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Abstract—The recognition of Activities of Daily Living (ADL) 
from video can prove particularly useful in assisted living and 
smart home environments, as behavioral and lifestyle profiles can 
be constructed through the recognition of ADLs over time. Often, 
existing methods for recognition of ADLs have a very high 
computational cost, which makes them unsuitable for real time or 
near real time applications. In this work we present a novel 
method for recognizing ADLs with accuracy comparable to the 
state of the art, at a lowered computational cost. Comprehensive 
testing of the best existing descriptors, encoding methods and 
BoW/SVM based classification methods takes place to determine 
the optimal recognition solution. A statistical method for 
determining the temporal duration of extracted trajectories is 
also introduced, to streamline the recognition process and make 
it less ad-hoc. Experiments take place with benchmark ADL 
datasets and a newly introduced set of ADL recordings of elderly 
people with dementia as well as healthy individuals. Our 
algorithm leads to accurate recognition rates, comparable or 
better than the State of the Art, at a lower computational cost. 

 
I. INTRODUCTION 

 
The problem of human activity recognition is central in 

computer vision, attracting significant research attention. It is 
of particular interest in smart homes and assisted living 
situations, as videos of a person’s daily life cannot be 

effectively parsed by human operators due to their huge 
volume and the fact that they often contain long segments with 
uninteresting content. Effective and accurate recognition of 
ADLs can play a very significant role in determining a 
person’s condition and its progression over time, and is the 
main goal of this work, where focus is placed on the 
recognition of ADLs with high accuracy and lowered 
computational cost, both in lab and realistic environments. 

 Numerous methods have been developed for activity 
recognition in recent years, with space-time feature based 
approaches being among the most popular ones for video 
representation [1], which, in combination with Bag of Features 
methods, lead to State of the Art (SoA) results. Feature- based 
methods have been used successfully in object recognition, 
which motivated the development of numerous types of 
features now being tested for activity recognition. Usually 
action recognition is based on sparse features to reduce the 
computational cost, but results in performance degradation. 
Recent methods use dense interest point tracking [3], as it 
provides more information about the scene and, consequently, 
more accurate recognition results.  

 
.  
 

 
Fig 1. Feature Extraction: MBAAs localize pixels where velocity changes. Dense sampling is applied to MBAAs to extract interest 
points. HOG and HOF are estimated around interest points that are tracked by KLT. RANSAC is applied to eliminate outlier 
matches. CUSUM is applied to detect changes in motion and automatically determine the temporal extent of each trajectory.  



 
Fig 2. Action Recognition: local descriptor space is partitioned via k-means and GMM clustering of training data. Several 
encoding techniques are tested: Lp-Norm with a tf-idf implementation, Fisher transformation and hard binning with a Chi-square 
Kernel. A multiclass SVM is used for creating the appropriate model that will discriminate the action descriptors. 
 

Our approach is inspired from Wang [3], who achieves SoA 
results by extracting dense trajectories. We use dense 
trajectories to recognize activities of daily living with 
accuracy, but also reduce the computational cost when 
extracting and training the features that will describe the 
actions. For this purpose, we introduce a novel binary mask, 
called Motion Boundary Activity Area (MBAA), which 
localizes regions where the velocity changes in relation to its 
neighborhood. A multi-scale dense grid samples interest 
points in the MBAAs and action descriptors are consequently 
produced, based on Histograms of Oriented Gradients (HOG) 
and Histograms of Optical Flow (HOF). Interest points are 
tracked using the KLT tracker [4] and RANSAC is used to 
correctg erroneous correspondences. Fig. 1 and Fig. 2 below 
depict the feature extraction and action recognition 
frameworks, respectively. 

