presence of more than one such objects. For example, if two
distinct foreground objects exist, the same techniques may be
used to segment separately each foreground object.

The adaptation of the 2-D wireframe to the foreground
object is a coarse-to-fine procedure consisting of the following
steps.

• A regular grid is first created, covering the full size of
the 2-D image.

• Only triangles overlapping with the foreground object or
with the boundary of the foreground object are retained.
The remaining triangles are discarded.

• Nodes of the triangles lying on either side of the boundary
of the foreground object are forced to meet this boundary.
If a node inside the boundary moves to exactly the same
position as a point outside the boundary, then only the
node outside the boundary is moved.

• The “force” applied for the movement of the nodes is
propagated to the remaining nodes so as not to drastically
alter the regularity of the wireframe.

These steps are described in more detail in the sequel. The
initial regular grid is of the form

where are the horizontal and vertical distances
of the nodes of the wireframe, and

are the horizontal and vertical
sizes of the image, respectively. The value of defines
the detail of the segmentation mask. In cases where a coarse
segmentation mask is needed, a 3-D model consisting of large
triangles may be used, making the segmentation procedure
much faster, whereas for highly detailed masks, a finer mesh
may be used. Such a triangulation covering the full size of the
middle view can be seen in Fig. 4(a).

In the next step, a background/foreground segmentation
mask is used to separate and discard the triangles that do not
overlap with the foreground object. Such a mask is particularly
easily calculated if the foreground consists of a moving
object in front of a static background without texture (such
as in videotelephony applications). A simple edge-detection
algorithm suffices then to provide the information on the
foreground object silhouette.

There exist many simple methods for the adaptation of
2-D wire grids to segmented objects [29]. In order to avoid
creating very small triangles on the object boundary, and
also to avoid disrupting the regularity of the wireframe, the
following method was used. A triangle is retained as part of
the wireframe when at least one of its vertices lies on the
foreground object. All nodes of triangles overlapping with
the boundary of the object are attracted to the boundary by
“forces” proportional to their distance from it. Specifically,
each such node is assumed to have eight degrees of freedom:

as shown in Fig. 2. Following each of the eight
directions, a point on the object boundary is found and
a force is defined, having the same direction asand
magnitude equal to the Euclidean distance between node
and point

(3)

If no point on the boundary of the foreground object can
be found in the direction then is set to infinity. The
force applied to node in order to meet the object boundary
is chosen to have magnitude where

and the direction is the one of the corresponding direction
In the special case where a triangle has two of its nodes

lying on the object boundary, forcing the third node on the
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Fig. 2. Special case where a triangle may be discarded from the wireframe.

boundary would create a very small triangle (Fig. 2) which
must be discarded. Specifically, the triangle is discarded when

where are the angles between the triangle vertex within
the object and the tangents to the object boundary at the
two nodes on the boundary, andis a threshold. In case of
concavities, some triangles overlapping with the background
may be created as a result of the above procedure. These are
discarded in a final postprocessing procedure.

The above procedure results in an accurate adaptation of
the wireframe to the foreground object boundary. To avoid the
creation of very small triangles and disruption of the regularity
of the wireframe, the “force” applied to each node is used
for the adaptation of the remaining nodes of the wireframe.
Specifically, the force with direction and magnitude
defined by (3) is propagated according to a Gaussian model,
taking into account the distance between the nodeand all
other mesh nodes, following the approach in [30]. Ifis the
force applied to node then the force applied to a node

with distance from node has the same direction as
and magnitude:

This means that node is moved to a new position in the
direction of and with distance from its previous position

The mean value and standard deviation
are selected so as to harmonize the resulting wireframe mesh.

The result of the above procedure is a very accurately
adapted wireframe over the foreground object in one of the
views [Fig. 4(c)]. By applying (2) to all nodes
the 3-D points are found and the 3-D model
is formed [Fig. 4(d)]. Due to the consistency of the camera
geometry, the projection of the 3-D model to the image planes
formed by other cameras also leads to 2-D wireframes adapted
to the foreground object of the other views.

