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Abstract

A robust, theoretically-founded approach for the extraction of temporal templates corresponding to

areas of motion in video, is presented. Higher order statistics (kurtosis) are employed to extract Activity

Areas, i.e. binary masks indicating which pixels in a video are active. The application of the kurtosis

on illumination changes modeled as Gaussians and Mixture of Gaussians is shown to be sensitive to

outliers for both models, thus correctly localizing active pixels. Activity Areas are compared to existing,

difference-based temporal templates, known as Motion Energy Images, and the robustness of both

categories of temporal templates to additive noise is analyzed theoretically. Experiments with numerous

real videos with additive noise, both indoors and outdoors, are conducted to compare the robustness of the

Activity Areas and Motion Energy Images, and their temporal extensions, the Activity History Areas and

Motion History Images. As expected from the theoretical analysis, the kurtosis-based Activity Areas prove

to be more robust than the difference-based templates. Challenging videos containing occlusions, varying

backgrounds and shadows are also examined, and it is shown that the proposed approach outperforms the

difference-based method for these cases as well, consistently providing reliable localization of activity

under a wide range of difficult circumstances. The proposed approach provides good results at a very

low computational cost, and without requiring prior knowledge about the scene, nor training of any kind.
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I. I NTRODUCTION

The analysis of video data has received significant research attention in numerous applications, such

as video surveillance, activity recognition, event detection. A fundamental initial step in video processing

is the analysis of the motion present in it, detected as changes in its frames’ illumination. Numerous

methods have been developed for the estimation of motion in video, as well as its further processing for

the extraction of practically useful results, such as the characterization of human activity, or the detection

of anomalous events. For this purpose, the detection of regions of activity in a video, and the separation

of foreground objects from the background, are of fundamental importance.

The analysis of motion in video often extracts binary masks of pixels that are active over several

frames, creating a foreground mask for them, which can be considered as an extension of background

removal [1]. The pixels that are active in the sequence being examined form a binary mask, which will

be referred hitherto as a temporal template, in the general case. In the literature, the temporal templates

that have been examined can be either a binary mask or a gray-scale image, which indicates the temporal

history of pixel motions, having higher values at the pixels that have been most recently activated [1], [2].

This work is extended in [3], where the shape of the temporal template is examined in the same spatial

location in each image, and mapped onto an eigenspace.

In practice, temporal templates find applications in tasks such as human action recognition or classifi-

cation, because the regions of active pixels often have a shape that is characteristic of the activity taking

place. In both [1], [3], good recognition results are obtained from the use of these templates, but the

issue of the system’s robustness to noise is not examined, and only simple, noise-free indoors sequences,

with nearly no background, are examined. In [4], [5], video is treated as a spatiotemporal volume and a

different kind of temporal templates (space-time features) are extracted and used for recognition purposes.

This approach gives good results, but is limited to human action recognition, as it extracts features that are

characteristic of the human body and its motions. There exist many other techniques for the recognition

of activities, or events, such as HMM-based methods [6], [7], which involve training for the modeling

of the event or activity. Other approaches are based on the analysis of the motion statistics [8], [9], but

are better suited for the classification of motions with varied statistical distributions of motion vectors

(e.g. a news video versus a traffic scene), or the analysis of trajectories, rather than the recognition of

specific activities, that lead to temporal templates with a characteristic shape.

In order to extract accurate temporal templates, it is important to separate active from static pixels

with precision at each frame, i.e. to perform accurate background subtraction. In the case of a moving
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camera, camera motion compensation needs to take place before the foreground-background separa-

tion. In the literature, there has been very extensive work on this problem, as it is fundamental in

many applications. A very popular approach involves the modeling of the background as a Mixture of

Gaussians [10], [11], and uses an adaptive scheme to account for varying scene illumination and small

background motions. However, these techniques require the correct choice of parameters for the model,

and are often computationally costly. Most importantly, they often suffer from slow adaptation to scene

illumination changes and can incorporate foreground objects into the background. An approach for the

detection of activity in video that is robust to illumination changes has been proposed in [12]. In that work,

the scene illumination changes are estimated and can thusly be accounted for. However, the estimation of

scene illumination changes is made possible by using prior knowledge of the locations of these changes.

In practice, this knowledge is usually not known, and can even be part of the desired output of the system.

Another background extraction method that is robust to sudden illumination changes is presented in [13].

Similarly to [12], this method requires prior knowledge, as it uses a stored set of background images

for the modeling of the illumination changes at the current frame. Additionally, the work in [13] also

involves the manual extraction of foreground areas during training for the modeling of the background

and foreground distributions.

A different set of approaches to the problem of background estimation is based on non-parametric

modeling of the background-foreground data using kernels [14], [15]. These approaches lead to good

results without requiring prior knowledge of the scene, and can separate the foreground from the back-

ground for challenging videos containing moving backgrounds (e.g. waves) and moving objects at the

same time. However, accurate non-parametric modeling is very computationally expensive in terms both

of speed and memory requirements.

Small background variations and even small camera motions have also been handled by using local flow

measurements, which are separated from the dominant scene motion. In [16], the (registered) video frames

are temporally integrated, leading to the smoothing out of small camera motions and background variations

and leading to the localization of the foreground objects. In [17], camera motion is first compensated

for, and the resulting residual motion is used to obtain local motion estimates, which correspond to the

actual foreground motion in the scene. These approaches have not been examined for their robustness to

global scene illumination changes. Additionally, by their nature, local techniques can become sensitive

to spatially or temporally occurring local noise, such as local occlusions, illumination changes, shadows.

Robustness to local sources of noise can be achieved, in general, by using global methods, i.e. methods

that simultaneously employ many - or all - frame pixels and video frames. The use of this additional
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data increases the robustness of the system, as the detrimental effect of locally erroneous values, such as

those caused by small measurement errors, camera instabilities, local occlusions, is compensated for by

the incorporation of correct values from the rest of the spatio-temporal video segment being used (which

can even be the entire video). In this work, we present a global, computationally efficient method for

the derivation of activity areas based on higher order statistical processing of inter-frame illumination

changes. The measurement noise in static pixels can be approximated by the Gaussian distribution, as

is often the case in the literature [18], [19], [20]. The kurtosis of Gaussian noise is zero, so the kurtosis

of illumination changes occurring on background pixels should have low values, while its value for

active pixels is expected to be much higher. The robustness of the proposed method to additive noise

is analyzed theoretically, and the effect of additive noise is shown to be small. The application of the

kurtosis to data modeled as Mixtures of Gaussians is also analyzed, as these distributions are often used

to represent background pixels [10]. It is shown that even in that case (where the background is not

modeled by a single Gaussian), the higher order statistical measure obtains low values in static pixels.

The proposed approach is compared with the often used difference-based temporal templates, namely the

Motion Energy Images: theoretical analysis of that method’s robustness to additive noise shows that it is

not inherently unaffected by noise, unlike the proposed approach.