A significant innovation in our method is the use of 
statistical sequential change detection to determining the 
temporal length of each trajectory. The motion histograms of 
each trajectory are used to model its velocity distribution and 
statistical sequential change detection, namely the Cumulative 
Sum (CUSUM) method is applied to automatically detect 
when the velocity distribution changes, to find the correct 
temporal extent of each sub-activity 

We go beyond the state-of-the-art [1, 2, 3, 6, 7] by testing 
several techniques for vocabulary building and encoding in the 
most informative manner. We tested k-means and GMM 
clustering for a rich, discriminative vocabulary. Additionally, 
we tested a wide range of encoding schemas, like the classic 
hard binning followed by Chi-square, a smart similarity 
scoring technique that uses an inverted index for fast 
acquisition and the Fisher transformation, for comparing video 
sequences. An SVM classifier is finally deployed to recognize 
the actions found in the test data.  

This paper is organized as follows: Section II describes the 
general methodology used, and more specifically the feature 
extraction approach, the introduction of Motion Boundary 
Activity Areas, the resulting spatiotemporal descriptor and 

finally, the statistical sequential change detection method 
applied to determine each trajectory’s temporal extent. Section 
III focuses on the vocabulary building and encoding used for 
the Bag of Features approach that we use to characterize and 
then recognize activities in videos. Experimental results with 
benchmark and new, realistic datasets are presented in Section 
IV and conclusions are drawn in Section V. 
 

II. METHODOLOGY 
 

A. Feature Extraction 
 
The most important part for describing an action is to 

represent it in the most discriminative way. Background 
clutter, great anthropometric variance (different height, 
different clothes), different camera viewpoints should be dealt 
with to obtain the most robust and accurate recognition result.  

The first step in feature extraction is to sample meaningful 
spatio-temporal interest points where the motion will be 
described. Most state-of-the-art methods [2, 7] use the 
temporal extension of the Harris corner detector, which was 
introduced in [10]. However, a great limitation of this detector 
is that all geometric information is lost during the Bag of 
Words (BoW) step and it is not suitable for action sequences 
that do not contain enough repeatable space-time corners, such 
as aperiodic motions. Other techniques [3, 11] sample interest 
points and track them throughout time. Sampling may occur 
either densely or by using a corner detector, however both of 
them proved to be computationally expensive and cannot be 
used in real time.  

The next step of feature extraction includes the description 
of the action. Most approaches extend image descriptors over 
time, producing spatiotemporal cuboids that represent the 
actions. Thus for actions that can be described mainly by their 
appearance characteristics, extensions of the SIFT descriptor 
[6] and HOG descriptor [7] are used. Motion characteristics 
can be included via Optical Flow, as in Laptev [12], where 



HOGHOF features were introduced. Other descriptors include 
dense trajectory information [3], or velocity history [11].  

In this work we propose a novel schema for interest point 
detection that is based on the statistical analysis of the motion 
vectors over time. This technique drastically reduces the 
computational cost of the algorithm without degrading its 
discriminative power. A binary mask which localizes changes 
in motion (in contrast to the commonly used foreground masks, 
which localize changes in luminance over time) is first 
introduced. Multi-scale grids are formed and dense sampling 
within the precomputed mask is performed, producing a spate 
of spatio-temporal interest points, robust to scale variance. 
These points are then tracked over time by using a recent 
pyramidal implementation of the KLT tracker [4]. Outlier 
correspondences are eliminated by RANSAC, increasing the 
algorithm’s accuracy. We use the HOGHOF descriptor for 
representing actions because of its low computational cost. 
Finally, we automatically determine the temporal extent of the 
trajectories by the application of statistical sequential change 
detection of each trajectory’s velocity values over time. 

