ealure

icie

n MPEG-4 Tool
or Composing
D Scenes

Petros Daras, loannis Kompatsiaris, and Theodoros Raptis

|
MPEG-4's
complicated format
makes developing
scenes from scratch
all but impossible for
novice users. By
converting MPEG-4's
text-based
description into
graphical form, the
authors’ proposed
tool exploits all of
MPEG-4's 3D
functionalities while
easing the authoring
burden.

58

Informatics and Telematics Institute

Michael G. Strintzis
Aristotle University of Thessaloniki

n addition to efficient compression,

MPEG-4 offers multimedia content

authors many novel capabilities, such as

letting them code audio-visual objects
rather than frames. It also integrates 2D and 3D
content and human face- and body-specific
features and separates elementary stream trans-
mission for individual audio-visual objects. Imple-
menting these capabilities is complicated,
requiring that authors use several functionalities,
from encoding audio and visual scene descriptions
to implementing different delivery scenarios.

History teaches us that however powerful the
underlying technologies, the success of multi-
media computing systems depends on their ease
of authoring. As the “MPEG-4 Tools” sidebar
explains, existing MPEG-4 authoring tools help
users create 2D scenes, but if authors want to cre-
ate 3D scenes, they have few options.

To address this, we've developed an authoring
tool that fully exploits MPEG-4’s 3D functionali-
ties, integrating unique features such as update
commands and facial animation. Our tool helps
even MPEG-4 novices create scenes that are total-
ly MPEG-4 compliant, which are almost impos-
sible for nonexperts to build from scratch using
only text. Using our tool, authors can insert basic
3D objects, such as boxes, spheres, cones, cylin-
ders, and text, and modify their attributes. Our
tool also lets authors:

I create or insert and modify generic 3D mod-

1070-986X/04/$20.00 © 2004 IEEE

els using the IndexedFaceSet node;

control object behavior using various sensors
(time, touch, cylinder, sphere, and plane) and
interpolators (color, position, and orientation);

texture map static images and video on 3D
objects;

modify the scene’s temporal behavior by
adding, deleting, or replacing nodes over time
using the Update commands; and

I add and animate synthetic faces.

Our tool is based on an open and modular
architecture that can progress with MPEG-4 ver-
sions and is easily adaptable to newly emerging,
higher-level authoring features. The tool is avail-
able for download at http://media.iti.gr/MPEG4/.

MPEG-4 overview

MPEG-4 is an audio-visual representation
standard with two primary objectives: to support
new ways of communication, access, and inter-
action with digital audio-visual data, and to offer
a common technical solution to various service
paradigms—such as telecommunications, broad-
cast, and interactive applications—whose borders
are rapidly disappearing. MPEG-4 builds on digi-
tal television’s success,! as well as that of syn-
thetic content development from interactive
graphics applications? and content distribution
and access methods from interactive multimedia
such as the World Wide Web.?

MPEG-4 addresses application needs in sever-
al fields, including Internet video, multimedia
broadcasting, content-based audio-visual data-
base access, games, advanced audio-visual com-
munications (notably over mobile networks),
and remote monitoring and control.

MPEG-4 audio-visual scenes are composed of
several media objects organized hierarchically. At
the hierarchy’s leaves, we find primitive media
objects including still images (a fixed back-
ground, for example), video objects (a talking
person without the background), audio objects
(the voice associated with this person), and so
on. Apart from natural objects, MPEG-4 lets
authors code objects that are 2D and 3D, syn-
thetic and hybrid, and audio and visual. As
Figure 1 shows, this object coding enables con-
tent-based interactivity and scalability.*

In MPEG-4 systems, these audio-visual objects

Published by the IEEE Computer Society

MPEG-4 Tools

MPEG-4 authoring is undoubtedly a challenge.
Far from the relative simplicity of MPEG-2's one-
video-plus-two-audio-streams, MPEG-4 lets con-
tent creators spatially and temporally compose
numerous objects of many different types, includ-
ing rectangular video, arbitrarily shaped video,
still image, speech synthesis, voice, music, text,
and 2D and 3D graphics. MPEG-Pro," the most
well-known MPEG-4 authoring tool, includes a
user interface, binary format for scenes (BIFS)
update, and a timeline, but can handle only 2D
scenes. Another MPEG-4-compliant authoring
tool? also composes only 2D scenes.

Other MPEG-4-related algorithms segment and
generate video objects, but don’t provide a com-
plete MPEG-4 authoring suite.** Commercial mul-
timedia authoring tools, such as IBM Hotmedia
(http://www-4.ibm.com/software/net.media) and
Veon (http://www.veon.com), are based on pro-
prietary formats rather than widely acceptable
standards.

References

1. S. Boughoufalah, J.C. Dufourd, and F.
Bouilhaguet, “MPEG-Pro, an Authoring System

Audio-visual objects coded

Compound
info

P) -

Audio stream

BIFS
encoder

~a

Synchronizers and multiplexers

Encoder

Encoder

S\

Encoder

Video streams

are decoded from elementary streams and orga-
nized into a presentation.® The coded stream
describing the spatial-temporal relationships
between the coded audio-visual objects is called
the scene description, or binary format for scenes
(BIFS) stream. MPEG-4 extends Virtual Reality

for MPEG-4,” IEEE Int’l Symp. Circuits and Systems
(ISCAS 2000), IEEE Press, 2000, pp. 175-178.

2. V.K. Papastathis, |. Kompatsiaris, and M.G.
Strintzis, “Authoring Tool for the Composition of
MPEG-4 Audiovisual Scenes,” Int’l Workshop on
Synthetic Natural Hybrid Coding and 3D Imaging,
1999; available at http://uranus.ee.auth.gr/
IWSNHC3DI99/proceedings.html.

3. H.Luoand A. Eleftheriadis, “Designing an Inter-
active Tool for Video Object Segmentation and
Annotation,” ACM Multimedia, ACM Press, 1999,
pp. 265-269.

4. P.Correia and F. Pereira, “The Role of Analysis in
Content-Based Video Coding and Interaction,” Sig-
nal Processing J., 1998, vol. 26, no. 2, pp. 125-142.

5. B.Erol and F. Kossentini, “Automatic Key Video
Obiject Plane Selection Using the Shape Informa-
tion in the MPEG-4 Compressed Domain,” [EEE
Trans. Multimedia, vol. 2, no. 2, June 2000, pp.
129-138.

