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Abstract. This work presents an image analysis framework driven by
emerging evidence and constrained by the semantics expressed in an on-
tology. Human perception, apart from visual stimulus and pattern recog-
nition, relies also on general knowledge and application context for un-
derstanding visual content in conceptual terms. Our work is an attempt
to imitate this behavior by devising an evidence driven probabilistic in-
ference framework using ontologies and bayesian networks. Experiments
conducted for two different image analysis tasks showed improvement in
performance, compared to the case where computer vision techniques act
isolated from any type of knowledge or context.

1 Introduction

The use of knowledge and context for indexing multimedia data using higher
level semantics, was motivated by the gap existing between the limited inference
capabilities that restrain machine understanding and the plentiful reasoning po-
tentials of human brain. Driven by the fact that knowledge and context are two
dimensions of human perception that are difficult to introduce and exploit at
the numeric level of visual features, we investigate the combined use of formal
represented semantics and probabilistic inference mechanisms as a means to sim-
ulate their impact on image analysis. Evidence is information that when coupled
with the principles of inference becomes relevant to the support or disproof of
a hypothesis. For our framework visual stimulus is considered evidence when
reasoned on the grounds of knowledge and placed on the appropriate context.
In this perspective, the input arguments of an evidence-driven probabilistic in-
ference framework consists of visual stimulus, application context and domain
knowledge, as can be seen in Fig. 1. Application context and domain knowledge
also affect the process of probabilistic inference (Fig. 1) and are considered to
be the a priori/fixed information of the framework. On the other hand, the vi-
sual stimulus depends on the image to be analyzed and is considered to be the
observed/dynamic information of the framework.

Domain knowledge, expressed using ontologies, and application context, cap-
tured both in conditional probabilities and application specific structures, are
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Fig. 1. Functional relations between the modules of the proposed framework.

integrated into a decision model that bears the characteristics of a bayesian net-
work. A methodology allowing the automatic integration of ontology-expressed
knowledge into a probabilistic network, is employed for this purpose. The goal of
this network is to facilitate evidence driven probabilistic inference in order to ver-
ify or reject a hypothesis made about the semantic content of an image. Hence,
the tasks carried out by the proposed framework include the statistical analy-
sis of the presented visual stimulus, the adoption of a probabilistic standpoint
for coherently handling uncertainty (a feature inherent to multimedia analysis),
the representation of domain knowledge and application context (in the form of
causality between evidence and hypotheses) in a computationally enabled for-
mat and the establishment of a framework supporting decision making driven
by the probabilistic inferences of evidence. Thus, what can be considered as the
contribution of our work is the fact that the potentials of such techniques i.e.,
techniques that integrate explicitly provided knowledge and bayesian networks,
are thoroughly examined and evaluated as a means to enhance semantic im-
age understanding by allowing in a principled/probabilistic way, the fusion of
evidence/information obtained using knowledge and context.

2 Related Work

Various works exist in the literature that try to handle uncertainty and take
advantage of knowledge and context for enhancing image analysis. Naphade et
al. in [1] introduce the concept of “Multijects” as a way to map time sequence
of multi-modal, low-level features to higher level semantics using probabilistic
rules. In [2] Naphade et al. illustrates the functionality of “Multinets” by intro-
ducing bayesian belief networks as a means to model the interaction between
concepts and use this contextual information for performing semantic indexing
of video content. Luo et al. [3] propose a framework for semantic image under-
standing based on belief networks. The authors demonstrate the improvement
in performance introduced by extracting and integrating in the same bayesian



