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Abstract

In this paper we present an approach that combines mul-
timedia reasoning and natural language processing for the
semantic integration of automatic and manual image anno-
tations based on domain ontologies. We discuss how to ap-
ply natural language processing to transform natural lan-
guage descriptions and queries into an ontological repre-
sentation that allows users to formulate formal semantics in
an intuitive manner, without the need to cope with complex
ontological structures and unwieldy user interfaces. Illus-
trative experimental examples demonstrate the added value.

1. Introduction

The amount of digital media is growing rapidly and mul-
timedia content is omnipresent. However, little progress has
so far been made in indexing, organizing or retrieving the
available content in an efficient way that reflects user needs.
While activities such as TrecVid1 show that well perform-
ing analysis algorithms can be built, these are usually fo-
cused on solving narrow problems that address constrained
datasets. As a result, their application in real life scenarios
is rather questionable due to the immense effort required
to generate a sufficiently large number of concept detectors
that work well on practically arbitrary content, and the se-
rious challenges in avoiding the performance degradation
witnessed with the increase of supported concepts. On the
other hand, progress has been made in analysis approaches

∗This work was supported by the European Commission under contract
FP6-001765 aceMedia (http://www.acemedia.org/).

1http:// trecvid.nist.gov/

for the detection of rather generic concepts such as faces
and persons, as well as coarse content classification such as
natural vs. manmade. Combined in a synergistic approach
with manual annotation, such efforts have the potential to
achieve improved indexing and retrieval.

In this paper we describe an approach that combines
Multimedia Reasoningand Natural Language Processing
(NLP) for enhancing automatically produced annotations
and providing natural language queries for semantic en-
abled retrieval. More specifically, the core contribution of
the proposed approach constitutes the mapping of manual
natural language annotations (descriptions) to an ontologi-
cal representation, and their subsequent integration with au-
tomatically produced annotations based on a set of domain
ontologies through the utilization of reasoning methodolo-
gies. The ontological representation of natural language en-
tails precise semantics, while reasoning ensures the seman-
tic coherency of the annotations and their further enrich-
ment. Enabling the use of the same domain conceptualiza-
tion, the manual descriptions serve as background informa-
tion for correctly interpreting the automatic analysis results,
while the user can enjoy the benefits of ontology-based re-
trieval through intuitive means.

The currently deployed system architecture is shown in
Fig. 1. An input image is first analysed by a set of image
analysis modules. The only requirement is that the anno-
tations resulting from the analysis modules adhere to the
domain ontologies; no assumptions need to be made about
the concrete implementation. The automatically produced
annotations are subsequently augmented with user entered
textual descriptions that are transformed into an ontological
representation adhering to the employed domain ontologies.
As the knowledge representation formalism we choseRDF

to benefit from the explicit semantics and existing tools sup-
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Figure 1. The aceMedia architecture

port, whileOWL-DL statements has been included where ad-
ditional expressivity was required. In the sequel, the initial
set of annotations undergoes a two-stage reasoning process
in order to obtain a semantic coherent, possibly enhanced
final annotation, which is eventually stored in aRDF reposi-
tory that allows querying the content usingSPARQL. For the
retrieval, the user posed natural language queries are trans-
formed into correspondingSPARQL queries, utilising the
same approach developed for handling the manual textual
descriptions. The transformation of natural language to an
ontological representation for both description and querying
provides several benefits, namely: (i) a natural way of for-
mulating descriptions and queries, (ii) automatic mapping
of synonyms to the correct ontological classes, (iii) correc-
tion of spelling errors exploiting the semantics of remain-
ing input, and (iv) straightforward expression of what would
constitute complex ontology-based queries, through the au-
tomatic mapping of relations expressed in natural language
to their ontological counterparts.

The remainder of the paper is structured as follows. Sec-
tion 2 shortly demonstrates how the proposed approach can
be deployed in a real application. The developed natural
language processing methodology is described in Section
3, addressing both the ontological mapping and the transfor-
mation of linguistic data, while Section4 describes the de-
veloped reasoning modules. In Section5, exemplar queries
demonstrate the benefits brought. The paper concludes with
a short discussion on related work and future research direc-
tions in Sections6 and7, respectively.

