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Spatiotemporal Segmentation and Tracking of
Objects for Visualization of Videoconference
Image Sequences
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Abstract—In this paper, a procedure is described for the segmen- and texture information can subsequently be coded into the
tation, content-based coding, and visualization of videoconference so-calledvideo object layerfor transmission or storage. Al-
image sequences. First, image sequence analysis is used to estimajg,, ,qh the standards will provide the needed functionalities in

the shape and motion parameters of the person facing the camera. der t inulat dt it the "obiect-b 9
A spatiotemporal filter, taking into account the intensity differ- order to compose, manipulate and transmit the “object-base

ences between consequent frames, is applied, in order to separatdnformation, the production of these objects is out of the scope
the moving person from the static background. The foreground is of the standards and is left to the content developer. Thus,
se_gmented in a number of regions in order to identify the fa(_:e. For the success of any object-based approach depends largely on
this purpose, we propose the novel procedure of K-Means with con- the segmentation of the scene based on its image contents.

nectivity constraint algorithm as a general segmentation algorithm | id h t licati f | t
combining several types of information including intensity, motion n a videophone-type application, for exampie, an accurate

and compactness. In this algorithm, the use opatiotemporal re- Se€gmentation of the face object can serve two purposes: 1) it
gionsis introduced since a number of frames are analyzed simul- can allow the encoder to place more emphasis on the facial area
taneousl,y and as a result, the same region is present in consequentince this area (the eyes and mouth and particular) is the focus
frames. Based on this information, a 3-D ellipsoid is adapted to the of attention of the human visual system and 2) it can also be

person’s face using an efficient and robust algorithm. The rigid 3-D . L
motion is estimated next using a least median of squares approach. used to extract features so that higher level descriptions can be

Finally, a Virtual Reality Modeling Language (VRML) file is cre- ~ generated (e.g., personal characteristics, facial expressions, and
ated containing all the above information; this file may be viewed composition information). In a similar fashion, the contents of a

by using any VRML 2.0 compliant browser. video database can be segmented into individual objects, where
Index Terms—Model-based image sequence analysis, spatiotem-the following features can be supported: 1) sophisticated query
poral image sequence segmentation, VRML. and retrieval operations; 2) advanced editing and composition;

and 3) better compression ratios. These issues and objectives
are currently addressed within the framework of the upcoming
MPEG-4 and future MPEG-7 standards [2].
IGITAL VIDEO is an integral part of many newly Segmentation methods for 2-D images may be divided pri-
emerging multimedia applications. New video codingnharily into region- and boundary-based methods [5]-[8]. Re-
standards, such as MPEG-4 and MPEG-7, do not concentrgiien-based approaches [9], [10] rely on the homogeneity of spa-
only on efficient compression methods, but also on providinglly localized features such as gray-level intensity, texture, mo-
better ways to represent, integrate and exchange visual fion [11], and other pixel statistics. Region growing and splitand
formation [1]-[3]. These efforts aim to provide the user witlmerge techniques also belong to the same category. On the other
greater flexibility for “content-based” access and manipulatidiand, boundary-based methods use primarily gradient informa-
of multimedia data. tion to locate object boundaries. Deformable whole boundary
In order to obtain a model-based representation, an inpagthods [12], [13] rely on the gradient features of parts of an
video sequence must first be segmented into an appropriateiseige near an object boundary.
of arbitrarily shaped objects (termed thigleo object planes  Other techniques include the segmentation by anisotropic dif-
in the MPEG-4 Verification Model), where each of the objectfusion [14] introduced by Perona and Malik [15]. Anisotropic
may represent a particular meaningful content of the videfiffusion can be seen as a robust procedure which estimates a
stream [4]. The features of each object such as shape, motigiecewise smooth image from a noisy input image. The “edge-
stopping” function in the anisotropic diffusion equation, allows
the preservation of edges while diffusing the rest of the image.
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with a conventional gradient operator usually results in overepresentation of the image sequence may be viewed by any
segmentation. To alleviate this problem, the use of multiscAlRML compliant browser [31]. The visualization offers en-
morphological gradient operators has been proposed. Methbdsiced telepresence to the viewer, since a 3-D representation of
for the segmentation of image sequences have been presetitedcene is created. Furthermore, the user of the VRML browser
in, among others, [19]-[22]. In most of these methods, regionay interact with the scene; for example the user may rotate the
growing and merging techniques are used, depending on the Bd> model in order to see an object from the side. Once the 3-D
mogeneity of the 2-D or 3-D motion. When advanced multivienepresentation derived from the real image data is available, an
setups are available, 3-D models of the scene can be creaadironment is created in which it is very easy to integrate syn-
and the segmentation may be applied at the triangle level of thetic objects. For example, a new background may be added to
3-D model using several characteristics such as intensity, nmeplace the old one; such a background may be entirely synthetic
tion, and depth [23]. or extracted from another real image. Also several characteris-
In the sequel, the term “region” is used to describe an areatiafs of the virtualized environment, such as lighting, may be di-
the frame which is homogeneous in characteristics such as gregtly controlled through VRML nodes. This also solves a major
level, texture, motion, or their combinations. The term “objectiroblem facing model-based schemes, which is the problem
is used to describe regions or combinations of regions whioh interportability: since for each model-based scheme, a dif-
have a semantic meaning, e.g., the head object. Finally, the faéément specific decoder and viewer is required, the usefulness
region is identical to the face object. of such schemes is limited. By adopting VRML, a standardized
In this paper a novel procedure for the segmentation fie format and a general-purpose viewer can be used.
image sequences using both spatial and temporal informatiorThe paper is organized as follows. In the following section,
is presented. As a basis for the segmentation algorithm, tihe foreground/background separation procedure and the KMC
K-Means algorithm is used, modified so as to take into accousigorithm are described. In Section Ill, the min—max criterion
the coherence of the regions. The regularization parameterssofised for the automatic evaluation of the segmentation reg-
the K-Means with Connectivity Constraint (KMC) algorithmularization parameters The final spatiotemporal segmentation
are evaluated automatically using the min—max criterion [24lgorithm is presented in Section IV. The 3-D ellipsoid adap-
The algorithm is extended so as to separate and track regitatson procedure to the person'’s face is described in Section V.
appearing in consequent frames of an image sequence. Ti&ection VI, the 3-D model is used for rigid 3-D motion esti-
methodology proposed here is similar to that proposed in [25hation. The visualization process using VRML is described in
and thus differs significantly from that most common in th&ection VII-A. Experimental results evaluating the performance
literature, where an image is first separated into regions whiohthe algorithm are given in Section VIII. Finally, conclusions
are then tracked through time [26]. In the proposed approaeie drawn in Section IX.
a number of consequent frames of the image sequence are
analyzedsimultaneouslyin order to segment the images into
regions. Thishigher order segmentatiomplicitly solves the Il. SHAPE PARAMETER ESTIMATION
problem of correspondence of objects between consequent )
frames. Following region separation, and depending on the Foreground/Background Segmentation