The use of higher order statistics is motivated by the fact that they have been proven to be sensitive

to outliers, and are thus expected to distinguish reliably between illumination changes induced by

measurement noise and those caused by actual motion, even when the background illumination variations

do not follow a strictly Gaussian distribution. In the literature, [21], [22], fourth order statistics (the

kurtosis) have been used for motion estimation and noise removal based on the minimization of fourth

order cumulants of the estimation errors. It is shown that fourth order cumulants lead to more accurate

results than the minimization of the mean squared error, even when the noise is colored Gaussian or

non-Gaussian. This is due to the fact that the kurtosis remains asymptotically unaffected by zero-mean

additive noise of any distribution [23]. Thus, in our case it is also expected to accurately distinguish

between the random noise distribution and outlier values caused by motion.

Extensive experimentation with a large variety of indoors and outdoors videos for increasing amounts of

additive noise demonstrates that higher order statistics provide much more stable temporal templates that

the difference-based approach. Post-processing is applied to the results of both methods for the case where

shadows are present, leading to their effective elimination in both cases. The effect of using temporal

windows of varying size for the extraction of temporal templates is also examined, for both the kurtosis

and difference-based methods. It is determined that the effect of varying window size is very small, and
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that the active pixels are still extracted with accuracy. Finally, experiments with challenging videos that

contain background motions (e.g. moving textures like trees moving in the wind, waves), global scene

illumination changes and shadows demonstrate the effectiveness of this approach in difficult, realistic

circumstances.

It should be emphasized that, although the kurtosis-based processing is robust to noise, moving

background textures and varying illumination, it has a low computational complexity, very similar to

that of the difference-based approach. Additionally, the proposed approach does not make use of any

prior knowledge, but only processes the video frames themselves. Its robustness to the amount of frames

used for its computation (varying temporal window size) allows its computation for selected video

subsequences, which may contain characteristic segments of the activity taking place, instead of for

the entire video. Finally, its global nature increases its insensitivity to local sources of noise.

II. K URTOSIS-BASED ACTIVITY AREA

The region where activities occur in a video often has a characteristic shape which can be used to

classify, for example, the type of motion taking place. This region can be derived as a binary mask, with

value equal to1 at the pixels where motion has occurred, and0 otherwise. Such a mask can be created

based on the value of the illumination changes in a video that has frame luminance valuesI(x, y, t). It

should be emphasized that this kind of a mask is meaningful only when the camera is static, or camera

motion has been compensated for. Thus, in the most general case, it should be derived from the residual

motion vectors (the motion measurements remaining after camera motion compensation), as in [17].

In many cases where the camera is not moving, inter-frame differencing gives a sufficiently accurate

indication of motion-induced illumination changes between pairs of frames, with very few false alarms.

For example, indoors videos (e.g. in surveillance) are often filmed with static cameras, whose quality

has improved significantly in recent years, so frame differences correspond to actual motions. For more

challenging cases where there is slight camera motion, panning, or an increased amount of camera noise,

the illumination changes between pairs of frames can be approximated by flow estimates [24], [25] after

motion compensation. For simplicity, we refer to either inter-frame illumination differences or optical

flow measurements as “illumination changes”, denoted asdI(x, y, t):

dI(x, y, t) = I(x, y, t)− I(x, y, t− 1). (1)

In practice, real videos contain slight illumination changes, introduced by camera instability, non-constant

camera exposure or other sources of measurement noise [26], so when illumination differences are

accumulated over a sequence of frames, some correspond to actual motion, and some to noise.
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The measurement noise, which affects all frame pixels in an additive manner, is often modeled in

the literature as a Gaussian distribution [19], [18]. This is the simplest model of the background pixels’

distribution, with more complex ones having been proposed in the literature, like the well known mixture

of Gaussians [10]. Despite its simplicity, the Gaussian assumption can lead to reliable and robust results,

particularly in the case examined in this work, since the statistic being used, namely the kurtosis, is

robust to deviations of the data from a strictly Gaussian model [21], [27]. It should also be noted that

the amount of measurement noise samples available is usually high, making it possible to model them

by the Gaussian Distribution, based on the Central Limit theorem [28], [29]. For example, a video with

N frames of sizeN1 ×N2 providesN1 ×N2 × (N − 1) samples: in our experiments, videos, with100

frames of size120× 160, provide1.900.800 data samples.

The illumination changes caused in a pixel by actual motion and not solely by measurement noise

introduce an outlier value to the otherwise random measurement noise [30]. The illumination changes

then deviate significantly from the Gaussian model, since object motion is very different from random

illumination changes and measurement noise. If the illumination changes are represented bydI(x, y, t)

at pixel (x, y) and framet, they can be mapped to the following two hypotheses:

H0 : dI0(x, y, t) = z(x, y, t)

H1 : dI1(x, y, t) = u(x, y, t) + z(x, y, t). (2)

where dI0(x, y, t) in HypothesisH0 represents the illumination change at pixel(x, y), in frame t

introduced by measurement noisez(x, y, t), andH1 corresponds to the case where there is also motion

at pixel (x, y), represented byu(x, y, t). Under the Gaussian approximation for the measurement noise

z(x, y, t), we can detect which velocity estimates correspond to a pixel that is actually moving by

examining the non-Gaussianity of the accumulated velocity estimates [31]. The non-Gaussianity of a

random variabley can be tested using higher order statistics, i.e. thek−order moments of a random

variabley, defined as:

mk = E[yk] =
∫

ykfy(y)dy, (3)

wherefy(y) is the probability density function of the random variabley. These moments are referred to

as the “raw moments” ofy because they are not centered around its mean, but they coincide with the

raw moments if the mean ofy is simply subtracted from its values. The kurtosis ofy is defined as:

Ky = E[y4]− 3(E[y2])2. (4)

July 10, 2009 DRAFT



7

The fourth moment of a Gaussian random variable ism4 = E[y4] = 3(E[y2])2, so its kurtosis is

equal to zero. Therefore, the kurtosis is a natural choice for finding which pixels undergo illumination

changes that do not follow a Gaussian distribution, i.e. which pixels are active. The kurtosis has also been

shown [32], [33], [27] to be a robust detector of outliers in both Gaussian and non-Gaussian data [34].

Thus, it is very suitable for detecting active pixels in video, as these introduce large illumination changes

in the data, that are outliers compared to the values of the measurement noise.

A. Kurtosis in the presence of noise

In order to examine the sensitivity of the kurtosis to additive noise, we consider zero-mean additive

noisev (w.l.o.g., since the mean can be subtracted from our data) and a Gaussian random variabley:

Ky+v = E[(y + v)4]− 3(E[(y + v)2])2, (5)

with

E[(y + v)4] = E[(y2 + v2 + 2yv)2] = E[y4] + E[v4] + 6E[y2v2] + 4E[yv(y2 + v2)]

= E[y4] + E[v4] + 6E[y2v2] + 4(E[y3v] + E[yv3]) = E[y4] + E[v4] + h.o.t, (6)

with higher order termsh.o.t = 6E[y2v2] + 4(E[y3v] + E[yv3]). Also:

E[(y + v)2] = E[y2] + E[v2] + 2E[yv] = E[y2] + E[v2] + 2E[y]E[v] = σ2
y + σ2

v , (7)

where we assume that the datay and the additive noisev are independent, i.e.E[yv] = E[y]E[v].