 
B. Motion Boundary Activity Area 

 
Motion boundary activity areas (MBAAs) are an extension 

of Activity Areas that were introduced in [5]. In this step, we 
analyze the Optical Flow gradients, which indicate the regions 
where motion changes (Motion Boundaries). This leads to a 
smaller region of interest, without losing discriminative 
power. Thus, we obtain a binary mask that separates motion 
regions that are produced from changes in motion due to a 
subject’s activity (e.g. a person in a smart home or another 
assisted living situation) and not from background clutter or 
illumination variance. We assume that data induced by noise 
follows a Gaussian distribution (hypothesis H0), while changes 
in motion introduce deviations from Gaussianity (hypothesis 
H1), as expressed below: 
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where uk(r), zk(r) denote actual optical flow values and noise 
in the flow, respectively. The kurtosis measure of Gaussian 
data is known to be equal to zero and can thus be used to 
detect whether motion boundaries are caused by noise or by 
changes in optical flow, in order to localize regions of 
changing motion. We extend the work of [5] by using the 
unbiased kurtosis estimator [13], given by: 
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where W is a manually chosen temporal window from which 
data (motion values) are obtained. The kurtosis values will be 
significantly higher in regions of pixels whose motion is 
changing, so the binarized 2D kurtosis “maps” of each frame, 
called Motion Boundary Activity Areas (MBAAs) indicate 
which pixels are undergoing changing motion.  
      Fig 3 shows the optical flow vectors with direction and 
magnitude, the original activity area (AA) and the motion 
boundary activity area (MBAA). We can clearly see the 
reduced size of the binary mask in the second case. 

  
(a) (b) 

  
(c) (d) 

Fig 3. (a) Direction vectors of Optical Flow. (b) Magnitude 
and coloured direction of Optical Flow. (c ) Activity area. (d) 
Motion boundary activity area. We can see the reduced size of 
the MBAA, which leads to lower computational cost whithout 
losing its discriminate power. 

 
C. The SpatioTemporal Descriptor 

 
The next goal of our algorithm is to detect informative 

spatio-temporal interest points so that we can build a robust 
descriptor. For this purpose we build 4-scale grids in a 
pyramidal manner. Within these grids we analyze the values 
that the binary mask produces. If more than 50% of the values 
have a positive flag and no other interest points coexist in the 
block than we declare it as moving and use its center as an 
interest point. The collected interest points are tracked 
throughout time using a pyramidal implementation of the 
renowned KLT tracker [4] and their correspondence is verified 
by computing the homography of the two interest point sets.  

Action trajectories are formed by accumulating the correct 
interest point correspondences over time. Around each interest 
point, we compute the HOG and HOF descriptors, acquiring 
appearance and motion information respectively and building, 
in this manner, an Action Cuboid. Both descriptors are 
computed in 4 scales kσ (every kσ = 8, 16, 24, 32 pixels), 
around each interest point to guarantee scale invariance. In 
order to maintain the spatial localization of each descriptor, 
we divide each block into 2x2 cells. The resulting histograms 
that are computed within the cells are accumulated and 
normalized, leading to a global motion histogram, which still 
contains localization information.  

Temporal trajectory length is calculated by applying 
statistical sequential change detection on the HOF histograms. 
This technique extracts points in time where motion changes 
abruptly. This leads to trajectories of a different, optimally 
derived temporal extent, depending on the motion changes in 
each activity. This technique is further analyzed in the next 
section. After the trajectory acquisition, we build our spatio-
temporal descriptor by stacking all the trajectory descriptors. 
For providing a common dimension descriptor for each 



trajectory, we divide the trajectory structure in three parts and 
average the histograms within them. Thus, taking into account 
that we use 9 bins for each HOG and HOF histogram, we 
produce a 216 dimensional descriptor for each trajectory. 
 
D. Change Detection for Optimal Trajectories 

 
As mentioned in the previous paragraph, one of the 

innovations of our method is the computation of optimal 
trajectories, acquired by analyzing motion cues. For this 
purpose, we implemented a change detection algorithm 
inspired by [14], which analyzes the motion histograms taken 
of each trajectory’s HOF descriptors. Sequential change 
detection, and in particular the Cumulative Sum (CUSUM) 
method is applied to each trajectory for determining its 
optimal length.  
     An initial distribution f0 of the velocities of the tracked 
points is firstly computed from the first w0 frames by 
modeling that trajectory’s velocity histograms H0 = f{h1,h2, 
…,hwo}. We model each trajectory’s motion by a multi-variate 
Gaussian distribution.