2. Application Scenario

Mary loves to take images of her family during different
occasions, such as holidays or birthdays. For managing her
images she uses the aceMedia system, which offers auto-
matic analysis of content, means to manually enter natural
language descriptions, and natural language queries for re-

trieval. When Mary uploads images, the system starts the
automatic analysis and produces annotations. In parallel,
or at a later time, Mary can manually annotate her images.
She can either annotate images with higher-level level in-
formation, usually not found automatically, such as loca-
tion and special events names, or she can add some text to
images that she particularly likes. Utilising the proposed
combined natural language processing and multimedia rea-
soning framework, the system integrates her manual annota-
tions with the automatically produced ones into a final con-
sistent annotation, and offers the means to query the inte-
grated metadata in a coherent manner.

For instance, her two children John and Jane both like to
play softball. Recently she was searching for some image of
her children playing softball on the beach during last years
vacation in Greece. She enters a query “John and Jane play-
ing softball on the beach”, and the system returns a list of
images with John and Jane playing softball on the beach.
However, she never had to annotate these images in the
same way as she queried for them. In fact, she only anno-
tated these images with “John and Jane playing softball”, as
this kind of information can not be detected automatically.
The information that the images were taken on the beach
was then automatically added by the system and integrated
with her manual input. For this reason, other images that
depict her children playing softball in a school tournament
or in their backyard are not returned.

3. Natural Language Processing for Ontologi-
cal Reasoning

In order to be able to create ontological representations
of textual data in ontology languages such asRDF andOWL,
or query languages likeSPARQL, the semantics of natu-
ral language must be mapped onto the classes and rela-
tions (properties) of the corresponding ontology. In an ideal
world this should be done automatically in order to pro-
vide effective adaptability to new domains (i.e. new ontolo-
gies). The research undertaken in aceMedia has resulted in
a nearly automatic mapping, described in the following.

3.1. Mapping of Linguistic Data and Ontologies

As will be detailed below in section3.2, a deep analy-
sis approach has been followed in order to transform lin-
guistic expressions into ontological representations. This
means we do not only have a complete lexicon and (depen-
dency) grammar rules but also a semantic thesaurus which
defines the meanings of lexical entries. The task of the
mapping is to establish correspondences between the on-
tological classes and relations and the entries of the se-
mantic thesaurus; cardinality and property restrictions as



well as class constructors are currently ignored. The se-
mantic thesaurus is completely language independent even
though it may contain meaning definitions, which are not
lexicalised in some languages or just in a single one. Cur-
rently our English and French lexica (several ten thousand
lexicon entries for each language [5]) are linked exten-
sively with the semantic thesaurus which contains about
a 100 000 definitions2. This means that the result of the
mapping is also language independent. The semantic the-
saurus provides the following information: (i) asemantic
predicate3 including arguments and sortal restrictions for
these arguments for every lexicon entry (i.e., this means
that homonyms with different meanings have different pred-
icates as well as synonymic entries share identical predi-
cates), and (ii) athematic hierarchizationof these predi-
cates, i.e. a grouping of different predicates into themes,
domains and super-domains. These predicates are used to
build semantic graphs, which express the meaning of an
analysed sentence.

Even though our semantic thesaurus contains some in-
formation on synonyms, it is not possible to define “being
synonym” in a general and domain independent way. For
instance, in the aceMedia domains there is only a single
class for (four-wheel) vehicles. In consequence, lemmas
like car, lorry, vehicle, truck etc. need to be considered as
synonyms, since their differences are ignored by the ontol-
ogy. However, in a different application domain, e.g., the
car manufacturing domain, these may as well be distinctive.
such domain-specific synonyms are added to the semantic
thesaurus prior to the mapping4 to be exploitable.