IV. OBJECT ARTICULATION

A novel subdivision method based on characteristic de-
scriptors of each triangle of the 3-D model will be proposed
for the articulation of the foreground object. The model
initialization procedure described above results in a set of in-
terconnecting triangles in the 3-D space:
where is the number of triangles of the 3-D model. In
the following, will denote an articulation of the 3-D
model at iteration of the articulation algorithm, consisting
of subobjects. Each subobject consists

of triangles.
The object articulation procedure exploits the homogeneity

of a set of characteristic descriptors based on known and
estimated parameters, such as rigid 3-D motion, color, and
depth, for each subobject. The total descriptor value for each
subobject will, in general, be defined as

where is the value of a specific descriptor, normalized so
as to lie between 0 and 1, is the number of characteristic
descriptors used, and

Two subobjects will be merged if

The selection of the appropriate threshold characterizing
the similarity between different subobjects is critical for the
definition of the object articulation procedure. At each iteration

this threshold is updated according to the histogram of
the parameters as will be explained in Section VI-A.

The proposed iterative object articulation procedure is com-
posed of the following steps.

Step 1: Set Let an initial segmentation

with and
In this initialization step, each subobject consists of one
triangle of the 3-D model. Set an initial threshold value:

Step 2: Apply the segmentation parameters estimation al-
gorithm to each subobject to find (Section V).

Step 3: Execute the object segmentation procedure that
subdivides the initial object into subobjects, i.e.,

(Section VI).

Step 4: Use the histogram of to define the new
threshold (Section VI-A).

Step 5: If where is a threshold
affecting the number of subobjects created, then stop. Else set

and go to Step 2.
The procedures for segmentation parameter estimation, ob-

ject segmentation, and the threshold value update algorithm
are described in the following sections.
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V. PARAMETER ESTIMATION FOR EACH SUBOBJECT

The subdivision criterion is based on the homogeneity of
characteristic descriptors of each triangle of the 3-D model.
Although many such descriptors can be used for efficient
segmentation, in this paper, we focus on those based on the
rigid 3-D motion parameters, color and depth information.

A. Rigid 3-D Motion Equation

For each subobject, the rigid 3-D motion parameters are
estimated for a number of frames. In order to exploit temporal
correlation between consecutive frames, a Kalman filtering
approach is used. The system of equations describing the rigid
3-D motion parameters is formed, and is used to determine
the Kalman filter for the estimation and tracking of the rigid
3-D motion.

In the following, for the sake of notational simplicity, the
subobject will be simply denoted by This means that the
procedure to be described is applied to all subobjects at any
iteration step of the object articulation algorithm. The rigid
motion of each subobject is modeled using three rotation
and three translation parameters [31]:

(4)

with and being of the form

(5)

(6)

where is a 3-D point on the 3-D planes
defined by the triangles of subobject The rigid
3-D motion parameters vector for subobjectis

At time each point on is projected to points
on the planes of the three cameras.

Using (1) and (4), the projected 2-D motion vector
is determined by

(7)

(8)

where
Using the initial 2-D motion vectors, estimated by applying

a block-matching algorithm to the images corresponding to the
left, top, and right cameras, and also using (7) and (8), a linear

system of equations for the rigid motion parameter vector
for subobject between time and is formed

(9)

Omitting, for notational simplicity, dependence on time
subobject and camera is equal to

(10)

where

and

For the coordinates

and

Also

(11)

In the above where is the number of
3-D points contained in (the set of all
3-D points contained in triangles of and

and
are the multiview camera parameters. The 2-D motion vectors

correspond to the projected 3-D point The set
of 3-D points in each triangle is found by 3-D backprojection
of the set of discrete 2-D points contained in the corresponding
2-D triangle.

Equations (9)–(11) define a system of 23 equations
with six unknowns, where is the number of 3-D points
contained in since, for each 3-D point two equations
are formed for the and coordinates for each of the
three cameras. This system combines the rigid 3-D motion
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parameters, with the camera parameters and the points of the
3-D model, taking as initial values the 2-D motion, using
available information fromall cameras simultaneously.

Whenever the value of falls below a predefined threshold,
neighboring triangles are also used in order to enhance the
stability and efficiency of the rigid 3-D motion estimation
procedure. In this case, the additional 3-D points contained
in triangles neighboring those of i.e., triangles sharing at
least two common nodes with any triangle ofare used in
(9). This is normally necessary only in the initial step of the
articulation procedure where each subobject consists of only
one triangle.