6. B.Erol, S. Shirani, and F. Kossentini, “A Conceal-
ment Method for Shape Information in MPEG-4
Coded Video Sequences,” IEEE Trans. Multimedia,
vol. 2, no. 3, Aug. 2000, pp. 185-190.

Audio-visual objects coded
Audio-visual objects coded
Audio
| Decoder ‘
g 5
0] =
o - BIFS z
= decoder g.
uE) o
a O
Decoder
Decoder Co_mplex
visual
content

Modeling Language (VRML)® scene description to
include coding and streaming, timing, and 2D and
3D object integration. Furthermore, the Extensible
MPEG-4 Textual format (XMT)” provides an
exchangeable format among content authors,
while also preserving the authors’ intentions in a

Figure 1. MPEG-4
systems overview.

S
S
]
=
z
S
=
[NN]
w
w

high-level text format. In addition to providing a
suitable, author-friendly abstraction of the under-
lying MPEG-4 technologies, XMT also respects
existing author practices including HTML and
Web3D’s Extensible 3D (X3D). Other 3D scene
description and authoring frameworks, such as the
X3D Graphics specification (http://www.web3d.
org), are in development.

MPEG-4 provides a large, rich toolset for cod-
ing audio-visual objects.® To ensure that the stan-
dard is effectively implemented, subsets of the
MPEG-4 systems, visual, and audio toolsets have
been identified for use with specific applications.
These profiles limit the tool set a decoder must
implement. For each profile, the standard sets
one or more levels that restrict the computation-
al complexity. Profiles exist for various types of
media content (audio, visual, and graphics) and
for scene descriptions. Our tool is compliant with
the following profile types: the simple facial ani-
mation visual profile, the scalable texture visual
profile, the hybrid visual profile, the natural
audio profile, the complete graphics profile, the
complete scene graph profile, and the object
descriptor profile, which includes the object
descriptor tool.

Binary format for scenes (BIFS)

The BIFS description language’ extends the
VRML 2.0 specification,® which was designed for
use on the Internet, intranets, and local client sys-
tems. Authors can use VRML in various application
areas, including engineering and scientific visual-
ization, multimedia presentations, entertainment
and educational titles, Web pages, and shared vir-
tual worlds. Advanced BIFS (version 2.0, which will
be included in MPEG-4 2.0) will be a VRML super-
set that authors can use to compress VRML scenes.
MPEG-4 Systems 2.0 supports all VRML nodes.

BIFS extends the base VRML specification in
several ways. First, it offers new media capabili-
ties in the scene. Among these are 2D nodes con-
taining 2D graphics and 2D scene graph
description, and the ability to mix 2D and 3D
graphics. Also, its new audio nodes support
advanced audio features including source mix-
ing, streaming audio interface, and synthetic
audio content creation. BIFS also offers face- and
body-specific nodes to link to specific animation
streams and nodes that link to the streaming
client-server environment, including media time
sensors and back channel messages.

Second, BIFS offers binary scene encoding,
which permits efficient scene transmission.

Finally, as we describe in more detail below, BIFS
supports two specific protocols to stream scene
and animation data:

1 The BIFS-Command protocol lets authors send
synchronized scene modifications with a
stream.

1 The BIFS-Anim protocol permits continuous
streaming of the scene’s animation.

BIFS information types
BIFS contains the following four information

types:

I media object attributes that define an object’s
audio-visual properties;

I the structure of the scene graph that contains
these objects;

I the objects’ predefined spatio-temporal
changes, independent of user input; and

I the spatio-temporal changes that user inter-
action triggers.

Audio-visual objects have both temporal and
spatial extent. Temporally, all objects have a sin-
gle dimension: time. Spatially, objects can be 2D
or 3D. Each object has a local coordinate system,
in which it has a fixed spatio-temporal location
and scale (size and orientation). Authors position
objects in the scene by specifying a coordinate
transformation from the object-local coordinate
system into another coordinate system defined
by a parent node. The coordinate transformation
that locates an object in a scene is a scene
attribute, rather than an object attribute.
Therefore, the system must send the scene
description as a separate elementary stream.

Elementary streams are a key notion in MPEG-
4. A complete MPEG-4 presentation transports
each media/object in a different elementary
stream. Such streams are composed of access units
(such as a video object frame) that are packetized
into sync layer packets. Some objects might be
transported in several elementary streams, such
as when scalability is involved. This is an impor-
tant feature for bitstream editing, which is one of
MPEG-4's content-based functionalities.

Scene description structure
As Figure 2 shows, we can represent the scene

Multiplexed downstream
control/data

-
-

2D background

(a)

Y

3D object
3D text

— . _News at MEDIA channel...
2D text

Natural ”)
audio/video

Segmented
video/audio

Scene

Newscaster

|2D background| |

Natural audio/video | Channel logo |

A

Segmented
video

description’s hierarchical structure as a tree. Each
node of the tree is an audio-visual object.
Complex objects are constructed using appropri-
ate scene description nodes.

The tree structure is not necessarily static.
The relationships can evolve over time and
authors can delete, add, or modify nodes.
Individual scene description nodes expose a set
of parameters that let users control several
aspects of the nodes’ behavior. Examples
include a sound’s pitch, a synthetic visual
object’s color, and a video sequence’s speed.
The scene description structure makes a clear
distinction between the audio-visual object
itself, the attributes that enable control of its
position and behavior, and any elementary
streams that contain coded information repre-
senting object attributes.

The scene description doesn't directly refer to
elementary streams when specifying a media

3D text

\' A

object; instead it uses the concept of object descrip-
tors (ODs). The OD framework identifies and prop-
erly associates elementary streams with the scene
description’s media objects. This often requires
elementary stream data to point to an OD using a
numeric identifier—an OD ID. Typically, however,
these pointers aren’t to remote hosts, but to ele-
mentary streams that the client is receiving. ODs
also contain additional information, such as qual-
ity-of-service parameters.

Each OD contains one or more ES descriptors,
which describe the elementary streams compris-
ing a single media object. An ES descriptor identi-
fies a single stream with a numeric identifier—an
ES ID. In the simplest case, an OD contains just
one ES descriptor that identifies, for example, an
audio stream that belongs to the AudioSource
node by which this OD is referenced.’ That same
OD could be referenced from two distinct scene
description nodes. A single OD might also contain

Figure 2. Scene
description structure.
(a) An example MPEG-
4 scene, and (b) the
corresponding scene
tree.