inference framework, both low-level and semantic features. Other approaches
that take advantage of knowledge and context include [4], [5], where indoor
versus outdoor scene categorization based on low-level features and bayesian
networks is performed and [6] where a bayesian network is utilized as an infer-
ence mechanism for facilitating a classification method. However, none of these
works incorporate a systematic methodology for integrating domain knowledge,
expressed with standard knowledge representation languages, into a probabilistic
inference framework. On the other hand, Ding et al. in [7] present their on-going
research on combining ontologies and bayesian networks with the aim of intro-
ducing uncertainty in ontology reasoning and mapping. However, no attempt is
made by the authors to adjust their scheme for serving the purposes of multi-
media analysis. In [8], Papadopoulos et al. propose a knowledge assisted image
analysis scheme that combines local and global information for the task of image
categorization and region labeling. In this case, a sophisticated decision mech-
anism that fuses intermediate classification results with contextual information
and spatial relations, is used to generate the final results. In [9] Athansiadis et
al. propose a scheme that is intended to enhance typical image segmentation
algorithms by incorporating semantic information. In this case fuzzy theory and
fuzzy algebra are used to handle uncertainty, while a graph of concepts carry-
ing degrees of relationship on its edges is employed to capture visual context.
However, no coupling of ontology-based approaches with probabilistic inference
algorithms is attempted. Town in [10] use ontologies as a structural prior for
deciding the structure of a bayesian network using the K2 algorithm. The task
facilitated concerns the high-level analysis of surveillance data, but in this work
ontologies are mostly treated as hierarchies that do not incorporate any explicitly
represented semantic constraints.

3 Framework Description

What people see is not simply a translation of visual stimulus since knowledge
and context have a major effect. The framework of Fig. 1 attempts to simulate
visual perception by using evidence as an intermediate layer of image interpreta-
tion that combines visual stimulus, domain knowledge and application context.

Visual Stimulus: Machine learning methods are able to train a general
classifier in recognizing a specific object, provided that a sufficiently large num-
ber of indicative examples are available. Thus, a classifier F can be trained to
recognize a concept c based on the attributes fI of its visual representation I.
The output of such a classifier can be either binary or a value ranging between
0 and 1 that indicates the confidence (or uncertainty) of the classification out-
put, i.e., Fc(fIq

) = Pr(c | Iq). Pr(c | Iq) expresses the probability that visual
representation Iq depicts concept c.

Domain Knowledge: Domain knowledge will have to be elucidated and
represented in machine understandable format in order to be exploitable by
our framework. Ontologies have emerged as a very powerful tool able to express
knowledge in different levels of granularity [11]. If we consider NC to be the set of



unary predicate symbols that are used to denote concepts, let R to be the set of
binary predicates that are used to denote relations between concepts and O the
algebra defining the allowable operands for these sets, the part of experience that
relates to the domain knowledge can be represented using NC , R, O. Thus, using
OWL–DL [12], the domain knowledge can be expressed by a structure KD that
associates the domain concepts and relations using the allowable operands, i.e.,
KD = S(NC , R, O), where O ∈ DL. DL stands for “Description Logics” [13] and
constitutes a specific set of constructors and restrictions. For instance, common
constructors include logical operands of the type intersection, union, disjoint,
etc. Our goal is to use these constructors for imposing semantic constraints on
the process of image interpretation that can not be captured by typical machine
learning techniques.

Application Context: Loosely speaking the knowledge structure deter-
mines a) what evidence to look for, a piece of information that is associated
with the domain knowledge and b) how to qualitatively evaluate their pres-
ence (i.e., which evidence supports one hypothesis or another). In this sense,
the knowledge structure sets the tracks to which evidence belief is allowed to
propagate. However, no support is provided to the decision making process in
terms of where to look for evidence and how to quantitatively evaluate their
presence (i.e., how much each hypothesis is affected by the existence of one evi-
dence or another). The role of KD is to capture information about the domain
of discourse in general, not to deliver information concerning the context of the
analysis process at hand. This is the role of application context that typically
incorporate many application specific information. If we let app denote the set
of application specific information (where to look for evidence in our case) and
Wij a function that quantifies the influence (i.e., measured as the frequency of
co-occurrence) of concept ci on cj , the application context can be expressed as
a structure of the type X = S(app, W ).

Evidence-driven Probabilistic Inference: An evidence-driven probabilis-
tic inference scheme should be able to acquire what evidence to look for, from
NC ∈ KD, use context information app ∈ X to search for these evidence and
apply the trained classifiers Fc to obtain the respective degrees of confidence.
Subsequently, formulate an initial hypothesis around a concept c ∈ NC for all
potential decisions, use the evidence to trigger probabilistic inference, propa-
gate evidence beliefs using the inference tracks R ∈ KD and the correspond-
ing belief quantification functions Wij ∈ X , re-estimate the values for all hy-
potheses and finally decide which of the hypotheses should be verified or re-
jected. KD and app ∈ X determine which of the available concepts should be
included in the hypotheses set cH and which in the evidence set cE . In this
case, if we denote H(Iq) = {Pr(cH