This assumption can be made because the additive noise under consideration is externally originating,

so it is independent of the imaging process (unlike measurement noise). Sincey, v are zero-mean,

E[yv] = E[y]E[v] = 0, andE[y2] = σ2
y , E[v2] = σ2

v , whereσ2
y , σ2

v represent the variance of the data

and the additive noise respectively. Then Eq. (5) becomes:

Ky+v = E[y4] + E[v4] + h.o.t.− 3(E[y2])2 − 3(E[v2])2 − 6E[y2]E[v2] = Ky + Kv + H.o.t., (8)

whereKy = E[y4]− 3(E[y2])2, Kv = E[v4]− 3(E[v2])2 are the kurtosis of the data and the Gaussian

noise, respectively andH.o.t = h.o.t. − 6E[y2]E[v2]. The kurtosis ofy is equal to zero, sincey is a

Gaussian random variable, so the kurtosis of the noisy data of Eq. (9) becomes:

Ky+v = Ky + Kv + H.o.t = Kv + H.o.t. (9)

In practice, the higher order terms are often negligible, as the quantities in them obtain very low values:

the additive noise valuesv are usually small (less than one), and when raised to the second or third
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power, become even smaller, so thatE[y2v2] ' 0, E[y3v] ' 0, E[yv3] ' 0, making H.o.t ' 0 and

Ky+v = Kv. Then, the kurtosis of Gaussian data in the presence of non-Gaussian additive noise is equal

to the kurtosis of this noisev. Naturally, if the additive noise is Gaussian, and under the assumption that

y andv are independent, the kurtosis ofy +v becomes zero again, sinceKv = 0. This is expected, since

the sum of independently distributed Gaussian random variables (y + v) is also Gaussian [28], [35].

It should be noted that, although in most practical cases the higher order terms (H.o.t.) can be set to

zero, leading toKy+v = Kv, they cannot be considered negligible under very high additive noise, where

their influence becomes visible in the results. This can be seen in the experiments for high amounts of

additive noise. However, videos with such amounts of noise are extremely degraded and not useful in

practice. Consequently, for most realistic situations, the above approximation can be considered valid.

B. Monte-Carlo Simulations of kurtosis in the presence of Gaussian and non-Gaussian noise

In order to experimentally demonstrate how the kurtosis of a Gaussian and noise-corrupted Gaussian

random variable deviates from zero as a function of the additive noise varianceσ2
v , we use Monte-Carlo

simulations. We run1000 simulations where we generate106 samples of a random variabley following

a zero-mean Gaussian distribution with variance equal to one, and estimate its kurtosis. The first point

of Fig. 1(a) shows the values of its kurtosis for zero noise: it is evident that the kurtosis is near zero.

Zero-mean Gaussian noisev, with variance that increases from0 to 1 by 0.01 increments is then added

to the original random variablesy, and the kurtosis values ofy + v are also plotted in Fig. 1(a): as

expected, the values of the kurtosis remain low, between±0.004.

In order to compare this with the kurtosis behavior under non-Gaussian noise, the same experiments

are performed, but this time with the addition of Exponentially [30], [36] distributed noisev, that has

the same energy as the previously used Gaussian noise, for fairness of comparison. In Fig. 1(b) we see

that under increasing non-Gaussian noise, the kurtosis obtains values between±0.02, i.e. they increase

by an order of magnitude. This is actually an advantage in our case, since it implies that the kurtosis will

deviate from zero (or low values) with the addition of non-Gaussian object velocities to the measurement

noise underH1 (Eq. (2)).

We also verify that the kurtosis is a reliable measure of pixel motion for a real video sequence, where

we examine the behavior of the kurtosis in moving and non-moving frame pixels. We use a video of a

person running (Sec. VI-C) and prior knowledge about which pixels are moving and not moving, since

this experiment is designed to simply demonstrate the behavior of the kurtosis in a real example. We then

estimate the kurtosis of allactivepixels over time (i.e. over all video frames) and the kurtosis of the static
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(a) (b) (c) (d)

Fig. 1. Kurtosis of random variabley and noisy random variabley + v, wherev is: (a) Gaussian. (b) Exponential. The kurtosis

of the Gaussian random variable is nearly zero and remains close to zero for Gaussian noise. Under non-Gaussian noise, the

values of the kurtosis increase significantly. Kurtosis of the pixel illumination changes averaged over time for: (c) pixels inside

the activity area, (d) pixels in the rest of the video frames. The static pixels have a non-zero kurtosis, but with much lower

values that that of the active pixels.

(or near-static) ones, also over time. It should be noted that the expectationsE[·] in Eq. (4) and Eq. (5)

are approximated by averaging over all moving and non-moving pixels, respectively. This is because we

make the assumption that the random variables being measured correspond to an ergodic process (due

to lack of additional knowledge), so their expectations are approximated by arithmetic means [36], [37].

In practice this approximation proves adequate, as it leads to reliable estimates of the data statistics.

Fig. 1(c), (d) shows that, indeed, the kurtosis values deviate significantly from zero in the moving pixels.

We have plotted the values of the kurtosis on the same scale to emphasize that they increase by orders

of magnitude in the active pixels, even if it is not guaranteed that the additive noise strictly follows a

Gaussian distribution. Indeed, the average of the kurtosis values of the moving pixels is equal to2.1941,

whereas the static pixels have a mean kurtosis equal to0.0058. Thus, there is a significant deviation

between the kurtosis of static and active pixels, which indicates that in practice, it will be a reliable

measure of pixel activity, even for noise that is not strictly Gaussian.

C. Kurtosis-based Activity Areas from Illumination Changes

The results of Sec. II-A, II-B motivate us to use the kurtosis for the spatial localization of activity. In

Appendix I, the kurtosis of the illumination changesdI(x, y, t) is shown to be equal to:

KdI = 2KI + Kc, (10)

wheremk are thek order statistics of each frame’s illumination values, defined in Eq. (3), considered

to be the same for all video frames, andKc are cross-correlation terms. If the additive noise follows a
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Gaussian distributionN (0, σ2
n), the noise differencesdn(x, y, t) = n(x, y, t)− n(x, y, t− 1) also follow

a Gaussian distribution [28]N (0, 2σ2
n), so their kurtosis is zero, i.e.Kdn = 0.