application, knowledge-based methods may be used to decidgor videoconference scenes, it is reasonable to assume that
whether a separated region corresponds to a specific semafiicmoving object is a person in front of a static camera. In order
object (e.g., the head or face in a videoconference imaggextract the motion information needed to separate the fore-
sequence). ground from the background, a spatiotemporal filter, similar to

A direct application of the segmentation into regions whicthat in [32], is used. The filter takes into account mainly inten-
may correspond to meaningful objects is the coding and visugity differences between pixels in consequent time instances. In
ization of these objects. Model-based methods have been uggskr to smooth the background/foreground segmentation mask
to enable these functionalities. The abl'lty of model-based te(&hd to avoid random erroneous Changesy the number of Changes
niques to describe a scene in a structural way has openedg#iixel intensity inside a time window, is multiplied with a

new areas of applications. Very low bitrate coding, video Prémoothing function as follows: for each pixgl= (z, ), the
duction, realistic computer graphics, multimedia interfaces, afgliowing index is calculated:

databases and medical visualization are some of the applica-
tions that may benefit by exploiting the potential of model-based
schemes [27]-[30].

In this paper, a robust and very efficient method is adoptedv(p) - Z Z Hr41(p) = Li(P)] | - flen,) (1)
for fitting a 3-D ellipse to the facial region based on initial 2-D F=0\ =T
data. The available 3-D model may be used to estimate the rigid
3-D motion and use the small set of rigid 3-D motion paramé&here
ters in order to update the model in the next time instance and/+(p) pixel intensity at timet;
also reconstruct the next frame using only information fromthe = the |ast frame used and is an integer multipl&pf
previous one.

These extracted parameters are converted into Virtual Re*:*
ality Modeling Language (VRML) format so that a moving 3-D Ii(p) # 0.

F/Tw [(k+1)Ty

a counter incremented by one whenever;(p) —
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Each time a new time window is processed (whenever that is,
k is incrementedy, . is set equal te-1', where!l” < 1,. The
function f(cy ) is given by

0, if Cr,t < 0
f(Ck,t) = { 1, if e > 0.