1
| Iq), . . . , P r(cH

M | Iq)} the estimated de-
grees of confidence (i.e., prior probabilities) of the concepts belonging to the
hypotheses set and E(Iq) = {Pr(cE

1
| Iq), . . . P r(cE

K | Iq)} the estimated degrees
of confidence of the concepts belonging to the evidence set, evidence driven
probabilistic inference is the process of calculating the posterior probabilities
of H(Iq) (i.e., H́(Iq)) given the evidence values E(Iq) and information coming



from knowledge R, O and context Wij . Thus, the proposed framework achieves

semantic image interpretation in the following way, c = arg⊗cH (H́(Iq)) where

H́(Iq) = Pr(cH | H(Iq), R, O, Wij , E(Iq)) and ⊗ is an operator (e.g., max) that
depends on the specifications of the analysis task (details are provided in Sec-
tion 6.2). Table 1 outlines the basic terms introduced throughout the description
of the proposed framework, while their functional relations are demonstrated in
Fig. 1.

Table 1. Legend of Introduced Terms

Term Symbol Role

Trained Fc - Degree of confidence that Iq

Classifier depicts c

Domain - Determine what evidence to look for.

Knowledge KD = S(NC , R, O) - Qualitatively relations between

evidence and hypotheses.

- Determine where to look

for evidence(i.e., application

Application specific information, app).

Context X = S(app,W ) - Quantitative relations between

evidence and hypotheses, Wij

(i.e., frequency of co-occurrence).

- Degrees of confidence for

H(Iq) = the concepts of cH , as determined

Hypotheses {Pr(cH
1 | Iq), . . . , P r(cH

M | Iq)} by NC ∈ KD and app ∈ X, obtained

by applying classifiers similar to Fc.

- Degrees of confidence for

E(Iq) = the concepts of cE , as determined

Evidence {Pr(cE
1 | Iq), . . . P r(cE

K | Iq)} by NC ∈ KD and app ∈ X, obtained

by applying classifiers similar to Fc.

- Perform inference by calculating

Evidence driven c = arg⊗cH (H́(Iq)) H́(Iq)), using E(Iq) as triggering

probabilistic where H́(Iq) = evidence, R, O ∈ KD as belief

inference Pr(cH | H(Iq), R, O, W,E(Iq)) propagation tracks and Wij ∈ X

as causality quantification functions.

Based on these modules we aim to develop a decision support framework that
derives directly from the knowledge structure, retains intact the inference tracks
of logic, wraps probabilistically the causality links between domain concepts
and handles uncertain estimations meaningfully. The ability of Bayes’ theorem



to compute the posterior probability of a hypothesis by relating the conditional
and prior probabilities of two random variables, was the reason for considering
the use of bayesian networks for our purpose.

4 Bayesian Networks & Probabilistic Inference

Bayes’ theorem can be used to update or revise beliefs in light of new evi-
dence that are estimated with a certain amount of confidence. Adjusting this
description to the formulation of Section 3, every time a classifier is applied on
a visual representation, a hypothesis is formed around concept c and the visual
representation Iq. The goal is to verify or reject the hypothesis stating that Iq

depicts c, using the evidence E(Iq). A bayesian network is a directed acyclic
graph G = (V, A) whose nodes v ∈ V represent variables and whose arcs a ∈ A
encode the conditional dependencies between them. Hence, a bayesian network
can be used to facilitate three dimensions of perception: a) provide the means
to store and utilize domain knowledge KD, an operation that is served by the
network structure and prior probabilities, b) organize and make accessible in-
formation coming from context X ∈ S(app, W ), which is supported by the Con-
ditional Probability Tables (CPTs) attached to each network node and c) allow
the propagation of evidence beliefs using message passing algorithms, an action
facilitated by the Bayes’ theorem. A methodology for consistently transforming
ontologies into bayesian networks is essential for enabling evidence driven prob-
abilistic inference. For the purposes of our work we adopted a variation of the
methodology introduced in [7]. The proposed variation is mainly focused on the
method employed for calculating the CPTs, as detailed later in this section.