D. Effect of noise on Kurtosis-based Activity Areas from Illumination Changes

In order to examine the robustness of the kurtosis-based activity areas to occlusions, camera jitter,

illumination changes, we model these effects as additive noise, and then estimate the kurtosis of noisy

inter-frame illumination differences,δ(x, y, t) = (I(x, y, t)+n(x, y, t))− (I(x, y, t−1)+n(x, y, t−1)).

For notational simplicity, we do not include the indices(x, y, t), (x, y, t−1) in the equations that follow,

but use:dI = I(x, y, t)− I(x, y, t− 1) anddn = n(x, y, t)− n(x, y, t− 1) as in Sec. II-C. Then:

δ4 = (dI + dn)4 = (dI2 + dn2 + 2dI · dn)2 = dI4 + dn4 + 6dI2dn2 + 4dI3dn + 4dIdn3 ⇒

E[δ4] = E[dI4] + E[dn4] + 6E[dI2dn2] + 4E[dI3dn] + 4E[dIdn3]. (11)

Also:

(E[δ2])2 = (E[dI2] + E[dn2] + 2E[dIdn])2 = (E[dI2])2 + (E[dn2])2 + 2E[dI2]E[dn2], (12)

where we have considered thatdI and dn are assumed to be independent, since the additive noise

n is externally generated (i.e. it is unrelated to the measurement noise and the imaging process in

general). ThenE[dIdn] = E[dI]E[dn] = 0 sinceE[dn] = 0. The kurtosis isKδ = E[δ4]− 3E2[δ2], so

Eqs. (11), (12) lead to:

Kδ = E[dI4] + E[dn4] + 6E[dI2dn2] + 4E[dI3dn] + 4E[dIdn3]− 3(E[dI2])2 − 3(E[dn2])2 − 6E[dI2]E[dn2]

= KdI + Kdn + 6(E[dI2dn2]−E[dI2]E[dn2]) + 4E[dI3dn] + 4E[dIdn3]

. = KdI + Kdn + 6(E[dI2dn2]−E[dI2]E[dn2]), (13)

sinceE[dn] = E[dI] = 0. The term6(E[dI2dn2]−E[dI2]E[dn2]) is equal to zero if the higher powers

of dI, dn are also considered to be independent. This assumption is reasonable due to the fact thatdI

anddn originate from completely different and independent sources. Then, we have:

Kδ = KdI + Kdn, (14)

Eq. (14) has a central role in demonstrating the robustness of the kurtosis for the extraction of the activity

area. If the additive noisen(x, y, t) follows a Gaussian distribution,Kdn = 0 and:

Kδ = KdI . (15)
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In other words, the kurtosis of the illumination changes remains unaffected by additive Gaussian noise!

Additionally, even when the additive noise cannot be modeled by a strictly Gaussian distribution, the

kurtosis of the illumination changes remains sensitive to outliers [21], [22]. In [32], for example, it is

shown that the kurtosis can still reliably detect outliers, even when they are embedded in generalized

Gaussian noise. In the section that follows, we analyze mathematically how the kurtosis behaves under

Mixture of Gaussian (MoG) modeling of the data. This allows us to see how the deviation of the

background from a (potentially) more accurate model than the single Gaussian will affect the accuracy

of finding active pixels with the kurtosis.

III. K URTOSIS-BASED ACTIVITY AREAS FOR M IXTURE OF GAUSSIAN MODELING

A very commonly used model for the background is based on mixtures of Gaussian (MoG) distri-

butions. Numerous improvements have been developed for the modeling of background using mixtures

of Gaussians, e.g. adaptive modeling as in [10] and [11] to account for small background motions like

leaves fluttering, small illumination changes, shadows. Since this model is so widely used, we examine

how the kurtosis-based activity areas are affected when the data is modeled by a MoG. The pdf for a

random variableX modeled by a MoG is given by the convex sum ofN Gaussian distributionsfi with

meanµi and varianceσ2
i , i.e.N (0, σ2

i ): fX(x) =
∑N

i=1 wifi(x), where the weightswi ∈ (0, 1) are such

that
∑N

i=1 wi = 1. The convexity of the sum leads to the higher order moments ofX:

E[Xk] =
N∑

i=1

wiEfi[Xk], (16)

whereEfi[Xk] are thekth order moments of the individual Gaussian distributionsfi. The kurtosis for

data modeled by a MoG distribution is estimated analytically in Appendix B, and found to be:

KX = 3
( N∑

i=1

wi(1− wi)E2
fi[X

2])−
∑

i6=j

wiwjEfi[X2]Efj [X2]
)

. (17)

Since the static pixels’ illumination is modeled by a MoG, the variableX is equal to the pixel illumination

I, i.e. X = I. However, we apply the kurtosis measure to illumination changes, i.e.dI. Their kurtosis

for MoG background modeling, is then found from Eqs. (10), (17) to be:

KdI = 6
( N∑

i=1

wi(1− wi)E2
fi[I

2])−
∑

i 6=j

wiwjEfi[I2]Efj [I2]
)

+ Kc. (18)

The resulting value of the kurtosis contains the products and higher powers of the weightswi, where

0 < wi < 1, which will attenuate its value. Indeed, our experiments show that the kurtosis of the

background pixels, in many different videos, filmed both indoors and outdoors, obtains much lower values
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than the active pixels. This is expected, as the kurtosis has been proven to be asymptotically unaffected

by zero-mean additive noise, even when it does not follow a strictly Gaussian distribution [38]. Thus,

if MoG data (e.g. the background values) is regarded as Gaussian, contaminated by unknown noise, the

kurtosis will still converge to zero asymptotically (and to low values in practical applications). Indeed,

in [21] higher order statistics, and specifically fourth order cumulants are actually used to successfully

de-noise image sequences, without modeling the noise as following a strictly Gaussian distribution.

IV. D IFFERENCE-BASED MOTION ENERGY IMAGE

In this section, we present the “temporal templates” proposed in [1] for the characterization of pixels

as moving or static, similarly to the activity areas of Sec. II. These templates are created based on the

value of the illumination changes in a video. In [1], illumination changesd(x, y, t) are first binarized,

leading to the valuesD(x, y, t), which are equal to1 when pixel(x, y) has undergone motion between

frames t and t − 1, and zero otherwise. The illumination changes are binarized, using a thresholdη

(Sec. IV-A), as follows:

D(x, y, t) =





1, if d(x, y, t) ≥ η;

0, else.
(19)

The binary MEI is then defined as follows:

Eτ (x, y, t) =
τ−1⋃

i=0

D(x, y, t− i), (20)

where
⋃τ−1

i=0 denotes the union of the binarized illumination changes from frames0 to τ − 1 and the

parameterτ determines the duration of the activity being examined. Essentially, Eq. (20) shows that the

MEI is a concatenation of the active pixels throughout theτ frames under examination, with value1 in

the active pixels and0 otherwise.