As is easily seen, if no more th&nchanges of pixel intensity
occur within a time window, they do not contribute to the final
decision, sincef(cx,+) = 0. A simple thresholding algorithm
suffices in order to obtain the final segmentation mask

F(p) = { 1(p € foreground, if V(p) >th
P/= 0 (p € background, if V(p) < th

whereth is a threshold. Thusf'(p) is the background/fore-
ground segmentation mask, indicating whether a pixel belongs
to the foreground (i.e., to the moving person), or to the static
background. All ensuing operations, described in the sections
that follow, are performed only on pixejs belonging to the
foreground (i.e., only on pixels with'(p) = 1).

B. The KMC Algorithm

Clustering based on the K-Means algorithm is a widely used
region segmentation method [33]-[35] which, however, tends
to produce unconnected regions. This is due to the propensity
of the classical K-Means algorithm to ignore spatial informa-
tion about the intensity values in an image, since it only takes
into account the global intensity or color information. In order
to alleviate this problem, we propose the use of an extended
K-Means algorithm: the KMC algorithm. In this algorithm, the
spatial proximityof each region is also taken into account by
defining a new center for the K-Means algorithm and by inte-
grating the K-Means with a component labeling procedure.

For the sake of easy reference we shall first describe the tra-
ditional K-Means (KM) algorithm.

Step 1) For everyregiosy, &k = 1, ..., K, random initial
intensity values are chosen for the region intensity
centersl;,.

Step 2) For every pixeb = (z, y), the difference is eval-
uated betweed(x, y) and Iy, k = 1, ..., K. If
|I($, y)_jz| < |I($, y)_7k| forall % 7& t p(-T, y)
is assigned to regios;.

Step 3) Following the new subdivisiofy, is recalculated. If
M, elements are assignedd4p then

My,

- 1

I = — I(pF 2

L= Ezj (Pr) @
wherep®, m = 1,..., My, are the pixels be-

longing to regions;.
Step 4) If the newl;, are equal with the old then stop, else
goto Step 2
The results of the application of the above algorithm are im-
proved using the KMC algorithm, which consists of the fol-
lowing steps.
Step 1) The classical KM algorithm is performed for a small
number of iterations. This result il regions, with

intensitX cente_rs_f K, S described above, and spatial
centersS, = (Sk, o, Sky) k=1,..., K

1 M,
Sk x:ﬁ pfnw

k m=1

1 M,
Sky =~ ke 3
k,y Mk r;prn,y ( )

wherep” = (pk, pl). The differential motion cen-
tersV;, are defined by

1 M,

V‘ = a5 I ’ﬁl -1 51 4
k M, 7; l(p ,t+1) (p ,t)| 4)
wherep®, ,, m = 1, ..., M, are the pixels of the

kth regioﬁ at timeg. The area of each regiaody is
defined by

and the mean area of all regions

K

_ 1
A=—S" 4,
Kkz_:_1 k

Step 2) For every pixgb = (z, v), the intensity differences

are evaluated between center and pixel intensities as
well as the distances betweprandS andV (p) and

V. Ageneralized distance of a pixefrom a region

s, 1s defined as follows:

A - A —
D(p, k) = 5 11(p) = Tull + 5 V() = Vil
I 1%

X glp=Sil

O’S Ak

where||p — Si|| is the Euclidean distanc®,(p) is
now simply defined a¥ (p) = |I(pty1) — I(ps)],

oy, oy, os are the standard deviations of inten-
sity, motion, and spatial distance, respectively, and
A1, A2, Az are regularization parameters. Normal-
ization of the spatial distandp — S || with the area

of each regiond/A;, is necessary in order to allow
the creation of large connected regions; otherwise,
pixels with similar intensity and motion values with
those of a large region would be assigned to neigh-
boring smaller regions. IfD(p, ¢)| < |D(p, k)|
forall k # i, p = («, y) is assigned to regios.

Step 3) Based on the above subdivision, an eight connec-

tivity component labeling algorithm is applied. This
algorithm finds all connected components and as-
signs a unique value to all pixels in the same com-
ponent. Regions whose area remains below a pre-
defined threshold are not labeled as separate ones.
The component labeling algorithm produdeson-
nected regions. For these connected regions, the in-
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tensity I;, spatialS;, and motion center¥’;, [ =
1, ..., L are calculated using equations (2)—(4), re-
spectively.

Step 4) Ifthe difference between the new and the old centers

I, S;, andV; is below a threshold
L

A1 Fi TFi— Az 170 {7i—
E — I =1 1||+—2 Vi-V; M
—\ oy oy

S

Ao — gz _ §i—1
+224 M) < threshold
Jg Ak

whereC" is the corresponding center at thik itera-
tion of the algorithm, then stop, else g@&tep 2with

K = L using the new intensity, motion, and spatial
centers.