Network Structure: Intuitively, deciding on the structure of a bayesian
network based on an ontology can be seen as determining a function that maps
ontological elements (i.e., concepts and relations) to graph elements (i.e., nodes
and arcs). All translation rules described in [7] were implemented for determining
the network structure out of an OWL ontology. The resulting network consists
of concept nodes ncn and control nodes ncl (both of them having two states i.e.,
true and false) that are used to model the domain concepts and the associations
between them, respectively. At this point, it is important to notice that the
methodology described in [7] is only able to handle a limited set of constructors,
namely owl:intersectionOf, owl:unionOf, owl:complementOf, owl:equivalentClass
and owl:disjointWith, and as a consequence these are the constructors supported
by our framework.

Parameter Learning: While the network structure encodes the qualitative
characteristics of causality, (i.e., which nodes affect which), network parameters
are used to quantify it, (i.e., how much is a node influenced by its neighbors).
CPTs are used to capture the amount of this influence/impact and make it avail-
able for inferencing as part of the context structure Wij ∈ X . The methodology
adopted in this paper differs from [7] in what refers to the estimation of the net-
work original probability distribution. While in [7] this information is provided
explicitly by an expert, in our case it is learned from observation data, using the



Expectation Maximization (EM) algorithm [14]. More specifically, the prior and
conditional probabilities for each concept node ncn of the bayesian network, are
initially calculated before considering any DL constructors. Subsequently, the
DL constructors are migrated by inserting into the resulting network the appro-
priate control nodes ncl. Once the structural translation has been completed,
the CPTs for all concept nodes ncn are re-calculated. Since no observation data
are available for the control nodes ncl, these nodes are treated as latent variables
with two states (i.e., true and false). The last step is to specifically set the CPTs
of all control nodes ncl as appear in [7] and fix their states to “True”, so as to
enforce the semantic constraints expressed by the DL constructors.

Evidence-driven Probabilistic Inference: A framework that will allow
beliefs to seamlessly flow over the established network is required. Pearl [15]
introduced a message passing mechanism where messages are exchanged between
father and child nodes carrying the information required to update their beliefs.
In order to overcome the fact that Pearl’s algorithm suffer from scalability issues,
Lauritzen and Spiegelhalter [16] exploit a range of local representations for the
network joint probability distribution, introducing the junction tree [17]. To the
best of our knowledge, this is the most efficient and scalable belief propagation
algorithm and will be the one used in our experiments.

5 Framework Functional Settings

5.1 Image Analysis Tasks

For carrying out an image analysis task using the proposed framework it is
important to specify the following: a) formulate the hypothesis set H(Iq) before
initiating the decision mechanism, b) determine the methods used to obtain the
initial confidence values of the evidence E(Iq) and c) clarify what is considered
to be the task specific analysis context app ∈ X , used to derive the evidence.

Image Categorization, involves selecting a category concept ci describing
the image as a whole. A hypothesis is formulated around each of the categories
and with respect to the overall image, H(Iq) = {Pr(ci|Iq) : i = 1, . . . , n}
where n is the number of category concepts. Global classifiers (i.e., models
trained using image global information) are employed to estimate the initial
likelihood for each hypothesis, Pr(ci|Iq). Regional concept information obtained
by analyzing specific regions I

sj

q of the image at hand, is considered to be the
source of contextual information app ∈ X of this task. Local classifiers (i.e.,
models trained using image regional information) are applied on these regions
and generate a set of confidence values that constitute the analysis evidence,
E(Iq) = {Pr(ći|I

sj
q ) : i = 1, . . . , k & j = 1, . . . , m} where k is the number of

regional concepts and m the number of identified regions. The distinction be-
tween the category concepts ci (i.e., hypothesis concepts cH in this case) and
regional concepts ći (i.e., evidence concepts cE in this case) as well as their exact
nature is determined by KD.

Localized Image Region Labeling, annotates each of the identified re-
gions with one of the available regional concepts ći. A hypothesis is formulated



for each of the available regional concepts and with respect to each of the regions
identified in the image, H(Iq) = {Pr(ći|I

sj

q ) : i = 1, . . . , k & j = 1, . . . , m}
where k is the number of regional concepts and m is the number of identified
regions. Regional classifiers are utilized to estimate the initial likelihood for each
of the formulated hypotheses, Pr(ći|I

sj

q ) with i = 1, . . . , k & j = 1, . . . , m. In
this case, global image information is considered to be the source of contextual
information app ∈ X and the confidence values for each of the category con-
cepts ci, constitute the analysis evidence of this task, E(Iq) = {Pr(ci|Iq) : i =
1, . . . , n}, where n is the number of category concepts. Once again, the knowl-
edge structure KD determines which concepts should be considered category
concepts and which regional. However, since the nature of this task is different
from image categorization, in this case ći ≡ cH and ci ≡ cE .