A. Threshold Selection for MEI and Activity Area

In order to create the MEI from the illumination differences, the thresholdη of Eq. (19) needs to

be determined in a generally applicable, non-ad-hoc manner. In this section, a threshold that is shown

to give excellent experimental results is presented. It is chosen based on Chebyshev’s inequality, which

holds for a random variablex with finite meanµ, varianceσ2, that follows any distribution:

P (|x− µ| ≥ kσ) ≤ 1
k2

. (21)
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For k = 3, this shows that at least89% of data belongs within three standard deviations from its mean.

Thus, the threshold for binarizing the illumination changesdI and estimating the MEI is given by:

η = µdI
+ 3σdI

, (22)

whereµdI
is the mean of the illumination changes andσdI

the standard deviation of their distribution.

In order to estimate these quantities, we need to make the following assumptions:

1) Frame statistics do not change significantly, sokth order moments for all frames are equal tomk.

2) Illumination values of successive frames are statistically independent of each other.

The first assumption is realistic when there are no large global illumination changes between frames

and when the motion between them is not very high, but will not hold when there are large occlusions

and dis-occlusions, if different objects enter the scene or there are large changes in global illumination.

In most realistic cases, like the indoors and outdoors videos examined in our experiments, deviations

from this assumption do not introduce significant degradations in the results (see Sec. VI). Additionally,

the proposed method uses many (or all) video frames, so that errors in a subset of the data, caused for

example by a sudden illumination change, are often compensated for by the presence of many correct

samples. The second assumption is not as realistic, since pixel values of successive video frames are

not independent. Nevertheless, similar assumptions are often made in practice to enable the theoretical

performance analysis, here of the proposed temporal templates. Most importantly, the errors introduced

in practice by this assumption are practically negligible, as shown by our experiments. Then:

E[dI(x, y, t)] = µdI
= E[I(x, y, t)− I(x, y, t− 1)] = 0, (23)

where we take into account the first assumption, that the meanm1 of the illumination values in framest

andt− 1 is the same.E[·] is estimated over all frame pixels (from our assumption of spatial-ergodicity,

due to the lack of additional knowledge about the data). Under the second assumption, the illumination

values of successive frames are independent, so the variance ofdI = I(x, y, t)− I(x, y, t− 1) is:

σ2
dI

(x, y, t) = 2(m2 −m2
1) = 2σ2

I . (24)

Using Eq (23) and (24), the threshold of Eq. (22) for obtaining the MEIs becomes:

η = 3
√

2σI , (25)

where σ2
I is the variance of the illumination values in each frame (estimated over the entire frame’s

pixels). It should be noted that the kurtosis values, estimated over each pixel of sequence of frames, lead

to the binary activity areas by thresholding with Eq. (22), using the mean and variance of the kurtosis

values instead of the mean and variance of the illumination changes.
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B. MEI in the presence of noise

We examine how the MEI is affected by additive noisen(x, y, t) (at pixel (x, y), frame t), assumed

w.l.o.g. to be zero-mean and with varianceσ2
n. Using the notation of Sec. II-D, the noisy data isδ =

dI + dn, wheredI are inter-frame illumination changes anddn the inter-frame variations of the additive

noise. As before, we make the assumption that inter-frame illumination changesdI are independent from

additive noise changesdn, since they originate from different sources. Then,E[dI] = E[dn] = 0, so

E[δ] = 0 and σ2
δ = σ2

dI + σ2
dn = 2(σ2

I + σ2
n), where the expected values are spatial averages. Additive

noise increases the data variance and, since the MEI is formed based on these second order statistics, it

is expected to be affected by it. In practice Eq. (22) becomes

ηn = 3
√

2(σ2
I + σ2

n). (26)

Although the threshold increases in the presence of noise, the MEI is nonetheless adversely affected by it,

as verified by our extensive experimental results (Sec. VI). Additive noise is always present in real videos,

indoors and outdoors: for instance, there may be inter-frame illumination changes, camera measurement

noise (thermal noise, photon noise), small background movements (e.g. tree leaves in the wind) etc. The

MEIs mistake this noise for motion, so it appears in the resulting binary template images. This introduces

errors when extracting temporal templates for classification and recognition of the activities taking place.

V. M OTION HISTORY IMAGE, ACTIVITY HISTORY AREA

In [1], the Motion History Image (MHI) is also used to complement the information of the Motion

Energy Image (MEI), for describing the temporal evolution of the motion, i.e. which parts of the motion

template (MEI) are activated sooner and which later. The MHI’s are extracted from the binarized frame

illumination differences [1] as follows:

Hτ (x, y, t) =





τ, if D(x, y, t) = 1;

max(0, Hτ (x, y, t− 1)− 1), else.
(27)

This results in grayscale masks with higher values indicating the regions that were active more recently.

We define the Activity History Area (AHA) in a similar manner to the MHI, but the active pixels that are

included in it are extracted using binarized kurtosis values instead of binarized inter-frame illumination

differences. For a video with frames of sizeN1 ×N2, the kurtosis of each pixel’s illumination changes

over t frames is estimated from Eq. (10). The expected values are estimated for each pixel over time,

leading to aN1×N2 image of the kurtosis values. These are then binarized (as in the end of Sec. IV-A),

providing theN1 × N2 binary maskK(x, y, t), which is the Activity Area for the firstt frames. In
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order to capture the temporal evolution of the activity using the kurtosis values, we estimate the Activity

History Area (AHA) KH(x, y, t) as follows:

KH(x, y, t) =





τ, if K(x, y, t) = 1;

max(0,K(x, y, t− 1)− 1), else.
(28)

If pixel (x, y) is active at time instantt (i.e. if K(x, y, t) = 1), its value in the AHA is that of the

temporal windowτ . If that pixel is inactive at timet, the AHA KH(x, y, t) obtains either the value zero,

or its previous valueKH(x, y, t− 1) minus one, so it is either set to zero for a pixel that has not been

active until timet, or its value is lower than that of currently active pixels (i.e.τ ) if the pixel was active

in the past. Thus, the frame pixels that were active in the past are weighted with lower values, while

the most recently active pixels have higher AHA values. The result is, for both the MHI and AHA, a

grayscale image with higher values in the regions that were active most recently, lower values in regions

that were active in the past, and zero in regions that are constantly static. Since both the MHI and AHA

are essentially time-weighted versions of the MEI and Activity Areas, they are expected to demonstrate

similar degrees of robustness in the presence of additive noise. Indeed, in the experiments that follow,

we show that the AHA remains more robust to noise than the MHI.

VI. EXPERIMENTS

Experiments are conducted with a wide range of real sequences containing a variety of motions

and themes, filmed both outdoors and indoors, with static and varying backgrounds. The use of MoG

background modeling for the extraction of temporal templates is examined and shown to be less effective

and practical than the MEI and Activity Area. Experiments with numerous videos demonstrate the

increased robustness of the kurtosis-based approach to additive noise, compared to the difference-based

method, both qualitatively and quantitatively. The effect of estimating temporal templates from fewer

samples is examined by windowing the data with temporal masks of varying lengths, and comparing

the results with those obtained from processing the entire video. Finally, challenging videos containing

shadows or backgrounds with varying illumination caused by trees moving in the wind, rippling water,

local occlusions, are also examined and it is shown that the proposed kurtosis-based approach provides

better results in those cases as well.