>
5
3.
I
c
5
®
N
S
S
B

Movie texture

OD_ID2

Object descriptor

ES descriptor

Scene
description

1 Interpolator nodes are another
children nodes subtype that rep-
resents interpolation data to per-

OD_ID1

Object descriptor

form key frame animation. These
nodes generate a values sequence

Audio source

ES descriptor

as a function of time or other

input parameters.

ES_IDa

ES_IDb pudio strea™

yisual strea™

Figure 3. Two scene description nodes and their object descriptors. Because the

AudioSource and MovieTexture nodes are of different types, they must use distinct

object descriptors.

S
S
]
=
=
S
=
[NN]
w
w

two or more ES descriptors, such as one identify-
ing a low bit-rate audio stream and another iden-
tifying a higher bit-rate audio stream for the same
content. In such cases, the user can choose
between the two audio qualities. With audio, it's
also possible to have multiple audio streams with
different languages for users to choose from.
Generally, a single OD can advertise all kinds of
different resolution or bit-rate streams represent-
ing the same audio or visual content, thus offer-
ing a choice of quality. In contrast, streams that
represent different audio or visual content must
be referenced through distinct ODs. For example,
as Figure 3 shows, the AudioSource and
MovieTexture nodes refer to different elemen-
tary streams and must use two distinct ODs.

Nodes and fields
Every MPEG-4 scene is constructed as a direct-
ed acyclic graph of nodes:

1 Grouping nodes construct the scene structure.

I Children nodes are offspring of grouping
nodes and represent the scene’s multimedia
objects.

1 Bindable children nodes are a type of children
node; only one bindable children node can be
active in a scene at any given time. In a 3D
scene, for example, multiple viewpoints can be
contained, but only one viewpoint (or camera)
can be active at a time.

I Sensor nodes sense the user and
environment changes for inter-
active scene authoring.

BIFS and VRML scenes are both
composed of a node collection
arranged in a hierarchical tree. Each
node represents, groups, or trans-
forms a scene object and consists of
a list of fields that define the node’s
particular behavior. A Sphere node,
for example, has a radius field that
specifies the sphere’s size. MPEG-4
has roughly 100 nodes with 20 basic field types
that represent the basic field data types: Boolean,
integer, floating point, 2D and 3D vectors, time,
normal vectors, rotations, colors, URLs, strings,
images, and other more arcane data types such as
scripts. The “MPEG-4 Nodes” sidebar lists the
most common MPEG-4 nodes, including those
that our tool supports.

Routes and dynamical behavior

BIFS’ event model uses VRML’s route concept
to propagate events between scene elements.
Routes are connections that assign the value of
one field to another field. As with nodes, authors
can assign routes a name so that they can identi-
fy specific routes for modification or deletion.
Routes combined with interpolators can animate
a scene. For example, the system could route an
interpolator’s value to a Transform node’s rota-
tion field, causing the nodes in the Transform
node’s children field to rotate as the values in the
interpolator node’s corresponding field change
over time. Figure 4 (on page 64) shows an imple-
mentation of this, which lets authors add inter-
activity and animation to the scene.

BIFS-Command

MPEG-4 is designed for use in broadcast appli-
cations as well as interactive and one-to-one
communication applications. To meet this
requirement, MPEG-4 BIFS contains a new con-
cept in which the application itself is a temporal
stream. This means that the presentation (the

MPEG-4 Nodes

BIFS and VRML scenes are both composed of a collection of
nodes arranged in a hierarchical tree. Each node represents,
groups, or transforms an object in the scene and consists of a
list of fields that define the node’s particular behavior. For each
node category here, we've included a list of the binary format
for scenes (BIFS) nodes, and put the nodes that our MPEG-4
authoring tool fully supports in bold-faced type.

1 Children nodes are direct children of grouping nodes. They can
represent a geometry (shape), sound nodes, lighting parame-
ters, interpolators, sensors, and grouping nodes. This catego-
ry contains all grouping, sensor, and interpolator nodes, and
all bindable children nodes, as well as the BIFS nodes below. In
addition, valuator children nodes are classified in three cate-
gories: nodes usable for both 2D and 3D children, 2D-specific
nodes, and 3D-specific nodes. BIFS nodes in this category
include AnimationStream, Conditional, Face,
QuantizationParameter, Script, Shape, TermCap,
WorldInfo, Sound2D, DirectionalLight,
PointLight, Sound, and SpotLight.

1 Dynamic-content-related nodes enable the inclusion of
media in the scene: audio, video, animation, or scene
updates. BIFS nodes in this category include Anchor,
AnimationStream, AudioClip, AudioSource,
Background, Background2D, ImageTexture,
Inline, and MovieTexture.

I FBA nodes are those related to face and body animation. They
contain one child node (Face), and the rest are attributes for
the Face node. BIFS nodes in this category include Face,
FaceDefMesh, FaceDefTables, FaceDefTransform,
FDP, FIT, andViseme.

1 Miscellaneous attributes are features of the children nodes
that are represented by specific nodes, except FBA-,
media-, or geometry-specific attributes. Attributes nodes are
classified in three categories: those usable for both 2D and
3D attributes, 2D-specific nodes, and 3D-specific nodes. BIFS
nodes in this category include Appearance, Color,
FontStyle, PixelTexture, Coordinate2D,
Material2D, Coordinate, Material, Normal,
TextureCoordinate, and TextureTransform.

1 Top nodes are nodes that can be put at the top of an MPEG-4
scene. BIFS nodes in this category include Group,
Layer2D, Layer3D, and OrderedGroup.

1 Grouping nodes have a field containing a list of children nodes.
Each grouping node defines a coordinate space for its chil-
dren that is relative to the coordinate space of the group

node’s parent node. Transformations thus accumulate down
the scene graph hierarchy. Grouping nodes are classified in four
subcategories: nodes usable for both 2D and 3D grouping, 2D-
specific nodes, 3D-specific nodes, and audio-specific nodes. BIFS
nodes in this category include Group, Inline,
OrderedGroup, Switch, Form, Layer2D, Layout,
Transform2D, Anchor, Billboard, Collision,
Layer3D, LOD, Transform, AudioBuffer,
AudioDelay, AudioFX, AudioMix, and AudioSwitch.