It is clear that the objective of our framework in both tasks is to operate on
top of the classifiers’ outcome with the aim to compensate for misleading deci-
sions. Intuitively, the framework incorporates contextual information by favoring
the co-occurrence of evidence that are known from experience to correlate. Ad-
ditionally, the framework attempts also to exploit semantic restrictions, saying
for instance that two concepts are disjointed. Therefore, provided that the ma-
jority of evidence coming from context are relatively strong and accurate, the
framework is expected to make the correct decision by absorbing any misleading
cues produced by the erroneous analysis of visual stimulus.

5.2 Low-level Image Processing

For low-level image processing we employed the scheme utilized in [8]. Four dif-
ferent visual descriptors proposed by the MPEG-7 standard [18] namely Scalable
Color, Homogeneous Texture, Region Shape, Edge Histogram comprised the fea-
ture space. An extension of the Recursive Shortest Spanning Tree algorithm [19]
was employed for producing a segmentation mask S = {si, i = 1, . . . , N},
with si representing the identified spatial regions. Finally, Support Vector Ma-
chines (SVMs) [20] as implemented by the libsvm library [21], were chosen to
construct the statistically trained models, using the distance from the decision
boundary in the kernel space as a way to measure the degree of confidence.

6 Experimental Study

The purpose of our experimental setup was to demonstrate the improvement
in performance introduced by exploiting context and knowledge, compared to
schemes that rely solely on low-level visual information. A dataset from the
“Personal Collection” domain was selected for testing the proposed framework
using the analysis tasks of Section 5.1.

6.1 Experimental Platform

Test set Characteristics: A collection I of 648 jpeg images comprised the test
platform. Six different categories formulating the global (i.e., category) concepts



lexicon CG = {Countryside buildings, Seaside, Rockyside, Forest, T ennis,
Roadside} ∈ NC , were used to manually characterize all 648 images at global
level. Respectively, 25 more fine grained concepts constituting the local (i.e.,
regional) concepts lexicon CL = {Building, Roof, T ree, Stone, Grass, Ground,
Dried − plant, T runk, V egetation, Rock, Sky, Person, Boat, Sand, Sea, Wave,
Road, Road−line, Car, Court, Court−line, Board, Gradin, Racket} ∈ NC , were
used to manually annotate the images at region level. A domain expert was
employed to provide the logical relations between the elements of CG and CL

using the OWL-DL ontology language, Fig. 2. The matching bayesian network
automatically derived according to the methodology presented in Section 4 is
depicted in Fig. 3.

Fig. 2. Manually constructed ontology for describing the “Personal Collection” domain.

Calculating the prior probabilities and CPTs for each node of the constructed
network requires a set of observation data. A subset of the manually annotated
image set containing 324 samples was utilized to provide the parameter learn-
ing algorithm with the necessary observations and also to train the necessary
classifiers, Fc, for each of the elements in CG and CL. Fig. 3 depicts the prior
probabilities of all network nodes calculated by the learning algorithm. The re-
maining 324 images were used for testing.

6.2 Performance Evaluation

For measuring efficiency recall, precision and F-Measure were utilized. Based
on the analysis tasks specified in Section 5.1, we have conducted the following
experiments.



Fig. 3. Bayesian network automatically derived from the ontology of Fig. 2.

Image Categorization: In this experiment we measure the efficiency of
categorizing all test images in one of the categories in CG, using three config-
urations varying in the amount of utilized context and knowledge. In the first
configuration we assess the performance of image categorization based solely on
the output of global classifiers. In the second configuration, information coming
from the local classifiers is incorporated into the network for helping towards the
correction of the decisions erroneously taken by the global classifiers. In this case
context and knowledge are utilized to extract the existing evidence and facili-
tate the process of evidence driven probabilistic inference. However, no semantic
constraints (i.e., DL constructors) originating from the domain are incorporated
into the decision process. This is the purpose of the last configuration where such
constraints are incorporated into the bayesian network using the methodology
presented in Section 4.