Through the use of this algorithm, the ambiguity in the selec-
tion of the numbel of regions, which is another weakness of
the K-Means algorithm, is also resolved. Starting from &ny
the component labeling algorithm produces or rejects regions
according to their compactness. In this wigyis automatically
adjusted during the segmentation procedure.

An example of the segmentation procedure is shown in Fig. 1.
Fig. 1(a) shows the original image of the videoconference se-
quence “Claire” of sizé 76 x 144. Fig. 1(b) shows the result of
the first iteration of the KMC algorithm (result of Step 2 of the
KMC algorithm, for the first iteration). The result of the compo-
nent labeling algorithm (Step 3 of the algorithm) is in Fig. 1(c).
The initial number of regions was setf6 = 5 and the com-
ponent labeling algorithm producdd = 6 regions. Fig. 1(d)
shows the final segmentation after only four iterations.

After the segmentation procedure, a face-detection algorithm
must be applied in order to identify the region that corresponds
to the facial area. For this purpose, the algorithm presented in
[36] can be used. In [36], the facial area is detected among
other candidate regions using fuzzy functions and information
including relative size and position.

I1l. SELECTION OF THEREGULARIZATION PARAMETERS

The segmentation procedure described in Section 1I-B pro-
duces a segmentatiafi* by assigning each pixel of the fore-

(b)

(d)

1391

ground objectto one of theregionss;, I =1, ..., L. Thisseg- Fig.1. (a) Original image “Claire.” (b) Result of the KMC algorithm (Step 2,

mentation minimizes the following energy function [37], [38] first iteratio_n). (c) Result Ofthg component labeling algorithm (Step 3). (d) Final
segmentation after only four iterations.

L
T
B(S, ) = Z Z A" D(p, D) ) portance of intensity information and encourages the produc-
=1 pes tion of many unconnected regions. By contrast, setiings
where A1, regions with similar motion are created. In both cases, if
AL A1 + A2 > Az the segmentation results in a partitionloton-
— N nected regions regardless of the intensity or motion information.
o1 L") — Ll The weight factot must be constrained, because otherwise, as
o | 22 D(p, 1) = | V)=Vl Xincreases without limit, so does the enefgS, A). Thus, we
U%f ) P, A N set
M =l =il
2 ] IAIl = 1.

Clearly, the final segmentation depends on the regularization paThis parameter may be chosen heuristically or by using
rameterA. In our case, setting; > A, emphasizes the im- priori knowledge. Alternately, thein—max criterior[24], [39]



1392 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 10, NO. 8, DECEMBER 2000

Wherepﬁ%t are all pixels belonging to regios), at time¢. A
similar assumption of independence of time for the spatial and

E(ry. 2, % . . ;
! 2 3) o : : e motion centers cannot be made, since the region may move or
17 min-maxsolution : Lo el b e move with different velocity from frame to frame (Fig. 3). Thus
: ' i 1 My,
<} _ k
Skt = M, Z P, t
m=1

where only the pixels belonging to regiérat framet contribute
to the estimation of the spatial center of subobjeat framet.
Similarly

1 My,
Vit =~ I(pk, ) — I(pk .
k,t Mk z:l || (prn,t) (prn,t-i—l)H

m=

The energy measure to be minimized becomes

L

E(S)=>" > A'D(p}, 1) (6)

=1 pCs;

Fig. 2. Min—-max selection of the regularization paramelers

can be used for automatically evaluating the besThis cri-

terion is based on the assumption that in situations with cofyhere

flicting alternatives, the most rational strategy is the one aiming -

to minimize the maximum possible losses. Thus, the function 11(pt) — Ll

is minimized over all possible combinations of weight values . V(P — Vil
i iteri inati i D(p;, 1) = t ’

and the min—max criterion selects the combination producing

. .. TR A<
the maximum of these minima. =|Ip; — Sy 4|
In this case, the application of the min—max criterion gives A
(Fig. 2) A temporal component labeling algorithm is performed at
Step 3 of the algorithm and the connectivity is now checked in
E(S*, X)) 2 E(S", A), if|A]=1, A#X three dimensionst, 77, and timet. The algorithm produces con-
E(S*, X)) < E(S, X%, ifS#£S8* nected regions appearing in consequent frames.
The resulting min—max segmentati&itS*, A*) will be seen V. 3-D SHAPE PARAMETER ESTIMATION
t_o yiel_d very satisfactory results for the segmentation of prac- 5 straightforward application of the above spatiotemporal
tical videoconference sequences. segmentation algorithm is in the coding of the facial area in
videoconference image sequences. The procedure in[36] is used
IV. SPATIOTEMPORAL SEGMENTATION to extract the facial area in consequent regions. This procedure