A. MoG modeling for temporal templates

Modeling Accuracy: In this section we present some experimental results, to examine the usefulness

of MoG modeling for the extraction of temporal activity templates. The background is modeled with a
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MoG and active pixels are extracted by subtracting this background estimate from all frames, thresholding

the result, and taking the union of the resulting foregrounds, as in Eq. (19), (20). Fig. 2 shows that this

localizes the active pixels similarly to the MEIs and activity areas (Sec. VI-B, VI-C), but also contains

many false alarms that originate from the rapid illumination changes in the video data, which cannot

be followed by adaptive MoG models. This is a common drawback of adaptive MoG-based background

modeling: it does not adapt rapidly enough to common illumination changes, because the accuracy of

MoG modeling actually depends highly on tuning the model’s parameters [39], [40], [11], which can be

achieved only empirically, or via complex multivariate optimization. This limits its flexibility and general

applicability, and renders it too computationally expensive and complex for practical applications.

Computation Time for MoG model based activity areas: In Table I we compare computation

times for the MoG-based extraction of activity areas with that of kurtosis-based activity areas and MEIs

(Sec. IV, II-C). We use Matlab 7.0 on a DCPU Pentium IV PC at 3.40GHz. The computation time for

the Activity Areas and the MEI is essentially the same, as it differs by fractions of a second. Table I

shows that, for all the videos, the MoG-based method has significantly higher computational times. It

should be noted that the different computation times between videos (and not methods) are due to the

difference in the dimensions of the frames being processed and the length of the sequences.

From the analysis of Sec. VI-A, we conclude that the MoG does not always lead to activity areas as

accurate as those extracted from the simpler methods, since the estimated distribution model does not

always adapt to scene changes quickly enough. It also requires significantly more computational time than

the other approaches, because of the background modeling stage. Consequently, in our problem, namely

that of isolating active pixels, we do not use the MoG for the extraction of active pixel areas. We focus on

the proposed kurtosis-based approach and the difference-based temporal templates (see Sec. IV, VI-C),

which achieve more consistent and accurate results at a lower computational cost.

Fig. 2. MoG-based temporal templates for Wave person 23, Jog person 11-d1, Box person 13-d3.
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TABLE I

COMPUTATION TIMES (SEC) FOR MOG, MEI, KURTOSIS-BASED ACTIVITY AREAS.

Template/Video Hoop Kid Plane 1 Kid Plane 2 Jog 11-d1 Jog 11-d2 Run 11-d1 Run 11-d2 Run 23

MoG 111 450 321 26 28 32 30 35

MEI/Act. Area 32 115 89 6 7 8 7.8 8.5

Template/Video Box 4 Box 13-d1 Box 13-d3 Clap 4 Clap 13-d1 Clap 13-d4 Walk Wave

MoG 23 31 28 29 26 28 38 32

MEI/Act. Area 2 2.3 1.8 2 1.6 1.7 3 2.5

B. Kids videos

In this experiment, the performance of the MEI against the Activity areas in the presence of noise is

examined for videos filmed outdoors, showing kids shooting hoops and throwing toy airplanes. Repre-

sentative frames of the videos masked by the Activity Areas are shown in Fig. 3, and the entire videos,

masked by both the MEI and Activity Area can be found at http://mklab.iti.gr/robust-temporal-templates.

In the presence of additive noise, the MEIs degrade significantly, making it difficult to separate the truly

active pixels from the false alarms, whereas the activity areas are nearly unaffected, as seen in Fig. 4.

Fig. 5 shows how the mean absolute error increases for all temporal templates under increasing noise.

This error is the mean of the absolute difference between the AA-MEI or AHA-MHI extracted in the

absence of noise, and in the presence of increasing noise: it is clear that the MEIs and MHIs are much

more sensitive to additive noise than the AAs and AHAs, as expected from the qualitative results.

C. Human Motions

We conduct numerous experiments with videos of people performing various activities, such as running,

jogging, clapping, which can be viewed at http://mklab.iti.gr/robust-temporal-templates. For activities that

appear in more than one videos, we present qualitative results for one of them for reasons of space, but

quantitative results are shown for all cases in Sec. VI-D. Some examples of Activity Areas superposed on

video frames are shown in Fig. 6, and the entire videos, masked by the MEI and the Activity Areas, can

be found at http://mklab.iti.gr/robust-temporal-templates. As in Sec. VI-B, the Activity Areas prove to be

more robust to additive noise than the MEIs. This can be seen in Fig. 7, where the noise introduces many

false alarms in the MEIs but almost none in the Activity Areas. The noise in the MEIs appears both as

small white dots in the static pixels, but also degrades the overall shape of the MEIs. Thus, morphological
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Fig. 3. Video frames masked by Activity Areas for Hoop, Kid Plane 1, Kid Plane 2.

processing of the noisy MEIs would eliminate the false alarms, but also “erase” significant parts of the

contour, which are characteristic of the activity taking place. The degradation introduced by the additive

noise is particularly evident in the plots of the mean absolute error, in Fig. 8. Here, we see that for a

wide range of motions, the error in the MEIs and MHIs increases significantly, whereas the Activity

Areas and Activity History Areas are not affected much by the noise.

D. Quantitative Comparison

In this section, we provide quantitative results comparing the proposed kurtosis-based approach for the

estimation of the Activity Area and Activity History Area with the difference-based method of finding

the MEI and MHI in the presence of noise. The mean difference between all noisy templates and the

original one, estimated under no noise, is the mean absolute error plotted in Figs 5, 8. Tables II and III

show the mean of this error for each video: it is essentially the mean of the absolute errors plotted in

Fig. 5, 8. The Activity Area and Activity History Area, remain less affected by the additive noise than

the MEI and MHI for the same data sets, so they are considered a more reliable measure of pixel activity,

which can be obtained for a very similar computational cost.

E. Effect of Varying Temporal Window

In this work we have made the assumption that the image statistics do not change from frame to frame.

In practice however, the kurtosis is estimated using arithmetic means over time (video frames), so using

a smaller amount of frames translates into fewer samples, which may lead to small deviations from the
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 4. Effect of noise on temporal templates. In each pair of figures figures, the first is for noiseless, the second for noisy data.

Hoop: (a),(b) MEI (c),(d) AA. Kid Plane 1: (e),(f) MEI, (g),(h) AA. Kid Plane 2: (i),(j) MEI (k),(l) AA.

true expected values. The difference-based method does not compute statistics, as it simply estimates the

union of binary masks extracted from pairs of frames, so it is not affected by the number of frames used.