After formulating the hypotheses set for all category concepts, the framework
looks for the presence of all regional concepts determined in KD. All classifiers,
global and local, are applied to formulate one set of confidence values for the
image as a whole, LKglobal = {Pr(ci|Iq) : ∀ci ∈ CG} and one set per identified
image region, LKlocal = {Pr(cj |I

sk
q ) : ∀cj ∈ CL & ∀sk ∈ S}. All values of

LKglobal and the maximum per row values of LKlocal are inserted as evidence
into the bayesian network. Subsequently, the network is updated to propagate
evidence impact and the category with the highest resulting likelihood is selected
as the final decision (i.e., in this case ⊗ ≡ max). Table 2 summarizes the results
for each of the framework configurations mentioned earlier.



Table 2. Image Categorization Evaluation Matrix

% Tennis Roadside Rockyside Seaside Forest C. Build. Avg

Global Re 100.00 68.42 68.62 85.71 76.66 30.00 71.57

Classifiers Pr 83.33 69.64 70.00 67.60 63.88 100.00 75.74

only F-M 90.90 69.02 69.30 75.59 69.69 46.15 70.11

Global Classifiers Re 98.00 73.68 64.70 91.07 71.66 54.00 75.52

Local Classifiers Pr 90.74 64.61 76.74 70.83 71.66 90.00 77.43

Know. & Context F-M 94.23 68.85 70.21 79.68 71.66 67.50 75.36

Global Classifiers Re 94,00 73,68 70,58 91,07 71,66 56,00 76,17

Local Classifiers Pr 100,00 64,61 76,59 69,86 70,49 90,32 78,65

Know. & Context F-M 96,90 68,85 73,46 79,06 71,07 69,13 76,41

Sem. Constraints

The performance achieved by the framework using the second configuration
(row II of Table 2) is improved by ≈ 5% (in terms of the F-Measure metric)
compared to the first configuration (row I of Table 2). We will use the running
example of Fig. 4 to demonstrate how evidence collected using regional informa-
tion can revise a decision erroneously taken from a global classifier. By applying
all global classifiers on the test image of Fig. 4 we get the probabilities of “Global

Classifiers” table. According to these values the image should be characterized
as Seaside since the corresponding classifier exhibit maximum confidence. The
situation remains unaltered, as shown in the second row of “Belief Evolution”
table, when the confidence values of all global classifiers are inserted into the
network. However, this is not the case when the regional evidence i.e., the max-
imum value from each column of the “Local Classifiers” table are consecutively
inserted into the bayesian network. The last four rows of “Belief Evolution” table
illustrate how the likelihood of each category evolve in the light of new evidence.
Eventually the correct category, Roadside, is found to exhibit maximum likeli-
hood. What is interesting is the fact that only two out of four local classifiers
(regions 1 and 3) succeeded in correctly predicting the depicted regional con-
cept. Nevertheless, this information was sufficient for the evidence driven image
analysis framework to infer the correct prediction, since the relation between
the evidence grass identified in region 1 and the Roadside category, was strong
enough to raise the inferred likelihood of this category above the corresponding
value of Seaside, a category that receives no support by this evidence, as shown
in Fig.2.

By examining the confusion matrix of TABLE 3 that corresponds to the
second configuration of our framework, in conjunction with Fig. 2, where the
amount of evidence shared between different image categories is depicted, it is
clear that the system tends to confuse categories that share many visual charac-
teristics. Another interesting observation derived from Fig. 2 concerns the small
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Fig. 4. An example of evidence-driven probabilistic inference for image categorization

Table 3. Confusion Matrix for Image Categorization (2nd Configuration)

% Tennis Roadside Rockyside Seaside Forest C. Buildings

Tennis 98.00 0 0 2.00 0 0

Roadside 1.75 73.68 0 8.77 10.53 5.26

Rockyside 5.88 3.92 64.71 5.88 19.61 0

Seaside 0 5.36 3.57 91.07 0 0

Forest 0 10.00 8.33 10.00 71.67 0

C. Buildings 2.00 24.00 6.00 12.00 2.00 54.00

amount of evidence that Tennis shares with the rest of image categories. This
is in fact a piece of information (i.e., semantic constraint) that originates from
the domain and can be used to aid image analysis (i.e., third configuration of
our framework). Indeed, by enhancing the ontology of Fig. 2 to associate Tennis

with all other concepts in CG with the “owl:disjointWith” DL-constructor, re-
constructing the bayesian network to include the additional control nodes (see
Fig. 3) and calculating the updated CPTs, the performance is further increased
reaching an overall improvement of ≈ 6.5% (row III of Table 3).