 

For simplicity, it is assumed that the 
HOGHOFs are uncorrelated between different time instances i 
≠ j, giving: 
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trajectories and auto-correlation values equal to the square of 
the variance. The initial pdf is then given by: 
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This initial distribution is compared at each frame k with the 
“current” one, estimated from the most recent w0 set of 
histograms H1={hk-w0-1,hk-w0-2,..hk}, including the latest one, 
and is given by: 
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The algorithm is then required to determine whether a change 
occurs or not at the current frame based on the log-likelihood 
ratio of the trajectory velocity distributions [15], which is used 
as a test statistic Tk, given by:  
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CUSUM can then be applied in the computationally efficient 

iterative form introduced by Page in [15]: 
Sk =max 0,Sk!1 +Tk( ),S0 = 0  

 
For Gaussian data under each hypothesis H0 and H1, the test 
statistic, i.e. the log-likelihood ratio, becomes: 
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The inverse of each diagonal matrix is given by:  
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Thus, by plugging in Tk calculated at each frame, we get a 
value for the test statistic Sk which significantly increases 
when there is a change in our data, i.e. the motion features. At 
each frame, Sk is then compared against an empirically 
derived threshold, which is chosen to lead to the lowest 
number of false alarms [17] and, when it surpasses it, a change 
is detected. This leads to the temporal segmentation of the 
extracted trajectories based on actual changes in the activities 
taking place, rather than their segmentation using a manually 
selected constant threshold (e.g. setting all trajectories to 15 
frames long), which is often the case in the current literature. 

 
III. BAG OF FEATURES 

 
The bag-of-features pipeline is one of the most widely used 

methods for representing a video sequence, as well as images, 
as a normalized frequency histogram of local space-time 
features. The central idea of this concept is to partition the 
local descriptor space into informative spaces and then 
associate each video sequence to the obtained cluster centers 
of these regions by quantizing each local descriptor. We 
examine several variations of this method, using State of the 
Art encodings from video analysis and object recognition to 
improve upon existing activity recognition algorithms. 

 
A. Vocabulary Construction 

 
K-means clustering is the most common technique used 

to construct the desired visual vocabulary [2, 3, 6, 7, 12]. 
Given a set {x1,…,xN} ∈  RD of N training descriptors, k-means 
seeks K Cluster Center vectors CC1,…,CCK ∈ RD that can 
partition the local descriptor space in the best possible way. 



The most commonly used implementation of this technique is 
proposed in [16]. Recently another, more sophisticated 
technique was proposed in [9], based on hierarchical tree 
structures. It is very useful for describing large scale datasets, 
as it is much faster than traditionally used k-means, as it uses 
an approximate nearest neighbours, based on hierarchical tree 
structures, without losing its accuracy. In our work we test 
both K-means and hierarchical K-means, to detect changes in 
their recognition accuracy and computational speed. 
 

GMM (Gaussian Mixture Model) clustering, on the 
other hand, has been successfully used for image recognition 
and retrieval purposes and has produced very promising 
results [12, 18]. This procedure is more sophisticated, as it 
models the data with a parametric probability density p(x|θ) 
given by : 
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where θ=(π1,µ1,Σ1,..., πk,µk,Σk) is the vector of parameters of 
the model, including the prior probability values πk ∈  R+ 
(which sum to one), the means µk ∈  RD, and the positive 
definite covariance matrices Σk ∈  RDxD of each Gaussian 
component. Expectation maximization (EM) is applied on a 
training set of descriptors {x1,…,xN}∈RD in order to learn the 
data parameters and provide a set of Cluster Centers for soft 
data-to-cluster assignment, given by: 
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B. Visual Encodings and Kernels 