In order to be mappable, the classes of the onto-
logies should correspond to expressions in natural lan-
guage, e.g.player, mountain shelter, line judge. How-
ever, classes which model complex composite notions, such
asPostOfficeWith Late Night OpeningHours, are not yet
sufficiently mapped, while (ontological) relations which
correspond to (transitive) verbs in natural language such as
isWonByand containsare the easiest to map. Of course
we are aware of the fact that ontologies not only con-
tain relations which correspond semantically to transitive
verbs. Especially in relations with a literal range, the map-
ping poses additional particularities. Whereas string ranges,
e.g., for relations such ashasNameandhasNationality, are
currently mapped by the automatic process, integer and
boolean ranges can be trickier. Although relations with a
boolean range only can have two different values, in nat-
ural language these values can be hidden in various con-

2Other languages such as German, Arabic, Spanish and Chinese are
partially linked. Further work is in progress.

3A predicate is defined as the semantic concept and its arguments. Note
that words in different languages but with the same meaning are linked to
the same predicate.

4Currently this is a semi-automatic process, since the definition of syn-
onyms is highly domain and application specific.

:V286681
a midlevel:boat .

:V286672
a dolce:Natural-Person ;
midlevel:hasFirstName ”Nicolas” ;
midlevel:isRightOf :V286681 .

Example 1. Ontological representation (N3)

structions. For exampletennis:isCoveredis the relation
to express whether a stadium is open-air or indoors. This
means that linguistic expressions liketo cover, indoors,
open air, has a roof, and their negated counterparts, need
to be mapped onto the considered relation.

Apart from the ontologies, the mapping requires a com-
plete lexicon of the language used to label or describe
the ontological classes and relations, which is linked to a
semantic thesaurus. The ontologies, on the other hand,
need non-ambiguous class and relation names (liketen-
nis:Player)

The ontologies used in aceMedia are based on the
DOLCE [10]5 ontology. This is important since the taxo-
nomical structure of aceMedia’s domain ontologies there-
fore depends on theDOLCE ontology.

The mapping itself comprises several steps, summarised
in the following (for a more detailed description the reader
is referred to [6]): (i) extraction of the “ontological context”
of classes and relations and assignment of eventual refor-
mulations of class/relation names, (ii) detection of classes
meaning using their ontological context, i.e., direct sub-
classes, (iii) detection of relations meaning using the corre-
sponding domain and range ontology definitions, (iv) addi-
tion of the ontological hierarchy to the semantic taxonomy,
(v) creation of semantic transformation rules for so called
complex class names6, and (vi) creation of transformation
rules for the acquisition of ontological representation from
semantic graphs (cf. section3.2on semantic graphs).

3.2. Transforming Natural Language into Ontolog-
ical Representations

The objective is to make the semantics of textual descrip-
tions explicit, thus available for formal processing like rea-
soning and semantic querying. For instance, a description
like Nicolas is at the right of the boatshould yield the RDF
statements given in Example1.

For textual descriptions, as well as for user queries, sev-
eral methods of processing can be considered, ranging from

5Cf. alsohttp://www/loa-cnr.it/Papers/dolcedocs.zip.
6By this term we refer to names of ontology classes (and, of

course, relations) which use multi-word expressions or phrases liketen-
nis:ExhibitionMatch.

http://www/loa-cnr.it/Papers/dolce_docs.zip


very simple key word spotting algorithms to more or less
profound linguistic analysis. In the presented approach, we
opted for a deep syntactic and semantic analysis in order to
be able to detect semantic relations between actants, i.e. to
be able not only to transform textual descriptions into a list
of ontological classes and instances, but also to exploit syn-
tactic and semantic information and establish the ontologi-
cal relations linking these instances. In other words, ontolo-
gies provide ontological classes, instances of which have to
be identified within the natural language input. But the on-
tologies provide also relations between classes. These rela-
tions are also expressed in natural languages: as it happens,
this is frequently done by verbs, adjectives and prepositions.
A simple keyword- (or class-) spotting mechanism can de-
tect the relations expressed in a text, but it is unlikely it will
be able to find the relata, i.e. the domain and the range of the
ontological relation. In order to find these, a deep analysis
that can build a semantic representation is required (cf. [7]).
This semantic representation is then transformed into an on-
tological representation. Exploiting the associations of the
previous step (linguistic-ontological mapping, section3.1)
that link a semantic concept (or graph of semantic concepts)
to every ontological class and relation, the final ontological
representation is acquired.