Region Labeling: The use of context and knowledge for region labeling
was motivated by the fact that information concerning the image as a whole
can potentially favor one region interpretation over another. Hence, it is clear



that the proposed framework can basically benefit region labeling when there
is a conflict between the predictions suggested by global and local classifiers. If
we let Child(ck : ck ∈ CG) = (cj : ∀cj ∈ CL where k →parent j) be the
subset of CL corresponding to the child nodes of ck according to KD, LKglobal =
{Pr(ci|Iq) : ∀ci ∈ CG} be the set of confidence values obtained from the global
classifiers and LKsw

local = {Pr(cj |I
sw
q ) : ∀cj ∈ CL} be the set of confidence values

obtained from the local classifiers applied on region sw, a conflict occurs when
cl /∈ Child(cg) with g = argmaxi(LKglobal) and l = argmaxj(LKsw

local). In this
case, since there is no reason to trust one suggestion over another, we make two
hypotheses. The first assumes that the suggestion of the global classifier is correct
and a global concept cg is selected such as g = arg maxi(LKglobal). Afterwards,
the local concept cl with maximum confidence that is included in the child node
set of cg is selected, such as l = argmaxj(LKsw

local) and cl ∈ Child(cg). Both
confidence values of cg and cl are inserted into the network as evidence and
the overall impact on the likelihood of the hypothesis stating that the region
under examination sw, depicts cl is measured. The second approach considers
that the suggestion of the local classifier c

ĺ
is the correct, selected such as ĺ =

arg maxj(LKsw

local). The confidence values of the global classifiers that correspond
to the parent nodes of c

ĺ
are examined and the one cǵ with maximum value is

selected, such as ǵ = arg maxi(LKglobal) and cǵ ∈ Parent(c
ĺ
). As in the previous

case both likelihoods are inserted into the network and the overall impact on the
likelihood of the hypothesis stating that the examined region sw, depicts c

ĺ
is

measured. Eventually, these values are compared and the concept corresponding
to the largest value is chosen (i.e., this is the functionality of ⊗ operator for
this case). If no conflict occurs the concept corresponding to the local classifier
with maximum confidence is selected. Fig. 5 presents the evaluation results and
shows that an average increase of approximately 4.5% is accomplished when the
proposed framework is used. Regional concepts that exhibit zero hits from the
local classifiers (i.e., Racket, Road line, Car, Glacier, Stone) are not included in
the evaluation results.

7 Conclusions & Future Work

The problem of using visual evidence to assist image analysis has been thor-
oughly treated and a concrete framework addressing the identified issues has
been proposed. The suitability of ontologies and bayesian networks for imitat-
ing some of the fundamental aspects of visual perception has been investigated.
Experiments demonstrated that the proposed framework is able to analyze im-
ages using different configurations, in terms of the amount of utilized context
and knowledge, and manage to achieve statistically significant improvement with
respect to the solutions relying solely on visual stimulus.

One important prerequisite for allowing the proposed framework to maximize
the performance gain, is to operate on a sufficiently large amount of training
data. This is hindered by the fact that it is really a cumbersome procedure to
manually annotate a sufficiently large number of images, especially at region
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Fig. 5. Evaluation results for localized region labeling.

level, and in this way ensure that the sample data tendencies converge to true
domain statistics. A solution to this problem could be to adjust the underlying
image processing module so as to allow handling of large multimedia corpora
that are being populated automatically, as in the case of WWW and Internet
users. Given the fact that social sites like Flickr1, accommodate image corpora
that are being populated with hundreds of user tagged images on a daily basis
and taking into consideration that literature has already reported efforts on
performing localized region-label association, from weakly annotated data [22],
pipelining such schemes with the proposed framework may help overcoming some
of the problems deriving from the use of limited size training sets.
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