B. 3-D Motion Tracking Using Kalman Filtering

In order to exploit the temporal correlation between con-
secutive frames, a Kalman filter [32], [33] is applied for the
calculation of the 3-D rigid motion parameters at every time
instant. In this way, the computationally complicated solution
of (9) is needed only for the first of a sequence offrames.
In subsequent frames, the estimation of the motion parameters
is based on the initial frame estimation improved by additional
observations as additional frames arrive. Omitting, for the sake
of further notational simplification, the explicit dependence
of the motion parameters to the subobject thus writing

instead of the dynamics of the
system are described as follows:

(12)

(13)

where is the rigid 3-D motion vector of each subobject and
is a unit-variance white random sequence. The term

describes the difference of consecutive frames, and a high
value of implies a small correlation between consecutive
frames, and can be used to describe fast-changing scenes,
whereas a low value of may be used when the motion
is relatively slow and the temporal correlation is high. The
term represents the random error of the formation of
the system (9), and is modeled as white zero-mean Gaussian
noise, with where is the th
element of

The equations giving the estimated value of in terms
of are [34], [35]

(14)

(15)

(16)

(17)

where and are the predictions of the unknown motion
parameters corresponding to the th and th frame, re-
spectively, represents the correction matrix, and and

Fig. 3. Update of the threshold based on the histogram of the subobject’s
parameters.

describe the covariance matrix of the estimation error
and respectively

The initial value of the filter (first frame or
is found by directly solving (9). More specifically, since

for all subobjects (in the worst case, is
composed of a single triangle with and
(9) is overdetermined and can be solved by the robust least
median of squares motion estimation algorithm described in
detail in [36]. Erroneous initial 2-D estimates, produced by
the block-matching algorithm, will be discarded by the least
median of squares motion estimation algorithm.

The initial correlation matrix is

In the above, and are assumed to be the same for the whole
mesh, and hence independent of the subobjectNotice that
(9) is solved only once in order to provide the initial values
for the Kalman filtering. During the next frames, and are
only formed for use in the Kalman filter procedure.

The final rigid 3-D motion descriptor characterizing each
subobject is the sum of the rigid 3-D motion parameters
for frames where is the total number
of frames used. More specifically, we define for a rigid 3-D
motion vector at time the matrix

(18)

The total rigid 3-D motion for a number of frames is
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(a) (b)

(c) (d)

Fig. 4. (a) Regular wireframe covering the full size of the middle view. (b) Coarse adaptation with triangles covering only the foreground object. (c)Fine
adaptation to the foreground object. (d) 3-D model produced by reprojecting the 2-D wireframe to the 3-D space.

(a) (b)

(c) (d)

Fig. 5. “Ludo3” sequence. (a) Top view. (b) Left view. (c) Right view. (d) 3-D model produced by the model initialization procedure.

described by

(19)

and the rigid 3-D motion parameters for descriptor are
extracted from which is of the form of i.e., the motion
descriptor

is found from

where is determined using (18) and (19).
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(a) (b)

(c) (d)

Fig. 6. “Ludo8” sequence. (a) Top view. (b) Left view. (c) Right view. (d) 3-D model produced by the model initialization procedure.

(a) (b)

(c) (d)

Fig. 7. “Gwen9” Sequence. (a) Top view. (b) Left view. (c) Right view. (d) 3-D model produced by the model initialization procedure.
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(a) (b)

(c) (d)

Fig. 8. “Ludo3” sequence: (a) 3-D translation parameters of each triangle. (b) 3-D rotation parameters of each triangle. (c) Histogram of the subobject
parameters after some few iterations. (d) Final segmentation of the 3-D model.

C. Color and Depth Descriptor Estimation

In addition to the rigid 3-D motion descriptor of each trian-
gle, other observations can be used for efficient segmentation.
More specifically a color descriptor can be assigned to each
subobject For each triangle contained in let

(20)

where corresponds to cameras,

is the number of 2-D projected points for each triangle
for each view and is the intensity value of each
projected view. The color descriptor for subobjectis then
defined by

Similarly, in order to assign a depth descriptor to each
triangle, we define

(21)

where corresponds to cameras,

is the number of 2-D projected points for each triangle
for each view and are the projected depth maps
to each view. For each subobject the depth descriptor is
then defined by

VI. OBJECT SEGMENTATION

At each iteration of the object articulation method, the
homogeneity of the descriptor of each subobject is exploited.
For the motion descriptors, the rigidity constraint imposed
on each rigid object component is exploited. This constraint
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(a) (b)

(c) (d)

Fig. 9. “Ludo8” sequence: (a) 3-D translation parameters of each triangle. (b) 3-D rotation parameters of each triangle. (c) Histogram of the subobject
parameters after some few iterations. (d) Final segmentation of the 3-D model.

requires that the distance between any pair of points of a
rigid object component must remain constant at all times and
configurations. Thus, the motion of a rigid model object com-
ponent represented by a mesh of triangles can be completely
described by using the same six motion parameters. Therefore,
to achieve object articulation, neighboring subobjects which
exhibit similar 3-D motion parameters are joined together. In
the same way, neighboring subobjects which exhibit similar
color and depth descriptors are merged to the same subobject.