Interpolator nodes perform linear interpolation for key frame ani-
mation. They receive as input a key and output a value inter-
polated according to the key value and the reference points’
value. Interpolator nodes are classified in three categories:
nodes usable for both 2D and 3D interpolation, 2D-specific
nodes, and 3D-specific nodes. BIFS nodes in this category
include ColorInterpolator, ScalarInterpolator,
PositionInterpolator, CoordinateInterpolator,
NormalInterpolator, OrientationInterpolator,
and Position Interpolator2D.

Sensor nodes detect events in their environment and fire
events. A TouchSensor, for example, detects a mouse click,
and a ProximitySensor detects the user’s entry into a par-
ticular region. Sensor nodes are classified in three categories:
nodes usable for both 2D and 3D sensors, 2D-specific nodes,
and 3D-specific nodes. BIFS nodes in this category include
Anchor, TimeSensor, TouchSensor, DiscSensor,
PlaneSensor2D, ProximitySensor2D, Collision,
CylinderSensor, PlaneSensor, ProximitySemsor,
SphereSensor, and VisibilitySensor.

Geometry nodes represent a geometry object and are classified
in nodes usable for 2D- or 3D-specific scenes (all 2D geometry
can also be used in 3D scenes). BIFS nodes in this category
include Bitmap, Circle, Curve2D, Indexed-
FaceSet2D, IndexedLineSet2D, PointSet2D,
Rectangle, Text, Box, Cone, Cylinder, Elevation-
Grid, Extrusion, IndexedFaceSet, Indexed-
KineSet, PointSet, Sphere, and Backgound2D.

Bindable children nodes represent scene features for which exact-
ly one node instance can be active at any instant. For example,
in a 3D scene, exactly one Viewpoint node is always active.
For each node type, a stack of nodes is stored, with the active
node on top of the stack. Events can trigger a particular node.
2D-specific nodes are listed first, followed by 3D-specific nodes.
BIFS nodes in this category include Background, Fog,
ListeningPoint, NavigationInfo, and Viewpoint.

Figure 4. The
interpolators panel lets
authors add
interactivity and
animation using routes
and interpolators.

‘{3 ObjectDetails
Sphere T2
Generall Maleliall Video | Sound i Interpalatars |

I[=] B

| Calor Interpqlalursl Sensursl

[~ Use Position | nterpalator [Uze Origntatian Interpolatar

~Time Sensar Pos Properties— = Time Sensor Orient Properties)
[¥ Enabled ¥ Loop [¥ Enabled [Loop
Cycle Interval : |1 -I Cycle Interval : |1 -I
StartTime : IU 3‘ StartTime : IU 3‘
S m = StopTime : I 1 3‘

MewRotationVector:
#=10.00 ¥=0.00 Z=0.00
KR il C

MNewPasition:
#®=0.00 ¥=0.00 Z=0.00
KR C C

MewFRotationsngle:
Angle= 0.00

e 2

Format

File -t

Save

Open

Y

Internal structure |<->

custom format

User
interaction

Y

3D renderer
(OpenCil)

GUI

A

Play

Y

MPEG-4
encoder

Save (.mp4)

Y

MPEG-4
browser

A

Figure 5. System architecture. Creating content involves four basic stages:

open, format, play, and save.

scene itself) has a temporal dimension. The
Web’s model for multimedia presentations is that
users download a scene description (such as an
HTML page or VRML scene) once, and then play
it locally. In the MPEG-4 model, a BIFS presenta-
tion (which describes the scene itself) is delivered

over time: the initial scene is loaded and updates
follow. In fact, the initial scene loading itself is
considered an update. MPEG-4's scene concept
therefore encapsulates the elementary streams
that convey it over time.

Because the mechanism that provides BIFS
information to the receiver over time comprises
the BIFS-Command protocol (also known as
BIFS-Update), the elementary stream that carries
it is called the BIFS-Command stream. BIFS-
Command conveys commands for scene replace-
ment, node addition or deletion, field
modification, and so on. A ReplaceScene com-
mand, for example, becomes a BIFS stream’s
entry (or random access) point, just as an Intra
frame serves as a video’s random access point.
BIFS commands come in four main functionali-
ties: scene replacement, node/field/route inser-
tion, node/value/route deletion, and node/
field/value/ route replacement. We implemented
the BIFS-Command protocol to let users tempo-
rally modify the scene using the authoring tool’s
user interface.

Facial animation

BIFS facial and body animation nodes let
authors render an animated face. The facial defi-
nition parameters (FDP) and the facial animation
parameters (FAP) control the face’s shape, texture,
and expressions. Initially, the face object contains
a generic face with a neutral expression. Authors
can change definition parameters to alter the
face’s appearance from something generic to
something with a particular shape and (optional-
ly) texture. They can also download a complete
face model via the FDP set. In addition to render-
ing the face, authors can use the bitstream’s ani-
mation parameters to animate it with expression,
speech, and so on. Our application implements
the Face node using the generic MPEG-4 3D face
model, which lets users insert a synthetic 3D ani-
mated face and its associated FAP files. Although
researchers have presented several FAP extrac-
tion!"* and 3D motion-estimation algorithms,!*
no other authoring suite integrates those syn-
thetic faces into a complete scene.

The MPEG-4 authoring tool

As Figure 5 shows, we can characterize MPEG-
4 content creation as a development cycle with
four stages: open, format, play, and save. As we
describe in more detail below, after opening a
file, the author can format an existing scene or
create a new scene by

7 MPEG-4 ToolBox [_[ox]

I clicking the appropriate icon to insert 3D M Hoe

objects, such as spheres, cones, cylinders, text,
boxes, and background (see Figure 6);

DEHE x=E P

Testures Obiects | Updates |

il Al iew details
ol K WAY K]
=

5 Group __ROOT__
iBoxT2
b Cone T3
B Cohere 14

I deleting objects or modifying their attributes,
such as 3D position, size, color, and so on;

I adding realism to the scene by associating

image and video textures with the inserted
objects;

I duplicating inserted objects using the copy-
and-paste functionality;

I grouping objects to simultaneously change
their attributes;

I inserting sound and video streams;

I adding interactivity using interpolators (for
object motion, periodic color changes, and so
on) and sensors (for interactivity between
objects; for example, when one object is
clicked, a new one is inserted);

I controlling the scene dynamically using the
BIFS-Command protocol (such as indicating
that a specific scene segment, or object group,
appears 10 seconds after the initial scene
loads); and

I using the IndexedFacesSet node to create or
insert generic 3D models and modify them.