Another important argument justifying for a seman-
tic analysis is the benefits arising from synonyms and
antonyms exploitation (section3.1). This is further illus-
trated when one is comparing the semantic richness of nat-
ural language with the usually “restricted” model of the
world as presented by (domain) ontologies. For instance,
the domain ontologies used in aceMedia cover the domains
holidays (sea, mountains, camping), family as well as tennis
and motorsports. Whereas our ontologies have one concept
for beach, cliffs, mountainand sea, natural languages (in
our case English and French) provide several expressions
for each of these ontological classes.

A final argument for employing such an approach is the
possibility of detecting and correcting errors in the textual
input (descriptions or user queries), supporting typographi-
cal and diacritical (for languages like French and German)
errors in otherwise inanalysable input. Furthermore, as a
last resort a correction based on phonetic similarity is avail-
able.

Currently, the proposed approach is based on a syntac-
tic analysis using a dependency grammar (cf. [17, 11]), re-
sulting in the translation of phrases into dependency syntax
trees. There are several other advantages of a deep analysis
approach. In our case, the syntax analyser is very robust
in order to tackle ungrammatical input. Furthermore, there
is a context dependent typographic correction. In the worst
case, partial syntactic trees are obtained for every chunk that
could be identified within the textual input, i.e., partial syn-
tactic trees, containing just one word, may result. Further-

:V5 a tennis:Player ;
tennis:hasFirstName ”André” ;
tennis:hasName ”Agassi” .

:V4 a tennis:Trophy ;
tennis:isWonBy :V5 .

Example 2. Incoherent ontol. representation

:V12750
a tennis:Player ;
tennis:hasFirstName ”André” ;
tennis:hasName ”Agassi” .

:V12749
a tennis:Trophy .

:V12751
a tennis:Finale ;
tennis:isWonBy :V12750 .

:N1 a tennis:Tournament ;
tennis:awards :V12749 ;
tennis:hasFinale :V12751 .

Example 3. Relinked instance of tennis:Trophy

more, in case of ambiguity at the lexical level, a context
driven choice of the semantic concept is employed. Thus,
starting from the syntax tree we are able to create semantic
graphs which are composed of semantic predicates. We are
now able to transform the semantic representation into an
ontological representation (as shown above, cf. Ex.1).

Another important aspect is the implementation of an
“ontological correction” or “adaptation”, which ensures that
the ontological representations created from natural lan-
guage are coherent with aceMedia’s (domain) ontologies.
For example, a sentence likethe trophy is won by Agassire-
sults initially in the ontological representation shown in Ex.
2. This very ontological representation, however, has a flaw:
it is not necessarily coherent with the underlying ontology,
which in our case states that: (i) onlyFinalscan be won (by
Players), i.e. the domain of the relationtennis:isWonByis
the classtennis:Final, which in turn is not a super-class of
tennis:Trophy; (ii) Trophiesareawardedby Tournaments;
and (iii) TournamentshaveFinals.

In order to obtain an ontologically coherent represen-
tation, the incorrectly linked class (tennis:Trophy) is sep-
arated from the relationtennis:isWonByand replaced by the
class defined as domain for the relationtennis:isWonByin
the ontology.

In a final step, we try to relink the now isolated instance
with the rest of the ontological representation by inserting
further instances and relations, if the ontologies allows us
to do so. The way to achieve this is defined in the ontology.
We thus arrive at the corrected representation (Ex.3). Af-
ter this ontological correction the generated representation
is coherent with the ontology. It has to be noted that the



:D45317
a midlevel:unknown ;
midlevel:isOfType ”object.drink.juice” .