In order to test the proposed method’s robustness to using fewer frames, experiments are performed by

estimating the MEI and Activity Areas with temporal windows of varying length, ranging from as few

as2 frames to the entire sequence length. The results for each temporal template and for each window

size are compared with the results obtained by using the entire video sequence, and the resulting average

absolute differences are plotted (on the same scale) in Fig. 9 for representative videos. The Activity Area

estimated from fewer frames deviates from its estimate using the entire video, however this deviation

decreases significantly as more frames are used. As can be seen from Fig. 9, the deviation of the Activity
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(a) (b) (c)

(d) (e) (f)

Fig. 5. Mean absolute error under increasing noise. Top row, MEI and Activity Area. Bottom row, MHI and Activity History

Area. (a), (d) Hoop, (b), (e) Kid plane 1, (c), (f) Kid plane 2.

Fig. 6. Video frames masked by Activity Areas for two boxing, one clapping, one handwaving videos.

Area computed using fewer frames from that computed by using all frames is generally not very high,

even for very short temporal windows: temporal windows of2 or 3 frames are very small, and yet still

provide a reliable template of the Activity Area in some cases, e.g. for the Basketball Hoop, Box or

Pool videos, in Fig. 10. In other videos, small errors appear in the background when much fewer frames

than the entire sequence are used, such as the Trees and Kid Flying Plane sequences, which contain over

100 frames. This is not unexpected, since the kurtosis is estimated from the arithmetic average over the

video frames, which becomes more reliable as the number of frames used increases. Nevertheless, the

active pixels are still correctly extracted, and Activity Areas with almost no errors can still be obtained

by using longer subsequences, but not the entire video.
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Fig. 7. Effect of noise on temporal templates for various human activities. Each line has a MEI for noiseless data, a MEI for

noisy data, an AA for noiseless data, an AA for noisy data.

F. Videos with Shadows

In this section a set of experiments with videos containing shadows takes place. The temporal templates

are extracted as before, and postprocessing takes place in order to remove the pixels corresponding to

shadows based on color information [41]. The HSV color space is used as it matches human perception

of color [42], and has shown to be a shadow invariant space [43], although other color spaces can also

be used [44]. The videos examined are from games of pool, where the pool ball, the stick and the

hand of the player create a shadow on the table. Fig. 11 shows that the MEI and Activity Area results
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 8. Mean absolute error under increasing noise. MEI and AA: (a) Jog, (b) Run, (c) Box, (d) Clap (e) Walk (f) Wave. MHI

and AHA: (g) Jog, (h) Run, (i) Box, (j) Clap (k) Walk (l) Wave

Fig. 9. Mean absolute error from varying window length. Basketball hoop, Kid flying plane, Trees, Pool topspin.

are comparable for these videos, although the MEI is slightly noisier, as can also be seen from the

videos on http://mklab.iti.gr/robust-temporal-templates. Color based removal of the shadows combined
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TABLE II

MEAN ABSOLUTE ERROR OFMEI AND ACTIVITY AREA.

Template/Video Hoop Kid Plane 1 Kid Plane 2 Jog 11-d1 Jog 11-d2 Run 11-d1 Run 11-d2 Run 23

MEI 0.1256 0.0325 0.0938 0.0686 0.0403 0.0677 0.0307 0.0225

Activity Area 0.0279 0.007 0.0164 0.0105 0.0092 0.0134 0.0091 0.0069

Template/Video Box 4 Box 13-d1 Box 13-d3 Clap 4 Clap 13-d1 Clap 13-d4 Walk Wave

MEI 0.0617 0.0705 0.0954 0.0694 0.0554 0.0381 0.0063 0.0685

Activity Area 0.0042 0.0054 0.0084 0.0013 0.0019 0.0020 0.0046 0.0170

TABLE III

MEAN ABSOLUTE ERROR OFMHI AND AHA.

Template/Video Hoop Kid Plane 1 Kid Plane 2 Jog 11-d1 Jog 11-d2 Run 11-d1 Run 11-d2 Run 23

MHI 3.0458 2.5040 4.3244 3.1539 1.9253 0.4931 0.8216 2.8312

AHA 0.0926 0.0655 0.0700 0.2365 0.1225 0.0550 0.0775 0.1778

Template/Video Box 4 Box 13-d1 Box 13-d3 Clap 4 Clap 13-d1 Clap 13-d4 Walk Wave

MHI 1.7635 8.9850 4.4636 2.3073 1.9328 1.9953 1.3789 5.1270

AHA 0.0353 0.1561 0.2691 0.0575 0.0643 0.1201 0.0728 0.2575

Fig. 10. AA for: Basketball hoop, windows of2, 10 frames. Kid flying plane, windows of24, 70 frames. Boxing, windows of

5, 100 frames. Trees, windows of15, 50 frames. Pool, windows of3, 30 frames.
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with the Activity Area leads to the results of Fig. 11(d), (h), where it can be seen that the shadow pixels

have been effectively removed, without affecting the truly active pixels. Videos masked by the Activity

Area and MEI after shadow removal can be seen on http://mklab.iti.gr/robust-temporal-templates. Many

different kinds of post-processing can be applied for shadow removal, but detailed investigation into

them is beyond the scope of this paper, as they depend on the application and information available,

requiring e.g. information about the direction of the light source,3D geometry of the background [45],

or assumptions about the direction of the shadow [46].

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 11. Curve ball. (a) frame 20 (b) MEI (c) Activity Area (d) Activity Area without shadow. Topspin: (e) frame 50 (f) MEI

(g) Activity Area (h) Activity Area without shadow.

G. Videos with Varying Backgrounds and Occlusions

The proposed kurtosis-based method is expected to remain robust to deviations of the background

illumination changes from the single Gaussian model, due to the robustness of the kurtosis metric. Its

global nature is also expected to make it robust to local occlusions and illumination changes. Experi-

ments with challenging sequences, containing backgrounds with tree leaves moving in the wind, local

occlusions, crowds in stadiums, rippling water, take place to show that, indeed, in those cases the Activity

Areas remain more accurate than the MEIs (see http://mklab.iti.gr/robust-temporal-templates). The videos

containing trees moving in the wind contain significant background motion, which is not mistaken for

the actual foreground motion by the kurtosis-based approach, although it introduces several artifacts in

the MEIs. These videos also contain local occlusions, however both methods remain unaffected by them,
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due to their global nature. In the video of the polevault jumper, there are small motions in the crowd.

The MEI for this case is significantly degraded, whereas the Activity Area correctly captures the active

pixels. Finally, the video with the polar bear contains motion of the water, which is higher in the front of

the bear’s island. As before, the MEI erroneously incorporates many of the moving background pixels,

and the Activity Area proves much more robust, isolating only the truly active pixels, but also a region

of the water with higher activity. Videos containing the original videos, the videos masked by the MEI

and the Activity Area, can be seen in http://mklab.iti.gr/robust-temporal-templates, where it can be seen

that the Activity Areas indeed significantly outperform the MEIs in more challenging cases.