During the creation process, authors store the
BIFS-defined object attributes and commands in
an internal program structure, which is continu-
ously updated depending on the user’s actions. At
the same time, the author can view a real-time,
3D scene preview in an integrated OpenGL win-
dow (see Figure 6). OpenGL (http://www.
opengl.org) is a software interface to graphics
hardware that renders 2D and 3D objects into a
frame buffer. OpenGL describes these objects as
sequences of vertices (for geometric objects) or
pixels (for images) and converts the data to pixels
to create the final desired image in the buffer.

Once the scene is formatted, the tool plays the
created content by interpreting the commands
issued in the editing phase. This lets the author
check the current description’s final presenta-
tion. The author can then save the file in either
a custom format or, after encoding/multiplexing
and packaging it, in an MP4 file® (the standard

Figure 6. The tool’s main window. The buttons on the right let

authors insert 3D objects (shown), change texture, and update

commands.

MPEG-4 file format). The MP4 file format stores
an MPEG-4 presentation’s media information in
a flexible, extensible format that facilitates the
media’s interchange, management, editing, and
presentation.

User interface

To improve the creation process, authors need
powerful tools.’> Multimedia applications’ tem-
poral dependence and variability can hinder
authors from obtaining an accurate view of what
they're editing. To address this, we used OpenGL
to create an environment with multiple, syn-
chronized views. As Figure 6 shows, the interface
is composed of three main views: edit/preview,
scene tree, and object details.

The edit/preview window integrates the pre-
sentation and editing phases in the same view,
which presents authors with a partial result of
their created objects in an OpenGL window. If
they insert a new object into the scene, the win-
dow displays it immediately in the exact 3D
position specified. However, if authors assign a
particular behavior to an object (such as assign-
ing a video a texture), the preview window
shows only the first frame (they can see the full
video only when they play the scene). If an
object already has one texture (such as a video
texture) and an author tries to add another tex-
ture (such as an image texture), a warning mes-
sage appears.

The scene tree view (the bottom right box in
Figure 6) provides a structural view of the scene

>
el
=.
I
c
3
)
N
(=]
(=]
g

Figure 7. Scene
generation and the
MPEG-4 IM1
Implementation
Group’s reference
software. The tool
automatically creates
scene description files
(.txt files) and object-
descriptor list files (.scr
files) while authors
work. To create binary
files, the tool uses the
BIFS encoder and the
tiled raster interchange
format (TRIF)
multiplexer (MUX).

S
S
]
=
z
S
=
[NN]
w
w

BIFS
encoder

Y

.od

Y

.bif

Scene description file
(.txt)

Audio
stream
(G723)

IS

Video
stream
(H263)

A

n

=
=l

\i

MUX - trif

MP4
encoder

.mp4

Object descriptors file

(.scr)

as a tree (although a BIFS scene is a graph, we dis-
play it as a tree for ease of presentation). The
scene tree view gives authors more detailed infor-
mation on object behaviors, which can’t be dis-
played in the edit view. Authors can also use
drag-and-drop and copy-paste operations in this
view.

In the object details window (the top right box
in Figure 6), authors can use object properties to
assign values to an object beyond those offered
by default. These properties include 3D position,
rotation, and scale; color (diffuse, specular, and
emission); shine and texture; video and audio
streams (transmitted as two separate elementary
streams, according to the OD mechanism); cylin-
der and cone radius and height; text style and
fonts; sky and ground background and texture;
and, to add interactivity and animation, inter-
polators (color, position, orientation) and sensors
(sphere, cylinder, plane, touch, and time).

Furthermore, this view also lets authors insert,
create, and manipulate generic 3D models using
the IndexedFaceSet node. Authors can easily
insert simple VRML files and, using the Face
node, synthetically animated 3D faces. The
author must provide a FAP file' and the corre-
sponding encoder parameter file (EPF), which
gives the FAP encoder all the information relat-
ed to the corresponding FAP file (such as I and P
frames, masks, frame rate, quantization scaling
factor, and so on). The tool then creates a binary
format for animation (BIFA) file for the scene
description and OD files to use.

Scene building

As Figure 7 shows, while authors are continu-
ously changing a particular node’s fields using
the tool’s dialogue boxes, the program automat-
ically creates two files:

B Scene description file (.txt file). This file is simi-
lar to VRML because developers used VRML’s
nodes set as MPEG-4’s initial composition
nodes set.

1 OD Iist file (.scr file). This file identifies and
names elementary streams that it can then
refer to in a scene description and attach to
individual audio-visual objects.

Once authors have created these two text files,
they must construct suitable binary files, which
authors can process locally or transmit to the
receiver side via the network. To create such files,
authors can use software provided by the MPEG-
4 Implementation Group (IM1): to construct the
BIFS/binary file (.bif file) from the BIFS/text file,
authors use the BifsEncoder (BifsEnc), and then
use the MP4Enc multiplexer to create the final
MPEG-4 file. Authors can now save or view the
scene on the MPEG-4 player.

Implementation

We developed the 3D MPEG-4 authoring tool
using C/C++ for Windows—specifically, Builder
C++ 5.0 and OpenGL—interfaced with IM1’s
software platform’s core module and tools (see

Figure 7). IM1’s 3D player is a software imple-
mentation of an MPEG-4 systems player.'® The
player is built on top of IM1’s core framework,
which includes tools to encode and multiplex
test scenes. The player aims to be compliant with
the complete 3D profile.

The core module provides the infrastructure
for full implementation of MPEG-4 players.!” It
includes support for all functionalities (demulti-
plexing, BIFS and OD decoding, scene construc-
tion, update, and so on). The modules use
decoding and composition buffers to manage
synchronized data flow between the multiplex-
er, the decoders, and the compositor. The mod-
ule supports plug-ins for the decoder’s API, the
Delivery Multimedia Integration Framework (the
MPEG layer that delivers content over various
networks and media), and intellectual property
management and protection (IPMP). It also pro-
vides functionality for MediaObject, which is
the base class for all specific node types.