:D45318
a midlevel:unknown ;
midlevel:isOfType ”object.fruit.orange” .

Example 4. Ontol. representation of semantic
predicates not represented by ontol. classes

relinking is not done for theSPARQLqueries in order not to
complicate the queries and possibly block the retrieval.

Finally we process the frequent case where textual
content providers or users issuing queries, unaware of
the underlying ontologies, produce utterances which em-
ploy semantic concepts which are not within the scope of
the domain ontologies; e.g. the aceMedia application has
(amongst others things) a tennis ontology. A query onor-
ange juice, however, cannot be translated into a valid on-
tological representation, since there is no ontological class
which corresponds to the predicate of the thesaurus for the
notion “orange juice”. Instead of creating an empty repre-
sentation, a special ontological class may be provided by
the ontology, namely amidlevel:unknownclass which has
a relationmidlevel:isOfType. This relation has a string lit-
eral as range, which will hold the name of predicate which
is without corresponding class. Therefore a phrase likeor-
ange juiceresults in an ontological representation such as
Ex. 4. A SPARQL-query uses the same values for themi-
dlevel:isOfType-relation and will therefore be able to re-
trieve the needed information from a knowledge base even
if the concepts of both, the description and the user query,
are not covered by the ontology. The finalSPARQLquery is
sent to the knowledge-base in order to retrieve the contents
which metadata matches with the query.

For the retrieval, the choice of the same syntactic-
semantic analysis of user queries entails the following ben-
efits: (i) queries can enjoy the typographical corrections of
the NLP module, including correction strategies which try
to map unknown words to known words by typographical
and phonetic correction, (ii) the processing of synonyms,
due to the intermediary semantic representations, allows
users to use the wide range of possible linguistic expres-
sions, and (iii) since the ontological representations are lan-
guage independent, multilingual queries are supported (cur-
rently English and French), independently of the language
used for textual descriptions.

4. Inferring Consistent Semantic Metadata

As illustrated in Fig.1, the automatically produced and
manually entered annotations are combined into an ini-
tial semantic annotation that may introduce complementary,

overlapping, or even contradictory descriptions. To reach
the final content annotation, reasoning is applied to enforce
the smooth integration of the initial annotations into a se-
mantically coherent set, further enriched, if possible, with
higher level descriptions. Due to the two intertwined lev-
els in which annotations come, namely the segment and the
scene level, the reasoning goals translate into the follow-
ing tasks: (i) semantic consistency at segment level, (ii) se-
mantic consistency checking at scene level, (iii) semantic
coherency checking among scene and segment level anno-
tations, and (iv) higher level descriptions inference.

Given the very nature of multimedia analysis, two prin-
cipal requirements emerge, namely support foruncertainty
and provenance. Uncertainty refers to the ambiguity in-
herent in multimedia analysis that causes the produced an-
notations to be characterised by a relative degree of con-
fidence, reflecting their plausibility, while provenance ac-
counts for the different media types and different princi-
ples that the available analysis modules work on and that
affect their performance and reliability. Taking into con-
sideration the aforementioned, we developed a reasoning
methodology that combines fuzzy constraint (section4.1)
and fuzzy DL (section4.2) reasoning to effectively meet
the challenges involved.

4.1. Topological Reasoning with Constraints

The goal of the topological reasoning within our ap-
proach is to provide a consistent labelling of different re-
gions within the image. In [13], the methodology to trans-
form the image labelling problem into aConstraint Satis-
faction Problem (CSP)is presented. To better account for
the heuristics needed in image interpretation, this approach
has been extended toFuzzy Constraint Satsifaction Prob-
lems (FCSP).

A FCSP [1] is a system of variables and constraints.
Each constraint is defined as a relation on a number of vari-
ables, and effectively constrains the set of legal assignments
to these variables. Each tuple of a constraint is accompanied
by a degree that represents to what extend the given tuple
satisfies the constraint, allowing thus to model preference
among certain solutions. The fuzzy constraint reasoner then
searches for the solution satisfying the posed constraints op-
timally.