For each triangle, the following total descriptor value is
estimated:

(22)

where is the normalized value of between 0 and 1 and

The choice of values for depends on the weight given
to each specific descriptor in each specific application. For
example, if rigidly moving components must be found, the

weights corresponding to the rigid 3-D motion descriptors
should be higher than the others.

In the region-growing algorithm described next, the sim-
ilarity of descriptors of subobjects is checked only between
neighboring subobjects. Two subobjects are considered to be
neighbors if at least one triangle of one of the subobjects
shares two common vertices with a triangle from the other
subobject. Of course, if these triangle exist, they must lie on
the “boundary” of each subobject.

Thus, the following iterative algorithm is proposed.
Step 1: Set
Step 2: Find subobject that is neighboring If

then and go to Step 2. Else,
go to Step 2 and search for another neighbor If no such
neighbor exists, go to Step 3.

Step 3: Set If go to Step 2. Else stop.
The above algorithm is a region-growing procedure based

on the triangles of the 3-D model.
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(a) (b)

(c) (d)

Fig. 10. “Gwen9” sequence. (a) 3-D translation parameters of each triangle. (b) 3-D rotation parameters of each triangle. (c) Histogram of the subobject
parameters after some few iterations. (d) Final segmentation of the 3-D model.

A. Threshold Update Procedure

A critical parameter for the convergence and efficiency of
the algorithm is the choice of the threshold value This
value is calculated on the basis of the histogram function of the
parameters of each subobject. More specifically, the histogram
function is given by

where is the number of subobjects with
At each iteration of the algorithm, the maxima of this

function are estimated, and the threshold is found as the half
distance between the two maxima closest to each other. For
the estimation of the maxima, the method presented in [37] is
used, following a smoothing procedure using a median filter.
In other words, if the maxima occur at
and is the minimum distance between any

then (Fig. 3). For the initial

value of threshold is not found using the histogram because
each subobject consists of only one triangle and the parameter
estimation procedure is not expected to be very reliable. For
this first iteration, a small value is given instead to and
subobjects with very similar descriptors are first created, thus
making the descriptor estimation procedure more reliable in
the following iterations.

The histogram information is also used for the selection of
the values of in (22). More specifically, the weights for each
descriptor are chosen in proportion to the maximum distance
between maxima in the histogram of this specific descriptor.
For example, if the value of a specific descriptor is constant
over all subobjects, then the histogram produced based on
this descriptor is a delta function, and the maxima extraction
procedure will fail. So if the weight associated with this
descriptor is set to be very small, other descriptors with more
characteristic distributions over the subobjects will dominate,
and a more “segmentable” histogram will be produced. More
specifically, the set of parameters are determined so as to
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(a) (b)

(c) (d)

Fig. 11. “Claude” sequence. (a) Left channel of the “Claude” stereoscopic image sequence. (b) Right channel of the “Claude” stereoscopic image sequence.
(c) 3-D translation parameters of each triangle. (d) 3-D rotation parameters of each triangle.

maximize the following function:

VII. A PPLICATIONS IN MONOCULAR, STEREOSCOPIC,
AND GENERAL MULTIVIEW IMAGE SEQUENCES

The multiview image sequence segmentation method pre-
sented may be modified so as to also be applied in monoscopic
and stereoscopic image sequences if a 3-D model describing
the views is produced. In monoscopic image sequences, many
techniques may be used to adapt a 3-D model to the foreground
object in videoconference image sequences. Knowledge-based
methods [38] use explicit human head models for this purpose.
Analysis-by-synthesis methods [2], [22], [39] are suitable for
coding more general classes of images since the model creation
procedure is based on extracted features such as shape or
motion. In stereoscopic vision, depth information can be found
as in the multiview case, using disparity estimation and stereo-
scopic camera geometry [18]. The model can be initialized
as in the multiview case using the technique described in
Section III.