The core module is the foundation layer for cus-
tomized MPEG-4 applications. It contains hooks
for plugging all kinds of decoders (including JPEG,
Advanced Audio Coding, H.263, and G.723) and
customized compositors. Written in C++, the core
module’s code is platform independent and devel-
opers have used it as the infrastructure for applica-
tions that run on Windows or Unix. The module
includes a Windows “console” test application that
reads a multiplexed file—output by the tiled raster
interchange format (TRIF) multiplexer, described
below—which contains scene description and
media streams. The test application then produces
two files. One shows each composition unit’s pre-
sentation time—that is, the time when a plug-in
compositor would receive the composition unit
(CU) for presentation, compared to the composi-
tion time stamp attached to the encoded unit. The
other file shows textual presentation of the decod-
ed BIFS and OD. The software tools include a
BifsEnc and TRIF multiplexer.

The BifsEnc reads a textual scene description,
scene updates, and OD stream commands (which
might include OD and IPMP objects), and pro-
duces two binary files—BIFS file and an OD
stream.'® We used the BifsEnc to encode the tex-
tual output of our authoring tool. It also pro-
duces two files; both have the same name as the
input file, but one has the .bif extension and the
other has the .od extension. It also produces a
text file with the input file’s name and the .Ist
extension. This file lists all the input lines, each
followed by error descriptions (if any) and a tex-

tual description of the binary encoding.

The TRIF multiplexer is a software tool devel-
oped by Zvi Lifshitz that reads a set of files
containing an MPEG-4 elementary stream, and
multiplexes them into one bitstream according to
TRIF specifications. The TRIF multiplexer can also
encode a bootstrap OD (InitialObject-
Descriptor) and place it at the beginning of the
multiplexed file. The MP4Enc multiplexer reads
MPEG-4 elementary streams and multiplexes them
into a single MP4 file, which is based on the TRIF
multiplexer and the MP4 file format API 1ibi-
somp4 . 1ib. To verify compliance with MPEG-4
bitstreams,'® we use Im1Player (for 2D scenes) and
3D player (for 3D scenes). These tools input MP4
files and produce text files that describe the file’s
content. The tools’ output includes full text
descriptions of all elementary streams (BIFS, OD)
that the tool processes.

Our authoring tool provides a front-end user
interface to the MPEG-4 IM1 software and pro-
duces the .txt and .scr files that IM1 uses as
inputs to the BIFS and MPEG-4 (and MUX)
encoders, respectively (see Figure 7).

Examples: Creating scenes

To show how our tool works, we’ll create two
scenes: an ancient Greek temple and a virtual
studio.

Building a temple

Figure 8 (next page) shows the construction of
an example scene: an ancient Greek temple—
made up of several groups of cylinders and
boxes—that continuously rotates around its y-axis.
We can create this temple through several rela-
tively simple steps.

Creating the temple’s facade. We first create
a vertical cylinder, changing its position and scal-
ing to make it similar to a temple column. We
then use a copy-paste operation in the scene tree
view to create a second identical column and
reposition it in the desired place (we’ll create
more columns later, when the temple’s facade is
complete). Next, we build the temple’s roof: we
create a box and reposition it on top of the two
columns, making the box’s z-dimension equal to
the column’s diameter. We then create a second
box, resize and rotate it, and place it on top of the
tirst box. We rotate this second box about 45
degrees around its z-axis, then duplicate it; by
changing its z-axis rotation vector with a sym-
metric negative value, we create two similar anti-

>
5
3.
I
c
5
®
N
S
S
B

Figure 8. An ancient
Greek temple. (a) The
temple’s facade is
created using copy-
paste operations in the
scene tree view. (b) To
achieve a gradual
presentation, the
author selects the
Insert command on the
Updates tab, then, in
the scene tree’s main
window (c) selects the
object groups defined

earlier and copies them.

(d) The temple as
viewed through the
MPEG player.

S
o
]
=
=

S
=
[NN]
w
w

5 MPEG-4 ToolBox [[O0x]
Be Edi Bun Help

2 MPEG-4 ToolBox B =] E3
Fle Edt Aun Hep

D xa®@ P
Testures Obiects | Updates |

l‘ il View detsils
2|65 4] 9
EEET

'\

(a)

0 MPEG-4 ToolBox [O[]
He Edit Run Help

DESE x2@ b

BE b

De &
Testres | Dbjects Updales |
XK |l Update's detais

(b)

= MPEG-4 Player

File Edit View Help Test
= QAL

O[]

INGM 1/

For Help, press F1 I

symmetric boxes. The roof now looks like the
extrusion of an isosceles triangle. The front of the
temple is complete (see Figure 8a).

Duplicating scene portions. The temple’s
facade is an important part of the building’s
geometry, and by duplicating it twice we can cre-
ate the temple’s back and middle sections. Given
this, we create a group object using a drag-and-
drop operation in the scene tree view, including
all items from the temple’s facade. Grouping the
objects makes them easier to manipulate as a set.
We can then easily create the remaining temple
portions by copying and pasting the object group
several times, taking care to adjust the groups’ z-
positions so that the z-values of the front and
back sections are symmetrical.

Final details. At this point, we must fill in
the roof’s gaps. To do this, we create identical
boxes and place them between the roof’s front
and middle portions and its middle and back
portions. We can either do this from scratch or
by slightly duplicating parts of the roof (we
could duplicate the roof’s front part, for exam-
ple, and then reposition and scale it toward its
z-aspect).

The temple now needs only a floor, which we
create using a stretched box. We can then add

(d)

more specific details to the created objects,
including texture and color.

Adding gradual presentation. To demon-
strate the historic process of temple construction,
we want to use a gradual presentation. To
achieve this, we use BIFS-Commands (updates) as
follows:

1.We select the Insert command on the
Updates tab (see Figure 8b).

2.In the scene tree’s main window, we select
the object groups that we defined earlier for
gradual presentation and copy them (see
Figure 8c).

3. We select the General tab on the Update
Command Details panel (see Figure 9) and
paste the object group. We then specify the
group using the Set Target button and speci-
ty the timing using the Time of Action button
(in this case, 500 milliseconds).