To find an optimal labelling of the regions of an image,
first the segment classification results are transformed into
a FCSP. Each segment is represented by a variable. Spa-
tial relations are extracted between any two segments, and
are added as constraints to the resulting FCSP. In the back-
ground knowledge, for each spatial relation, the valid com-
binations of concepts are defined, i.e., the relation that de-
fines a constraint is modelled explicitly. In case of theabove
relation for example, sky is allowed to be depicted above the



Natural≡ Outdoorst ¬ ManMade
Cityscapev Manmade

Beach≡ ∃contains.Seau ∃contains.Sand
Beachv Natural

(image1: Cityscape)
(region1: Sea)
(region2: Sand)

(image1, reqion1) : contains
(image1, reqion2) : contains

Example 5. Example Outdoor TBox and ABox

sea, but not vice versa. A unary constraint on each segment
variable is used to represent the degrees of confidence of
each label produced by the segment classification. Finally,
using standard branch and bound search, the final labelling
is computed.

4.2. DLs Reasoning for Multimedia Annotation

Description Logics (DLs) [2] are a family of knowl-
edge representation formalisms characterised by logically
founded formal semantics and well-defined inference ser-
vices. Starting from the basic notions of atomic concepts
and atomic roles, where concept and role are the counterpart
for class and properties in the ontology terminology, arbi-
trary complex concepts can be described through the appli-
cation of corresponding constructors (e.g.,¬, u, ∀). Termi-
nological axioms (TBox) allow to capture equivalence and
subclass semantics between concepts and relations, while
real world entities are modelled through concept (a : C) and
role (R(a,b)) assertions (ABox).Satisfiability, subsump-
tion, equivalenceanddisjointnessconstitute the TBox in-
ference services, andconsistencyandentailmentthe ABox
ones.

Consequently, given a TBox that describes a specific do-
main, using DLs one can build an ABox from the avail-
able initial annotations and benefit from the inferences pro-
vided to detect inconsistencies and obtain more complete
descriptions. Assuming for instance the TBox and ABox of
Ex. 5, the following assertions entail: (image1: Cityscape),
(image1: ManMade), (image1: Mountain), and (image1:
Natural). Furthermore an inconsistency is detected, caused
by disjointness axiom relating the concepts Natural and
ManMade. However the aforementioned apply only to the
case of crisp assertions (annotations). In order to handle
the uncertainty of analysis, the extension of the DLs se-
mantics is needed. Two main efforts exist currently that
address formally both the semantics and the corresponding
reasoning algorithms for fuzzy DL extensions. In [15], the
so called f-SHIN is introduced which extends the semantics

of concept and role assertions. More specifically, an f-SHIN
ABox consists of a finite set offuzzy assertionsof the form
a :C./ n and(a,b) : R./ n, where./ stands for≥, >,≤, and
<7. In [16], a fuzzy extension ofSHIF(D) is presented, con-
tinuing earlier works onALC andSHIF. In addition to the
extended fuzzy semantics, the authors present a set of inter-
esting features: (i) concrete domains as fuzzy sets, (ii) fuzzy
modifiers such asveryandslightly, and (iii) fuzziness in ter-
minological axioms as well.

Extending DLs with fuzzy semantics allows to apply
the inference services on fuzzy annotations as well. Let
us augment the of the previous example with the ax-
iom Swimmer≡ Faceu inside.Sea, and assume the fol-
lowing analysis produced annotations:(region1 : Sea) ≥
0.8, (region2: Sand) ≥ 0.6, (region3: Person) ≥ 0.7, and
((region3, reqion2) : inside) ≥ 0.6. Utilizing the extended
fuzzy DLs semantics, greatest lower bound values of 0.9
and 0.6 result forimage1with respect to the concepts Nat-
ural and Beach respectively, and a value of 0.6 is obtained
for region3with respect to the concept Swimmer. However,
both initiatives,FiRE8 and fuzzyDL9, respectively, are in
a quite early stage of implementation, providing query ser-
vices limited to subsumption and greatest lower bound, that
render them unsuitable for a realistic application.