 
       Hard binning encoding followed by non-linear Kernels 
is the most common practice that follows k-means clustering 
for training an SVM classifier. The most famous non-linear 
Kernel that follows binning belongs to additive homogeneous 
kernels and is called χ2 (Chi square) kernel, given by:  
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The resulting vectors are then l2-normalized. 
        Inverted documents are usually used in approximate 
nearest neighbor, for fast acquisition and efficient memory 
management. Term frequency – inverted document frequency 
(TF-IDF) is usually the metric that is used on these structures, 
following normalized hard binning. A non-linear Kernel is 
then constructed by computing similarity scores among video 
sequences. The similarity score between two video sequences 
q, d is computed by using the Lp norm metric:  

Dist(q,d) = q! d p
= qi ! di

p

i
"  

The non-linear Kernel is then given by:  
K= exp !!Dist(q,d)( )  

The last technique examined for encoding a video sequence is 
Fisher encoding, after building a GMM vocabulary. Fisher 
encoding has been used very successfully for object 
recognition leading to very accurate state of the art results, and 
is expected to also lead to accurate video recognition. Our 
experiments in Section IV show that, indeed, this is the case 
for video activity recognition. 
 
The first step of this procedure computes the first and second 
order differences between the action descriptors and the 
centres of GMM. For instance, given a set of descriptors 
x1,…,xN sampled from a video sample, let qk,i, k =1,…,K, 
i=1,…,N be the soft assignments of the N descriptors to the K 
Gaussian components. For each k = 1,…,K, we then define the 
vectors:  
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The Fisher encoding of the set of local descriptors is then 
given by the concatenation of uk and vk for all K components, 
giving an encoding of size 2DK: 
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This procedure is performed for several spatial pyramids in 
order to provide geometry information to our encoding and 
boost the accuracy. Each vector is normalized using a 
Hellinger kernel: 
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The resulting vectors are then accumulated in a single one, 
which is l2-normalized for best results. Finally, in all the 
experiments, a linear SVM is used on top of each encoding for 
activity recognition, as is the case in the current literature. 
 

IV. EXPERIMENTS 
 

Our experiments are first conducted on videos of activities of 
daily living, namely the University of Rochester ADL videos 
(URADL: http://www.cs.rochester.edu/~rmessing/uradl/). The 
names of the activities of this dataset are encoded in the tables 
as AP = Anser Phone, CB = Chop Banana, ES = Eat Snack, 
DP = Dial Phone, DW = Drink Water, EB = Eat Banana, LiP 
= Look up in Phonebook, PB = Peel Banana, US = Use 
Silverware, WoW = Write on Whiteboard. The activities were 
performed three times by five different people resulting in 150 
video sequences. Our evaluation consisted of training on all 
repetitions of activities by four of the five subjects, and testing 
on all repetitions of the fifth subject’s activities. This leave-
one-out testing was averaged over the performance with each 
leftout subject. 
 



In addition to URADL, a new, realistic dataset of people 
carrying out activities of daily life in a home-like environment 
was also created, within the European Project Dem@Care 
(Dementia Ambient Care: Multi-Sensing Monitoring for 
Intelligent Remote Management and Decision Support, 
http://www.demcare.eu/), which aims at supporting elderly 
people with dementia and promoting their independence at 
home, by monitoring their daily living and detecting behavior 
and lifestyle patterns, as well as deviations from them (which 
may indicate an improvement or worsening of their condition).  
 
Video recordings of activities of daily living, conducted by 
people diagnosed with mild dementia to Alzheimer’s, as well 
as healthy individuals, at the Greek Association for 
Alzheimer’s and Associated Disorders1. 32 individuals were 
recorded from each group, performing eleven activities of 
daily life. 21 patients were used for training our recognition 
model, providing 230 video sequences and 11 subjects of the 
patient population were used for testing purposes, providing 
118 video sequences. This resulted in a much more 
challenging and realistic dataset than the preceding one, due to 
its subject variability and the unconstrained environment.  
 