4. Finally, we press Play to see the results in a 3D
MPEG-4 player.

Adding movement. We can animate the
scene using interpolators. First, we group all the

5 Update Command Details [_ (O]
Insert_Command ID:565E 340
General | UpdateData|

Time of &ction: Im vl
Target Of Aotion: Group TH7

Set Target | Clear |
- Group T97 =]

-~ Box T108 -
-~ Box T109
= Group T110
Cylinder T111
i Cylinder T112
= Group T116
i Cylinder T117
- Cplinder T118
~Box T119
- Box T120
- Bor T121
= Group T122
- Cylinder 7123

i Cplinder T124 -
E Group T125 =l

Figure 9. The General tab on the Updates
Command Details Panel lets authors select an
object group and specify its time of play.

objects in a global group object, then set it in
motion by activating its interpolator properties.
In the Interpolators menu, we check the
Orientation Interpolator property and then make
selections to rotate the object around its y-axis.
We can achieve more complicated movements as
needed by placing group nodes inside each other
and activating each one’s interpolator properties.

To view our results, we can either select the
Preview/Play button in the interface’s toolbar, or
save the scene so we can view it externally with
a MPEG-4 player. Every scene that our tool pro-
duces is fully compatible with the MPEG-4 BIFS
standard and can be presented by any MPEG-4
player capable of reproducing BIFS.

Building a virtual studio

Our second scene represents a virtual studio.
The scene contains several groups of synthetic
objects, including a synthetic face, boxes with
textures, text objects, and indexedfacesets
(see Figure 10). The 1ogo group, located in the
studio’s upper left corner, is comprised of a rotat-
ing box and a text object that describes the chan-
nel’s name. The background contains four boxes
with image textures (the left and right sides, the
floor, and the back side). We created the desk

35 MPEG-4 ToolBox =] E3/
Ele Edt Bun Hep

DEH x2B b

Testures Dbicts | Updates |

x| v
|08 9
A~E2

= Group _AOOT_ 7
Face T2

Gioup T15
Box 119
Box 720
IndesedFaceSet T21
Sphere T22
Sphers T23 —
Sphers T24
Box T25
BoxT26

Text 127 =l

Figure 10. The virtual studio scene in the authoring
tool. The scene includes several object groups,
including textured boxes and a synthetic face.

using another two boxes. A box with video tex-
ture is in the scene’s upper right corner. We
loaded an H.263 video on this box. The news-
caster’s body is an indexedfaceset imported
from a VRML 3D model; we inserted the 3D face
using the Insert button. Finally, we inserted a
rolling text of headlines. After we selected an FAP
file and audio stream (for the saxophone in the
upper left corner), we configured the face to ani-
mate according to the FAP file. The tool transmits
the video stream (H.263) and audio stream
(G.723) as two separate elementary streams
according to the OD mechanism.

We implemented all the animation (except the
face) using interpolator nodes. Figure 11 (next
page) shows a major part of the scene description
text file.

The AnimationStream node reads the FAP file
from an external source. We inserted a Transform
node before the Face node to control the animat-
ed face’s position in the scene. The Face node
inserts the animated face and connects it with the
FAP file defined earlier. To create the logo in the
upper left corner (and, more specifically, the tex-
tured rotating box) we first define the box’s posi-
tion (Transform node) and then the texture
image (appearance and texture fields). We then
define the object’s geometry and dimensions
(Geometry node). In our case, the object is a box.
To create the rotating motion, we first define the
motion period (how fast the box will rotate) and
whether the rotation speed will be constant. This
is controlled by the TimeSensor node and the
loop and cyclelnterval fields. The orientation-
Interpolator node defines the motion’s inter-
mediate positions. Finally, the Route nodes

>
5
3.
I
c
5
®
N
S
S
B

DEF ID_014 AnimationStream #fap animation stream
url 50

Transform {
translation 0.000 1.529 1.690
rotation 0.000 0.000 0.000 0.000
scale 0.0130.013 0.013
Children Face #face node

fap DEF ID_104 FAP{}
renderedFace
}
}

DEF T120661744 Transform {
translation 0.000 0.000 0.000
rotation 1.786 1.014 0.000 0.911
children Shape {

appearance Appearance {
texture ImageTexture {
url 10

textureTransform TextureTransform {

}
}

geometry Box { #box with image texture
size 0.796 0.796 0.694
}
}
}
DEF OrientTS120658180 TimeSensor {
stopTime -1
startTime O
loop TRUE # time sensor for interpolation
purposes

cyclelnterval 15

}

DEF ORI120658180 OrientationInterpolator {

keyO, 1

keyValue0.000 0.000 0.000 0.000,0.000 0.200 0.000 3.143
1

i:\‘.O.UTE OrientTS120658180 .fraction_changed TO ORI120658180.set_fraction

ROUTE ORI120658180 .value_changed TO T120661744 .rotation

Figure 11. The scene description text file for the virtual studio.

the completed scene.

Conclusion

the tool for large-scale deployment.

S
S
]
=
z
S
=
[NN]
w
w

connect the movement’s defined parameters to the
textured object. The tool’s definition (DEF) nodes
uniquely characterize the object. For example, the
texture box is object T120661744. Figure 12 shows

We found that while content developers were
satisfied with the tool’s efficiency and effective-
ness, users who were unfamiliar with MPEG-4
had problems understanding the terminology we
used. We thus need to further develop and refine

i MPEG-4 Player =] E3
File Edit “iew Help Test

For Help, press F1 [INUM | &

Figure 12. The complete virtual studio, viewed
through an IM1 3D player.

Because our authoring tool produces MPEG-
4-compliant scenes, users can visualize them
using the IM1-3D player without modifications.
Users can thus use the tool to create MPEG-4-
compliant applications without introducing pro-
prietary features.

Our tool can help MPEG-4 algorithm and sys-
tem developers integrate their algorithms and
make them available through a user-friendly
interface. It can also serve as a beginning for
developing new tools. Finally, our authoring tool
can be a benchmark for comparing other or pro-
prietary authoring tools with a tool that has
MPEG-4 system capabilities.