In order to overcome the practical restrictions resulting
from the current stage in fuzzy DLs implementations, we
propose an extended DL-based reasoning approach that en-
ables the use of existing crisp DL reasoners, while at the
same time providing support for handling fuzzy assertions.
Towards this end, the fuzzy membership values seman-
tics have been defined in accordance with the fuzzy DLs
extensions initiatives, while their actual handling, i.e. the
readjustment of the corresponding values, has been imple-
mented as a separate mechanism that interacts with the stan-
dard DL reasoner. Following such an approach is practi-
cally feasible due to the simplifications that hold within the
examined multimedia analysis context. More specifically,
since the considered roles are crisp, the fuzzy set semantics
of ∃R.C and∀R.C formulas depend solely onCI (a), which
practically means that all considered membership values
refer solely to fuzzy concept conjunction, disjunction and
negation. For the corresponding fuzzy operations we fol-
low the Łukasiewicz negation,cL(a) = 1−a, and the G̈odel
norms,tG(a,b) = min(a,b) anduG(a,b) = max(a,b).

Having defined the uncertainty handling methodology,
the semantic coherency related reasoning tasks have been
implemented as follows.

Semantic consistency checking at scene level. All analy-
sis modules may be involved in this task, contributing scene

7Intuitively a fuzzy assertion of the forma : C≥ n means that the mem-
bership degree of the individuala to the conceptC is at least equal ton

8http://www.image.ece.ntua.gr/ ˜nsimou
9http:// faure.isti.cnr.it/ ˜straccia/software/ fuzzyDL/ fuzzyDL.html

http://www.image.ece.ntua.gr/~nsimou
http://faure.isti.cnr.it/~straccia/software/fuzzyDL/fuzzyDL.html


level annotations either explicitly or implicitly. To be able
to include scene level assertions from segment level anno-
tations, we ignore all disjointness axioms. LetK be the
number of domain level concepts,N the number of analysis
components involved,di j the degree of confidence produced
by the componenti for the domainj andwi the weight re-
flecting the reliability of the modulei. The domain concepts
degree of confidence is updated successively, moving from
more specific concepts to more generic ones, using the fol-
lowing formula: CDk = ∑i wi ∗dik + ∑ j w j ∗d jl , wherei, j
range over the analysis components that have produced a
degree of confidence for the respective concept, andl ranges
over the concepts that are subsumed by the under consider-
ation concept. The two sums are appropriately normalised
so that the final degree is in[0,1]. At each hierarchy level,
the concept with the higher degree amongst its (disjoint)
siblings is kept.

Semantic coherency checking among scene and segment
level annotations.Having inferred and appropriately ad-
just the confidence of the scene level annotations applicable
to the examined content, the next step is to ensure the se-
mantic coherency of object level assertions. To accomplish
this task, disjointness axioms are exploited. Within the cur-
rent set of supported concepts, the number of such axioms
is quite restricted, as most of the supported concepts can
be present in more that one of the considered sub-domains
within the scene level concepts. The notion ofnon-concept
needs to be introduced to allow the identification of anno-
tations that caused the inconsistency and thus their removal
from the corresponding annotation metadata.

Higher level descriptions inference.The inference of
higher level annotations is the most straightforward of the
considered tasks. As long as the means to handle uncer-
tainty are provided, then the only prerequisite consists in
the proper engineering of the domain knowledge. Apart
from the DL terminological axioms, a set of DL safe rules
has also been employed to allow inferring role assertions.
The latter aims to cover annotations describing activities in
a intuitive way, e.g. “person standing on the beach”, being
closer to human cognition is more likely to be entered as
user query than the semantically equivalent, but verbose,
“person above/left/right sand”.