The segmentation procedure, along with the selection of tABIPloys a number of fuzzy functions of characteristics such as
regularization parameters described above, can be easily €Xor, size and spatial position of the regions in order to de-
tended so as to separate and track regions appearing in cof@-the face region. The 3-D shape of the face is modeled by a
quent frames of an image sequence. The methodology propoddd ellipsoid which best fits the face in each consequent frame.
here differs from that, most common in the literature, where den, 3-D motion between each ellipsoid is estimated and fi-
image is first separated into regions and then these regions @8y only information concerning the first frame and motion
tracked through time. In the proposed approach, a numberRgameters for consequent frames need to be transmitted; the
consequent frames of the image sequence are anaimetta- following frames are obtained from the previous ones using mo-
neouslyin order to segment the images into regions. tion compensation. The use of 3-D ellipse tracking gives better

If a small numbef” of consequent frames is used, itis reasorﬂESU'tS than 2-D motion estimation as is also observed in [40]
able to assume that the region intensities remain substantiallyf he 3-D ellipse calculated must fit to the boundaries of the
the same and hence that their intensity cenfgrare indepen- face and at the same time provide a unique correspondence re-
dent of time. In this way, the region. is composed of all pixels lation between 3-D points belonging to the 3-D ellipse and 2-D
p¥ from T consequent frames. The KMC algorithm presenteRixel locations on the image. The general equation of a 3-D el-
in Section I1-B can be applied for a number of frames using tH@soid is

generalized distancB(p;, k), t = 1, ..., T and the intensity F(X.Y, Z)=aQ =0 @
centers
| M wherea = [a; ...a10]7 is 10 x 1 vector and
" Mk,;l (P, o) Q=[XY ¥ vz 2* zx X v z 1]°.
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Fig. 4. Resulting segmentation of the facial region for the first eight frames of the “Claire” sequence.

In [41], a solution for (7) was presented, using the 3-D nodeghere
of a known wireframe. The method is a generalization of the

extremely efficient method for 2-D ellipse fitting presented in [ 2 2 A
[42]. In this approach, no 3-D information is available and (7) is a= |2 ey fy 7 fe z% zY 2|
projected to the 2-D image plane, assuming a perspective pro-
jection (Fig. 5) In the above equation, the unknown parametesse those of
the 3-D ellipsoid. Since for ellipse fitting, only the pixels with
r=f %’ y= f% coordinategz, y) lying on the boundaries of the head region

are used, it can be assumed that all these points have the same
where f represents the camera focal length. Thus, multiplyirdepth.Z, which can be arbitrarily chosen if only relative depth
(7) by £2/ 22 the following equation is obtained: is needed. As a result, the ellipse fitting procedure will provide
a relative depth information based on the scale onfkexis.
F(z,y, Z, f) =a’q=0 (8) In this way, the technique in [41] produces 3-D ellipses fitting
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[oimage

Fig. 5. Perspective camera geometry.

s

Fig. 6. The resulting ellipse fitting to the facial region for the eight first frames of the “Claire” sequence.

using the 2-D coordinates of the object boundaries, found in thaere
previous section.

1 —wz  wy Tx w
R= Wz 1 —WwWx |, Ty, = TY, w
—Wy wWx 1 TZ w

VI. RIGID 3-D MOTION ESTIMATION
P, (t) is a 3-D point in world coordinates an€k(t) =
The available 3-D model may be used to estimate the rigifrx (t). Gy (¢), Gz(t)) is the center of the 3-D model
3-D motion, update the model in the next time instance using N
also a small set of rigid 3-D motion parameters, and also recon- G(t) = 1 Z P, (t)
struct the next frame using information from the previous one. N P

The motion of an arbitrary poinP(¢) to its new position ) ) o
P(t + 1) is described by [43] where/V is the number of 3-D points of the 3-D ellipsoid model.

Setting

P(t+1)=R[P,(t) - GO+ T, + G(£)  (9) P(t) =P,(t) - G(t) = [X(®) Y() Z(D)]*
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Fig. 7. Different views of the resulting 3-D textured model for “Claire.”