  

  

  
 
Fig 4. Characteristic samples from the Dem@Care dataset 
with ADL, namely: Drink Beverage, Enter Room, Handshake, 
Read Paper, Start Phonecall, Talk to Visitor. 
A. URADL Dataset 
 
 

                                                             
1 http://www.alzheimer-hellas.gr/english.php 

The activities of DemCare dataset are encoded in the tables as 
CU = Clean Up table, DB = Drink Beverage, EP = End 
Phonecall, ER = Enter Room, ES = Eat Snack, HS = 
HandShake, PS = Prepare Snack, RP = Read Paper, SB = 
Serve Beverage, SP = Start Phonecall, TV = Talk to Visitor. 
The faces of the individuals shown in Fig. 4 are not visible for 
privacy protection reasons. All individuals, both health 
volunteers and people with dementia (or their guardians) have 
signed the appropriate ethical consent forms before the 
recordings took place. 
 
Experiments took place to determine which bag-of-features 
and encoding schema perform best with our improved  
descriptor. Tables 1 – 3 below show the results of k-means 
with χ2, hierarchical k-means with Lp non-linear kernel and 
GMM – fisher vector. The best results were acquired with a 
GMM vocabulary combined with Fisher encoding. 
 
Table1. Activity recognition with K-means vocabulary 
(K=4000 CC) and χ2 kernel. 
 

k-­‐
means	
  
4000	
  
CC,	
  chi	
  
square	
  

HOGHOF	
  RANSAC	
  

AP	
   CB	
   DP	
   D
W	
   EB	
   ES	
  

L
i
P	
  

PB	
   U
S	
  

W
o
W	
  

AP	
   0.47	
   	
   0.4	
   	
   0.13	
   	
   	
   	
   	
   	
  

CB	
   	
   0.93	
   0.07	
   	
   	
   	
   	
   	
   	
   	
  
DP	
   0.07	
   	
   0.93	
   	
   	
   	
   	
   	
   	
   	
  
DW	
   	
   	
   	
   1	
   	
   	
   	
   	
   	
   	
  

EB	
   	
   	
   0.07	
   	
   0.8	
   0.0
7	
   	
   0.07	
   	
   	
  

ES	
   	
   	
   0.07	
   	
   0.07	
   0.8	
   	
   0.07	
   	
   	
  
LIP	
   	
   	
   	
   	
   	
   	
   1	
   	
   	
   	
  
PB	
   	
   	
   	
   	
   	
   	
   	
   1	
   	
   	
  
US	
   	
   	
   	
   	
   	
   	
   	
   	
   1	
   	
  

WOW	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   1	
  

Average	
  Accuracy	
  0.893	
  
 
 
Table2. Activity recognition with HK-means vocab., Lp

 kernel. 
 

Hk-­‐
means	
  
9^4	
  

HOGHOF	
  RANSAC	
  

AP	
   CB	
   DP	
   DW	
   E
B	
  

E
S	
  

LiP	
   PB	
   U
S	
  

W
o
W	
  

AP	
   0.27	
   	
   0.33	
   0.2	
  
0
.
2	
  

	
   	
   	
   	
   	
  

CB	
   	
   0.93	
   0.07	
   	
   	
   	
   	
   	
   	
   	
  
DP	
   0.2	
   	
   0.67	
   0.07	
   	
   	
   	
   0.07	
   	
   	
  
DW	
   	
   	
   	
   1	
   	
   	
   	
   	
   	
   	
  
EB	
   	
   	
   	
   	
   1	
   	
   	
   	
   	
   	
  
ES	
   	
   	
   	
   	
   	
   1	
   	
   	
   	
   	
  
LIP	
   	
   	
   	
   	
   	
   	
   1	
   	
   	
   	
  
PB	
   	
   	
   	
   0.07	
   	
   	
   	
   0.93	
   	
   	
  
US	
   	
   	
   	
   	
   	
   	
   	
   	
   1	
   	
  

WOW	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   1	
  

Average	
  Accuracy	
  0.887	
  
 
 



Table3. Activity recognition with GMM vocabulary and Fisher 
vector. 
 