5. Results

In the following, we exemplify some of the advantages
that the proposed approach entails through common query
examples, and discuss how these would otherwise fail, i.e.,
in case the natural language ontological representation or
the multimedia reasoning were missing. A very common
category of queries are the ones that indicate some spatial
relation among the concepts (objects, persons, etc.) of in-
terest. Going back to the scenario of Section2, Mary, wish-
ing to retrieve all beach images from last year’s vacations,

where a cliff is depicted on the left, may enter a query like
“cliffs at the left of the beach”. In Fig.2, the final metadata
acquisition of such an example image is shown. Reason-
ing enforces the semantic consistency of the annotations,
maps image segment spatial relations to domain concept re-
lations, and infers “beach”. The NLP translates the natu-
ral language query into an ontological representation and
enables the retrieval of the image. Mary’s cousin, Jean
posing the (French) query “falaisesà gauche de la plage”
(“cliffs left to the beach”), can retrieve exactly the same im-
ages too, due to the language independent functioning of the
NLP module. Another example of the advantages entailed
by translating natural language into ontological representa-
tion refers to the flexible query formulation support. For
instance an image of the tennis-domain with the textual de-
scription as “Andŕe Agassi wins the finals at Wimbledon”
can be retrieved by “Agassi winning games”.

The aforementioned constitute few indicative examples
of the entailed added value. The application of reason-
ing improves on the initial automatic annotations, elimi-
nating inconsistencies and further enriching them. Further-
more, initial evaluation showed clear benefits concerning
both domain specific synonyms and multilingual support,
while the robust syntactic analysis provides a certain “pro-
tection” against user errors, allowing to get a result even if
the input (descriptions or user queries) are erroneous. The
current limits are less of theoretical nature, but due to yet
incomplete work on the mapping; as said above some re-
lations, notably those with literal values as ranges, are cur-
rently ignored. Another minor issue, that however hinders
the wide scale evaluation of the proposed system, concerns
queries (descriptions) that are utterly out of the scope of
the domain ontologies. As synonyms are only definable
within a specific domain, themidlevel:unknown-class (and
its midlevel:isOfTyperelation) use the semantic predicate,
but with synonyms information missing.

6. Related Work

Mapping linguistic data onto ontologies is very closely
related to to ontology alignment [8]. Due to space limita-
tions, we only point to two interesting approaches to a simi-
lar problem. In order to createSPARQLqueries from natural
language, a simple incremental grammar which is ontology-
driven is proposed in [3]. Thus, while the user types his
query, the system proposes the vocabulary and the relations
he can use. Obvious limitations of this approach for our
needs include that user descriptions are not necessarily anal-
ysed at the time they are entered, while in addition, pre-
existing textual descriptions, which have been formulated
independently of the aceMedia-system and its ontologies
need to be handled. Furthermore, such approach is quite re-
stricted in terms of allowing descriptions and queries, which
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go beyond the “world” as modeled by the included ontolo-
gies. In [9], NLP is used to create triple-based linguis-
tic queries, based on who/which/when-questions, which are
then mapped onto ontological (RDF) triples by a Relation
Similarity Service (RSS), using ontologies and linguistic re-
sources like WordNet [4]. DLs and by extension ontologies
have been employed in quite several approaches to semantic
image analysis for the representation of the required knowl-
edge. However, in the majority of the literature, focus re-
mained on their exploitation as shareable vocabularies for
representation, rather than as means for formal inference.
Works adhering to the latter perspective include [14, 12],
that consider segment level semantic descriptions.

7. Conclusion and Perspectives

In this paper we presented the aceMedia approach to se-
mantic multimedia analysis that combines reasoning and
natural language support in order to semantically integrate
and enrich analysis results, while providing semantic en-
abled retrieval in natural language queries. Concerning
the work on linking NLP with ontological reasoning, fu-
ture work will concentrate on improving the linguistic-
ontological mapping, and particularly regarding relations
with XML datatype ranges. Further we envisage to auto-
mate to a certain degree the detection of synonyms for the
mapping of ontological classes. Future plans with respect
to the presented fuzzy reasoning framework include further
investigation of the fuzzy expressivity required within the
multimedia analysis context and of its formalization, in-
cluding the impact of different fuzzy operators on the en-
tailed semantics.
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