DEF MODEL Transform { If (x, y) are the coordinates of the perspective projection of
ranslation 8.00.0 0.0 the 3-D point( X (¢), Y (¢), Z(t)) on the image plane at tintg
children [ then
Shape {
appearance Appearance { X(t) Y(t)
terial Material { } c=f—=% and y=f—-—=. 11
Teaxtellnl': Imgg?l"txture {url "texture.rgb”} f Z(t) 4 f Z(t) ( )
}
geoc’ggfg’égﬂijff;gc{ese‘ { From (10) and (11), the 2-D motion vectorsz, y) that corre-
point [X] Y| Z[,.. ]} spond to the pixelsz, ) of each object are defined by projec-
texCoord ”[l"{:xture cOo]r?inate { tion of the 3-D motion on the 2-D image plane, as follows:
point {x] yy, ...
| coordIndex [iy ip iz -1, ...] U,m(l‘, y) :x(t _ 1) _ .T(t)
) _ x —wzy+ fwy + fIx/Z(t) —z (12)
| DEF TOUCH TouchSensor { } —wyT +wxy + f—i—fTZ/Z(t) ;
} uy (@, y) =y(t = 1) = y(?)
DEF TIMER Ti sor { _
CYCleIntervalngsen = wzr 4y = fux + fTY/Z(t) - Y. (13)
} loop TRUE _WY-T+wa+f+fTX/Z(t)
. Equations (12) and (13) are derived by writing (10) in analyt-
F TRANSLATE Positioninterpol: . L : : .
D]iey Shl Ob'ttlzon me'po{go.r.{.] ical form, multiplying with f /Z(¢) and using (11). Using (12)
keyValue [Tx Ty Tz, .. .] and (13) and assuming that initialy, andw, equal the initial
} block-based motion displacements, andw;,, respectively,
DEF ROTATE_X OrientationInterpolator { the following system for the model parameters is obtained:
key [ty e 3, 5

keyValue (100 oy, ...]
1
ROUTE TOUCH.touchTime TO TIMER set_startTime

ROUTE TIMER fraction_changed TO TRANSLATE.set_fraction + 0] (7 +w2)T7 = — fla, (14)
ROUTE TRANSLATE.value_changed TO MODEL.set_translation

y(@ + wp)wx — (@(x + ) + FPwy + fywz — % Tx

2

2
Fig. 8. A sample VRML 2.0 file describing all necessary parameters in ordegy(y + upy) + [P wx — 2y +wpyJwy — frwy — Z(t) Iy
to represent the videoconference scene in 3-D model-based form. ¥

+ %(y + Uby)TZ = —fupy- (15)
In the first stage, (14) and (15) are used férof the initially
estimated 2-D vectors, forming a systen2of N equations and
six unknowns. WithV > 3, this system is overdetermined and
expression (9) reduces to can be solved using least median of squares methods [46]. Thus,
if m = (wx, wy, wz, Tx, Ty, Tz) is the parameter vector,
the parameter estimation problem is of the form

and
T=T,+G@t) =[Tx Ty Tz]"

P(t+1) = RP(t) + T. (10)
Am=Db (16)

The goal of the 3-D motion estimation procedure is Qhere A is a2 x 6 matrix, NV is the number of pixels in the

compute the parameter vectbox, wy, wz, Tx, Ty, Tz). region ando is a2/N component vector
The procedure commences with block-based initial 2-D motion

estimation [19], [44], [45]. A=[A, AJ]", b=[bs bJ"
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() (d)

Fig. 9. (a) Original image “Claire.” (b) Background / foreground segmentation mask for “Claire.” (c) Original image “Akiyo.” (d) Backgroundiioegr
segmentation mask for “Akiyo.”

where we get (17) and (18), as shown at the bottom of the pagef-or each set ofV,., where3 < N, < N, randomly selected

and points the following least squares solution is estimated for (16)
_ [ ful }T m; =(ATA) 'ATH
) =(ATAL+ATA,) " (ATb, + ATby,). (20)
=[ full) ] (19)
wherej = 1, ..., N,. The least median of squares solution of
Wherevff) = ( Y ) is the initial displacement vector at(lG) 1S
el (x;, y; = , N and Z;(t) is the correspondin .
sz(pth(x yi) i (@)1 ponding m = argmin med|[Am; — bl|. (21)

() lrl) o)t 0 ()

Ax = : : : I (7
o (o ) o (o)1) e 5Ly 0 gl (o)
wlar ) re ) ol gl leed)

Ay = : 5 A (18)
a (yNJr“‘(’S))JFf o (yNJr“g)) —fen 0 _Ziit) ZA{(t) (yN+ “g))
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@ (b)

© (d)

Fig. 10. Segmentation of the: (a) first and (b) eighth frame of the “Claire” sequence and (c) first and (d) eighth frame of the “Akiyo” sequence.