Once a 3-D model becomes available, the segmentation
procedure of the present paper can be applied directly, with

obvious simple modifications. More specifically, (7) and (8)
are calculated for or in the monoscopic and
stereoscopic case, respectively. All other operations remain
the same since they are directly defined in the 3-D space.
The only change is the dimension of the system (9), which
becomes, respectively, and in the monoscopic
and stereoscopic cases. This system remains overdetermined
in these cases also since a triangle usually consists of more
than three points (in the worst monocular case,
Again, if the number of falls below a predefined threshold,
the neighborhood expansion technique described in the last
paragraph of Section V-A is applied. Equations (20) and (21)
are also calculated for or and the sums are
divided by 1 or 2, respectively.

The camera geometry also remains the same since the
CAHV model is a general format that can describe various
camera arrangements. For example, the simple perspective
camera geometry, usually used in monocular image systems,
can be described in CAHV format as follows. In perspective
projection, the 3-D point is projected on the 2-D plane using

where is the 3-D
point, is the 2-D projection, and is the focal
length. In CAHV format, this simply assigns the values
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and
to the parameters of (1).

The segmentation procedure is trivially extendable so as to
apply for an arbitrary number of cameras and corresponding
projected views As explained above, (7) and (8) are
calculated for The dimension of the system
(9) becomes and remains overdetermined even in
the worst case where only one or two 3-D points are defined.
Equations (20) and (21) are calculated for
with the sums (20) and (21) divided by

VIII. E XPERIMENTAL RESULTS

The proposed 3-D model-based segmentation algorithm was
evaluated for the segmentation of the 3-D model created
from real multiview image sequences. The interlaced multi-
view videoconference sequences of “Ludo3,” “Ludo8,” and
“Gwen9” of size 720 5761 were used. All experiments were
performed at the top field of the interlaced sequences, thus
using images of size 720 288.

The 3-D model was formed using the techniques described
in Section III. A regular wireframe was first created covering
the full size of the top view image, as shown in Fig. 4(a) for
the “Ludo3” sequence. Only triangles lying on the foreground
object were then retained, providing a coarse adaptation to
the foreground object [Fig. 4(b)]. The wireframe was then
finely adapted to the foreground object [Fig. 4(c)], and the
force applied to each node was propagated all over the
wireframe in order not to alter the regularity of the mesh
near the boundary [Fig. 4(d)]. Using depth information, the
2-D wireframe was reprojected to the 3-D space giving the
3-D model [Fig. 5(d)]. The same procedure was followed for
the other multiview image sequences. The 3-D model for the
sequences “Ludo8” and “Gwen9” are shown in Figs. 6(d) and
7(d), respectively.

The rigid 3-D motion for each subobject was estimated
using the methods described in Section V-B. The rigid 3-D
motion for each triangle (iteration of the algorithm,
where each subobject consists of a single triangle) for the
“Ludo3” sequence is shown in Fig. 8(a) and (b). More specif-
ically, in Fig. 8(a), the translation parameters for each triangle
are shown. The color of the triangle shows the magnitude
of the translation vector, with darker areas corresponding to
regions with greater motion. The vector shows the direction
of the translation. In Fig. 8(b), the rotation parameters are
depicted. The color of the triangle corresponds to the value
of the angle of rotation (with darker areas corresponding to
larger angles) and the vector shows the axis of rotation. The
motion of the “Ludo3” sequence is a rotation of the head
toward the right with almost no movement of the rest of the
body. As can be seen, the estimated motion approximates the
real motion quite accurately.

The histogram used in order to provide the decision for the
threshold after the initial iteration is shown in Fig. 8(c). The
final articulation of the 3-D model is shown in Fig. 8(d). As
can be seen, all characteristic subobjects appear segmented.

1These sequences were prepared by the CNET Rennes (former CCETT)
for use in the PANORAMA ACTS Project.

Fig. 12. Final segmentation of the 3-D model for “Claude.”

The table is separated from the body even though neither
object moves. In these areas, the motion descriptor is zero,
and the dominant descriptors are the color and depth ones,
which are efficiently used for the separation of the body from
the table and the arms from the rest of the body.

The visualization of the rigid 3-D motion of each subobject
at iteration for “Ludo8” is shown in Fig. 9(a) and (b).
The histogram after a few iterations is shown in Fig. 9(c).
“Ludo8” is moving both his head and body toward the
right, with greater motion in the area of the arms. The final
segmentation is shown in Fig. 9(d), where it can be seen that
characteristic parts of the body and the environment (table)
are correctly recognized and separated using the combined
motion, color, and depth information.