In all, 2,000 visitors have accessed our tool’s
Web page (averaging eight visitors a day). More
than 60 visitors have also registered to use the
tool and have provided useful feedback about its
functionality. Most visitors seem to be associat-
ed with research laboratories that deal with
MPEG-4, including Deutsche Telecom, Norway’s
Telenor, France Telecom, British Telecom,
Telecom Italia Lab, Sony Semiconductors and
Devices Europe, and Philips Digital Broadcast
Systems Group. MM

References

1. C. Herpel and A. Eleftheriadis, “Tutorial issue on
MPEG-4,” Signal Processing: Image Communication,
vol. 15, nos. 4-5, 2000.

2. R. Koenen, “MPEG-4 Multimedia for our Time,”
IEEE Spectrum, vol. 36, no. 2, Feb. 1999, pp. 26-33.

3. L. Chiariglione, “MPEG and Multimedia Communica-
tions,” IEEE Trans. Circuits and Systems for Video Tech-

10.

11.

12.

13.

14.

15.

16.

17.

nology, vol. 7, no. 1, Feb. 1997, pp. 5-18.

. F. Pereira, “MPEG-4: Why, What, How, and When,"”

Signal Processing: Image Communication, vol. 15,
2000, pp. 271-279.

. MPEG-4 Systems, “ISO/IEC 14496-1: Coding of

Audio-Visual Objects: Systems, Final Draft Interna-
tional Standard,” ISO/IEC JTC1/SC29/WG11
N2501, Oct. 1998.

. ISO/IEC 14472-1, “The Virtual Reality Modeling

Language,” http://www.vrml.org/, 1997.

. M. Kim, S. Wood, and L.T. Cheok, “Extensible

MPEG-4 Textual Format (XMT),” ACM Multimedia-
2000; available at http://www.acm.org/sigs/
sigmm/MM2000/ep/michelle/index.html.

. R. Koenen, “MPEG-4 Overview (V.16 La BauleVer-

sion),” ISO/IEC JTC1/SC29/WG11 N3747, Int’l
Standards Organization, Oct. 2000.

.). Signeees, Y. Fisher, and A. Eleftheriadis, “MPEG-

4's Binary Format for Scene Description,” Signal
Processing: Image Communication, vol. 15, nos. 4-5,
2000, pp. 321-345.

E.D. Shreirer, R. Vaananen, and J. Huopaniemi,
“AudioBIFS: Describing Audio Scenes with the
MPEG-4 Multimedia Standard,” IEEE Trans. Multi-
media, vol. 1, no. 3, June 1999, pp. 237-250.

F. Lavagetto and R. Pockaj, “The Facial Animation
Engine: Toward a High-Level Interface for the
Design of MPEG-4 Compliant Animated Faces,”
IEEE Trans. Circuits and Systems for Video Technology,
vol. 9, no. 3, Mar. 1999, pp. 277-289.

G.A. Abrantes and F. Pereira, “MPEG-4 Facial Ani-
mation Technology: Survey, Implementation, and
Results,” IEEE Trans. Circuits and Systems for Video
Technology, vol. 9, no. 3, Mar. 1999, pp. 290-305.
H. Tao et al., “Compression of MPEG-4 Facial Ani-
mation Parameters for Transmission of Talking
Heads,” IEEE Trans. Circuits and Systems for Video
Technology, vol. 9, no. 3, Mar. 1999, pp. 264-276.
|. Kompatsiaris, D. Tzovaras, and M.G. Strintzis,
“3D Model-Based Segmentation of
Videoconference Image Sequences,” IEEE Trans. Cir-
cuits and Systems for Video Technology, vol. 8, no. 5,
Sept. 1998, pp. 547-561.

B. Macintyre and S. Feiner, “Future Multimedia
User Interfaces,” Multimedia Systems, vol. 4, no. 5,
Oct. 1996, pp. 250-268.

Z. Lifshitz, Status of the Systems Version 1, 2, 3 Soft-
ware Implementation, tech. rep., ISO/IEC
JTC1/SC29/WG11 N3564, Int’l Standards Organi-
zation, July 2000.

Z. Lifshitz, Part 5 Reference Software Systems
(ISO/IEC 14496-5 Systems), tech. rep., ISO/IEC
JTC1/SC29/WG11 MPEG2001, Int’l Standards

Organization, Mar. 2001.

18. Z. Lifshitz, BIFS/OD Encoder, tech. rep., ISO/IEC
JTC1/SC29/WG11, Int’l Standards Organization,
Mar. 2001.

19. Z. Lifshitz, “IM1 Player: A Bitstream Verification
Tool,” tech. rep., ISO/IEC JTC1/SC29/WG11, Int'l
Standards Organization, Mar. 2001.

Petros Daras is an associate
researcher at the Informatics and
Telematics Institute, Thessaloniki,
Greece, and is pursuing a PhD in
multimedia from the Aristotle

University of Thessaloniki. His
main research interests include the MPEG-4 standard,
streaming, 3D object search and retrieval, and medical
informatics applications. He is a member of the
Technical Chamber of Greece.

Ioannis Kompatsiaris is a senior
researcher with the Informatics
and Telematics Institute,
Thessaloniki. His research inter-

ests include computer vision, 3D-

model-based monoscopic and
multiview image sequence analysis and coding, med-
ical image processing, standards (MPEG-4, MPEG-7),
and content-based indexing and retrieval. He is a mem-
ber of the IEEE and the Technical Chamber of Greece.

Theodoros Raptis is an MBA postgraduate student at the
Economic University of Athens. His scientific interest is
centered around investment analysis in the field of free
energy markets. Raptis received a diploma in electrical
engineering from Aristotle University of Thessaloniki in
2001; his thesis was on MPEG-4 and the development of
the MPEG-4 authoring tool. He is a member of the
Technical Chamber of Greece.

Michael G. Strintzis is a professor
of electrical and computer engi-
neering at the University of
Thessaloniki, and director of the
Informatics and Telematics
Research Institute, Thessaloniki.
His current research interests include 2D and 3D image
coding, image processing, biomedical signal and image
processing, and DVD and Internet data authentication
and copy protection. In 1984, he was awarded one of
the Centennial Medals of the IEEE.

>
5
3.
I
c
5
®
N
S
S
B

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	footer1: 0-7803-8367-2/04/$20.00 ©2004 IEEE
	01: 3
	02: 4
	03: 5
	04: 6
	05: 7
	06: 8
	07: 9
	08: 10
	09: 11
	10: 47