VII. V ISUALIZATION polator nodes enable incorporating animation into the VRML
A Visualization With VRML 2.0 2.0 scene. An_interpolator node takes a set Qf key_ valqes, and
generates an interpolated value at the specified time instance
VRML is a file format for describing 3-D virtual objects andusing these key values. THémeSensqrbeing a sensor node,
interactive environments on the World Wide Webhe first ver- yeeps track of time instant and generates events as time passes.
sion, VRML 1.0, allowed the building static 3-D worlds withTypjcally, it is up for animations, periodic utilities, or timed
limited interactivity. The 3-D world is described by a scengyents, Each of the two objects, head and shoulders, are grouped
graph which consists of nodes representing virtual objects Witjqger a differentransformnode, which controls their position
their geometry and textures maps and scene descriptors suci, 8se 3-D space. The rigid motion parameters of each sub-object
transformations of objects, as well as lighting and shading. Thes stored as key values in tResitioninterpolatorand Orien-
geometry is defined in &Y' Z coordinate system, together withtationinterpolatomodes and using tHEmeSensanode and the
some simple shapes, such as cubes, cones, cylinders, spheigsienode, those values are applied at regular intervals to the
and polygon meshes. Transformations allow positioning aRdad and shoulders objects throughTrensfornmode. ThePo-
scaling of virtual objects in relation to others. Lighting, shadingsitioninterpolatornode holds the translation parameters, while
and texturing are used to add realism to the 3-D scene. theOrientationinterpolatomode holds the rotation parameters.
The mostrecentversion, VRML 2.0, provides enhanced staticp | parameters needed in order to represent the videocon-
worlds together with interaction, animation and scripting. Ankerence scene in model-based form, 3-D model, motion, and
mation can be obtained by nodes called interpolators. Similar{gxture' can be stored and viewed in VRML format, as can be
the script nodes allow animation of objects through events thgyen in Fig. 8. This solves a major problem facing model-based
generate. In this work, we used thelexedFaceSet, Transform,gchemes, which is the problem of interportability: since for each
Positioninterpolator, Orientationinterpolator, TimeSensamd  model-based scheme a different specific decoder and viewer is
Routenodes in order to visualize all the information extracteggquired' the usefulness of such schemes is limited. By adopting
from the image sequence analysis. ThdexedFaceSeatode \RML, a standardized file format and a general-purpose viewer
is used to describe the geometry of the 3-D model, consistiggn pe used. Further, the coding of the extracted parameters is

of 3-D points and their triangular connections. Tinelexed-  standardized following the expected standard VRML compres-
FaceSenode also contains an image for texture mapping onigon format.

the shape. The texture mapping is controlled by the texture coor-
dinates, which take values [0.0, 1.0] and are specified in the B, Visualization with MPEG-4 BIFS

2-D texture spacés, ¢) for each vertex of the shape. The inter- Alternatively, for the visualization and transmission of all

IWeb3D Consortium website, available at: http:/Avww.vrml.org extracted parameters, the MPEG-4 standard could be used,
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Fig. 12. Ellipse fitting to the facial region for the eight first frames of the “Akiyo” sequence.

and more specifically, the scene description format, the BlnaBgection II-A was applied to a number of frames, producing the
Format for Scene description (BIFS). This scene descriptionfegeground/background segmentation mask for each image se-
a result of a common work of MPEG-4 and VRML communityguence shown in Fig. 9(b) and (d). The KMC algorithm was
and has a number of added functionalities, including, amoagplied next in the foreground object. First, the algorithm was

others: applied to one frame only in order to estimate the regularization
1) efficient data compression (more efficient compressid¥rameters\, as described in Section Ill. The algorithm was

comparing to binary VRML); then used for spatiotemporal segmentation (Section 1V) pro-

2) 2-D nodes and mixing 2-D and 3-D nodes; ducing meaningful objects in a number of frames. Among them,

3) encapsulation in streams, making the BIFS suitable fdte face—as well as other regions like the hair—could be easily

broadcast environment. recognized. No region tracking or region correspondence was

All nodes described and used above could be used with mif§icessary, since the algorithm automatically located the regions

modifications in order to make the visualization MPEG-4 conll consequent frames. The segmentation results for the first and
patible. eight frames are shown in Fig. 10(a) and (b) for the “Claire” and

in Fig. 10(c) and (d) for the “Akiyo” sequence. The extracted
face region for the eight frames is shown in Figs. 4 and 11.
The 3-D ellipse fitting algorithm based on initial 2-D data was
The algorithm described above was used for the segmentatpmrformed next and the adaptation results are demonstrated in
and coding of two videoconference image sequences, “Claifglgs. 6 and 12. The resulting 3-D textured model for “Claire” is
and “Akiyo” of size176 x 144. The original images are shownshown for different views in Fig. 7. As can be seen in Fig. 6, the
in Fig. 9(a) and (c). The spatiotemporal filter as described @ilipse fits accurately the facial area and it follows the rotation