The visualization of the rigid 3-D motion of each subobject
at iteration for “Gwen9” is shown in Fig. 9(a) and (b).
The histogram after a few iterations is shown in Fig. 10(c).
“Gwen9” is moving toward the viewer while raising her hands.
Again, the face was successfully separated from the body
and from the table. Parts of the table with different color
characteristics were separated into different subobjects.

The segmentation procedure was also applied to stereo-
scopic and monocular image sequences using the approach
described in Section VII. The left and right channels of the
interlaced stereoscopic videoconference sequence2 “Claude” of
size 360 288 are shown in Fig. 11(a) and (b), respectively.
Depth was estimated using the algorithm described in [18].
The visualized 3-D motion is shown in Fig. 11(c) and (d).
“Claude” is moving his head back to the left as is shown. The
resulting segmentation is shown in Fig. 12.

The algorithm was also tested on the monocular video-
conference image sequence “Claire” of size 176 144
[Fig. 13(a)]. The visualized 3-D motion shown in Fig. 13(b)
and (c), approximates the real motion quite accurately since
“Claire” is raising her head while turning it to the back. The
model was created using the technique in [22]. The resulting
segmentation is shown in Fig. 13(d).

All of the above articulations and rigid 3-D motion vi-
sualizations are available in both VRML 2.0 and OFF files
format, for direct viewing in the 3-D space, at the WWW
server http://uranus.ee.auth.gr/segmentation.

2This sequence was prepared by the Thompson Broadcasting Systems for
use in the DISTIMA RACE project.
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(a) (b)

(c) (d)

Fig. 13. “Claire” sequence: (a) First frame of “Claire.” (b) 3-D translation
parameters of each triangle. (c) 3-D rotation parameters of each triangle. (d)
Final segmentation of the 3-D model.

IX. CONCLUSIONS

In this paper, an unsupervised procedure for the segmen-
tation of multiview image sequences using multiple sources
of information was presented. The 3-D model is initialized
by adapting a 2-D wireframe to the foreground object. Using
depth and multiview camera geometry, the 2-D wireframe is
reprojected in the 3-D space, forming a consistent wireframe
for all views. The articulation is based on the homogeneity
of parameters estimated for each subobject, which consists of
a number of interconnected triangles of the 3-D model. The
rigid 3-D motion of each subobject for subsequent frames is
estimated using a Kalman filtering algorithm. Information from
all cameras is combined during the formation of the equations
for the rigid 3-D motion parameters. The threshold used in
the object segmentation procedure is updated at each iteration
using the histogram of the subobject descriptors.

The methodology used overcomes a major obstacle in
multiview video analysis, caused by the difficult problem of
determining and handling coherently corresponding objects
in various views. This is achieved in this paper by defining
segmentation and object articulation in the 3-D space, thus
ensuring that all ensuing operations (for example, rigid 3-D
motion estimation of each subobject) remain coherent for all
views of the scene.

A further advantage of the algorithm is that the segmentation
is defined at the triangle level, thus making it possible to define
the detail of the segmentation mask. In cases where a coarse

segmentation mask is needed, a 3-D model consisting of large
triangles may be used, making the segmentation procedure
much faster, whereas for highly detailed masks, a finer mesh
may be used. This is not possible with segmentation algorithms
working at the pixel level.

The algorithm combines an arbitrary number of subobject
descriptors. Based on the available information and the type
of application, different sources with different weights can be
used.

The important connectivity constraint for each subobject
produced is implicitly imposed in the segmentation algorithm
since each subobject is merged with only neighboring sub-
objects. Thus, no special postprocessing is needed in order
to fill “holes” in the resulting subobjects. In fact, the only
postprocessing procedure necessary is the merging of very
small regions with larger ones.

Possible applications of the algorithm (apart from segmen-
tation) include rigid 3-D motion estimationin model-based
coding. The subobjects defined in the algorithm, along with
their estimated rigid 3-D motion parameters, can be used to
update the model in the next time instance [24]. The only
parameters that need to be transmitted are the rigid motion
parameters since the 3-D model is transmitted only at the
beginning. In this manner, significant bit-rate savings may
potentially be achieved. The rigid 3-D motion of each triangle,
used in iteration of the algorithm, can be used in a
manner similar to that in [40] fornonrigid or flexible 3-D
motion estimationof each node of the wireframe. A flexible
3-D motion can be assigned to each node by taking into
account the rigid 3-D motion of all triangles having as a vertex
the specific node.
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