VII. C ONCLUSIONS, FUTURE WORK

We have presented a novel, robust, computationally efficient approach for the characterization of pixels

in a video sequence as active. The proposed method is based on the processing of higher order statistics

of the pixels’ illumination changes over time, and is compared with often-used difference-based solutions.

Unlike existing background removal techniques, it does not require prior knowledge, a training stage,

and has a low computational cost. The kurtosis is used as an indicator of pixel activity, as its value

is theoretically zero when a pixel is static and the measurement noise follows a Gaussian distribution

over time. Theoretical analysis demonstrates the robustness of the proposed approach to additive noise,

and the sensitivity of difference-based methods to it. The deviation of additive noise from a Gaussian

distribution when the background is modeled by MoGs is shown to affect the kurtosis very little. MoGs

are shown to be computationally more costly and sensitive to correct initialization of model parameters,

so they are not included in the comparison of methods for temporal templates. Extensive experiments

demonstrate the effect of additive noise on the Activity Areas generated by the proposed, kurtosis-based

method, and on the MEIs, as well as its effect on the Activity History Areas and MHIs. Both qualitative

and quantitative results show that higher-order statistics provide a more reliable and robust measure of

pixel activity. By applying temporal windows of varying size to obtain the kurtosis-based Activity Areas,

it is shown that the method remains robust to using smaller amounts of data. The issue of the presence

of shadows is also addressed via post-processing, which successfully removes the shadow pixels, while

retaining the truly active pixels in the temporal templates. Finally, challenging videos containing moving

backgrounds and occlusions are examined, and it is shown that the kurtosis-based approach can provide

more accurate results than the difference-based one, even under realistic and difficult conditions.
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Fig. 12. Videos with moving tree leaves in the background, a polevault jumper and a bear, with non-static backgrounds. Each

row has a ideo frame, video frame masked by MEI, video frame masked by AA. In all cases the AA mask contains fewer

artifacts.

APPENDIX A

DERIVATION OF KdI

The kurtosis of illumination changes given by Eq (10) is derived below.

KdI = E[(I(x, y, t)− I(x, y, t− 1))4]− 3(E[(I(x, y, t)− I(x, y, t− 1))2])2, (29)
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where

E[(I(x, y, t)− I(x, y, t− 1))4] = E[I4(x, y, t) + I4(x, y, t− 1) + 2I2(x, y, t)I2(x, y, t− 1)

+4I2(x, y, t)I2(x, y, t− 1)− 4I(x, y, t)I(x, y, t− 1)(I2(x, y, t) + I2(x, y, t− 1)]

= E[I4(x, y, t)] + E[I4(x, y, t− 1)] + 2E[I2(x, y, t)I2(x, y, t− 1)]

+4E[I2(x, y, t)I2(x, y, t− 1)]− 4E[I3(x, y, t)I(x, y, t− 1)]− 4E[I(x, y, t)I3(x, y, t− 1)]

= 2m4 + 2E[I2(x, y, t)I2(x, y, t− 1)] + 4E[I2(x, y, t)]E[I2(x, y, t− 1)]

−4E[I3(x, y, t)I(x, y, t− 1)]− 4E[(I(x, y, t)I3(x, y, t− 1)], (30)

where we have taken into account the assumptions of Sec. IV-A, namely that thekth order moments of

each frame’s value remain the same over successive frames. The notation of Eq. (3) is also used here.

Also:

(E[(I(x, y, t)− I(x, y, t− 1))2])2 = (E[I2(x, y, t)])2 + (E[I2(x, y, t− 1)])2

+2E[I2(x, y, t)]E[I2(x, y, t− 1)] + 4E2[I(x, y, t)I(x, y, t− 1)]

−4E[I(x, y, t)I(x, y, t− 1)]E[I2(x, y, t)]− 4E[I(x, y, t)I(x, y, t− 1)]E[I2(x, y, t− 1)] (31)

By plugging Eqs. (30), (31) into Eq. (29), we get:

KdI = 2KI + 6(E[I2(x, y, t)I2(x, y, t− 1)]− E[I2(x, y, t)]E[I2(x, y, t− 1)])− 4E[I3(x, y, t− 1)I(x, y, t)]

−4E[I3(x, y, t)I(x, y, t− 1)]− 12(E[I(x, y, t)I(x, y, t− 1)])2 + 12E[I(x, y, t)I(x, y, t− 1)]E[I2(x, y, t)]

+12E[I(x, y, t)I(x, y, t− 1)]E[I2(x, y, t− 1)] = 2KI + Kc, (32)

where KI is the kurtosis of each frame’s luminance valuesI(x, y, t), considered to be the same for

all frames and byKc we denote the cross-correlation of successive frames’ illumination values (and

their higher powers). If we consider that illumination values from different frames and their powers are

independent from each other, as well as that their higher order moments are the same, Eq. (31) becomes

KdI = 2KI − 8m1m2 − 12m4
1 + 24m12m2.

APPENDIX B

DERIVATION OF KURTOSIS FORMOG

The derivation of the kurtosis for the general case of a MoG is provided below. The pdf for a MoG is

fX(x) =
∑N

i=1 wifi(x), wherefi are Gaussian distributions with meanµi and varianceσ2
i . The higher
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order moments ofX from Eq. (16) areE[Xk] =
∑N

i=1 wiEfi[Xk], with Efi[Xk] thekth order moments

of Gaussianfi. The kurtosis ofX is KX = E[X4]− 3E2[X2], whereE[X4] =
∑N

i=1 wiEfi[X4] and

E2[X2] = (
N∑

i=1

wiEfi[X2])2 =
N∑

i=1

w2
i E

2
fi[X

2] +
∑

i6=j

wiwjEfi[X2]Efj [X2]. (33)

The kurtosis ofX is then given by:

KX =
N∑

i=1

wiEfi[X4]− 3
N∑

i=1

w2
i E

2
fi[X

2]− 3
∑

i6=j

wiwjEfi[X2]Efj [X2]

=
N∑

i=1

wi(Efi[X4]− 3E2
fi[X

2]− 3(wi − 1)E2
fi[X

2])− 3
∑

i6=j

wiwjEfi[X2]Efj [X2]

=
N∑

i=1

wiKXi − 3wi(wi − 1)E2
fi[X

2]− 3
∑

i6=j

wiwjEfi[X2]Efj [X2]

= 3
( N∑

i=1

wi(1− wi)E2
fi[X

2])−
∑

i 6=j

wiwjEfi[X2]Efj [X2]
)

, (34)

whereKXi = Efi[X4] − 3E2
fi[X

2] = 0, since the individual mixturesfi are Gaussian and have zero

kurtosis. This quantity, representing the kurtosis of data that follows a MoG distribution, obtains small

values, as the weights are less than one, and become very small when multiplied with each other.
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