VIIl. EXPERIMENTAL RESULTS
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(@)

(b)

(©

Fig. 13. Motion estimation results for the “Claire” sequence. (a) Motion compensated frames 1-8. The original can be seen in Fig. 4. (b) Diffeeence bet
original consequent frames. (c) Difference between original and motion compensated frames.

of the head in consequent frames. Having the 3-D model avail-size176 x 144. The original image is shown in Fig. 14(a). In
able, the rigid 3-D motion of each object is estimated next as dbis sequence, there is also camera motion, and the background
scribed in Section VI. The resulting motion compensated framéses not remain static. For this reason, the algorithm presented
1-8 are shown in Fig. 13(a) while the corresponding original Section II-A was not used and the spatiotemporal segmenta-
frames are in Fig. 4. In order to demonstrate the performanten with the connectivity constraint algorithm was rather ap-
of the rigid 3-D motion estimation algorithm, the original frameplied to the full image. The segmentation result for the first
differences between consequent frames [Fig. 13(b)] are coframe is shown in Fig. 14(b). The extracted face region for the
pared with the frame differences between original frames asajht frames is shown in Fig. 15. The 3-D ellipse adaptation re-
rigid motion compensated frames in Fig. 13(c). sults are shown in Fig. 16.

The algorithm described above was also tested for the segFinally, using the VRML 2.0 nodes as described in Sec-
mentation of the more complicated image sequence “foremaign VII-A, the VRML 2.0 compliant file is created containing
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(@) (b)

Fig. 14. (a) Original image “foreman.” (b) Segmentation for the first frame of “foreman” sequence.

Fig. 15.

Fig. 16. Ellipse fitting to the facial region for the eight first frames of the “foreman” sequence.

the 3-D model, texture, and different rigid 3-D motion paranthetically created desk and background. For this visualization,
eters for each object. Since the 3-D model is available, it c#me ellipse fitting procedure was applied to one object created
be easily adapted into virtual environments or combined witly merging the face and hair region and also the shoulders were
synthetic humans. In Fig. 17, “Claire” is shown next to a synncluded.
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Fig. 17. “Claire” along a synthetically created desk and background.
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image sequences. For image sequence analysis, a general
segmentation scheme was introduced, that can be used in
any image sequence analysis scheme. The KMC algorithn{” R. Koenen, “MPEG-4 multimedia for our time|EEE Spectrumvol.
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. . . Proc. MPEG Atlantic City Mtg.Oct. 1998, Doc. ISO/MPEC 2460.
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implicitly solves the problem of correspondence of objects  Trans. Circuits Syst. Video Technalol. 7, no. 1, pp. 19-31, Feb. 1997.
between consequent frames. The 3-D model is automaticall;fs] IEEE Trans. Circuits Syst. Video Technol.—Special Issue on Image and

. . Video Processingvol. 8, no. 5, Sept. 1998.
created and adapted to the segmented objects using a robug} signal processing—Special Issue on Video Sequence Segmentation for

method whereby 3-D ellipsoids are created from initial 2-D Content-Based Processing and Manipulatival. 66, no. 2, Apr. 1998.
data. At the same time, complete correspondence betweeh! K. S. Fu and J. K. Mui, “A survey on image segmentatioRdttern

. . . . . . Recognit, vol. 13, pp. 3-16, 1981.
plxels and 3-D points Is established. The ”gld 3-D motion [8] R. M. Haralick and L. G. Sapiro, “Image segmentation techniques,”

parameters are extracted separately for each object. For vi- Comput. Vis., Graphics, Image Processiugl. 29, pp. 100-132, 1985.
sualization purposes, the VRML 2.0 file format was used in [9] A. A. Alatan, L. Onural, M. Wollborn, R. Mech, E. Tuncel, and T.

d id l ith id df A Sikora, “Image sequence analysis for emerging interactive multimedia
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World Wide Web browser may be used in order to download  Syst. Video Technoblol. 8, pp. 19-31, Nov. 1998.
the file and view the moving scene. The visualization offergd10l D. Geiger and A. Yuille, "A common framework for image segmenta-
. . tion,” Int. J. Comput. Vis.vol. 6, pp. 227-243, 1991.

enhanced telepresence to the viewer, since a 3-D represq@l] T. Meier and K. N. Ngan, “Automatic segmentation of moving objects
tation of the scene is created. Furthermore, the user can for video object plane generation|EEE Trans. Circuits Syst. Video
interact with the scene inside the VRML browser. Synthetic ~ Technol.—Special Issue on Image and Video Processing for Emerging

. Lo . . . Interactive Multimedia Servicesol. 8, Sept. 1998.
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