Helling
er	
  L2	
  
norm.	
  

HOGHOF	
  256CC	
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AP	
   CB	
   DP	
   D
W	
  

EB	
   E
S	
  

LiP	
   PB	
   U
S	
  

W
o
W	
  

AP	
   0.47	
   	
  	
   0.47	
   	
  	
   0.07	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
  
CB	
   	
  	
   0.93	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   0.07	
   	
  	
   	
  	
  
DP	
   0.13	
   	
  	
   0.87	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
  
DW	
   	
  	
   	
  	
   	
  	
   1	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
  
EB	
   	
  	
   	
  	
   0.13	
   	
  	
   0.87	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
  
ES	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   1	
   	
  	
   	
  	
   	
  	
   	
  	
  
LIP	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   1	
   	
  	
   	
  	
   	
  	
  
PB	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   1	
   	
  	
   	
  	
  
US	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   1	
   	
  	
  

WOW	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   1	
  

Average	
  Accuracy	
  0.913	
  
 
Based on the above observations from the results of Tables 1-
3, we chose to use the GMM – fisher vector encoding in our 
next experiments. Experiments, whose results are shown in 
Table 4, were conducted in order to determine whether the 
RANSAC outlier elimination will boost the performance of 
our algorithm. Indeed, an obvious drop on the performance 
was observed when we omitted RANSAC estimator, with 
average accuracy falling to 86.7% from 91.3%. 
 
Table 4. Activity recognition without RANSAC estimator 
 
Hellinge
r	
  L2	
  
norm.	
  

HOGHOF	
  256CC	
  No	
  RANSAC	
  

AP	
   CB	
   DP	
  
D
W	
   EB	
  

E
S	
  

Li
P	
   PB	
   US	
  

Wo
W	
  

AP	
   0.4
7	
   	
   0.4	
   	
   0.1

3	
   	
   	
   	
   	
   	
  

CB	
   0.2	
   0.7
3	
   	
   	
   	
   	
   	
   0.0

7	
   	
   	
  

DP	
   	
   	
   0.9
3	
   	
   	
   	
   	
   0.0

7	
   	
   	
  

DW	
   	
   	
   	
   1	
   	
   	
   	
   	
   	
   	
  

EB	
   	
   	
   0.1
3	
   	
   0.6

7	
   	
   	
   0.2	
   	
   	
  

ES	
   	
   	
   	
   	
   	
   1	
   	
   	
   	
   	
  
LIP	
   	
   	
   	
   	
   	
   	
   1	
   	
   	
   	
  

PB	
   	
   0.0
7	
   	
   	
   	
   	
   	
   0.9

3	
   	
   	
  

US	
   	
   	
   	
   0.0
7	
   	
   	
   	
   	
   0.9

3	
   	
  

WOW	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   1	
  

Average	
  Accuracy	
  0.867	
  
 
Finally, we compare our results on the URADL dataset with 
the state of the art (SoA), activity recognition algorithm of [3] 
and the work of the URADL authors [11]. Table 5 shows that 
our method’s accuracy surpasses that of URADL and is 
comparable with [3].  
 
The results vary depending on the encoding used for the 
vocabulary construction. It should be noted that [3] only uses 
Kmeans and the chi-square kernel, whereas we extend their 
method by also testing out GMM-Fisher encoding, shown in 
Table 5. The speed of our approach is much higher than that of 

[3], mostly due to the use of MBAAs which reduce the size of 
the HD data being processed. 
 
Table5. Average accuracy surpasses/is comparable to the 
SoA. Fisher boost is observed when applied to [3].  

	
   Our	
  	
   [11]	
   [3]Kmeans	
  
χ2	
  kernel	
  

[3]GMM	
  
Fisher	
  

Av.	
  Acc	
   91.33% 89.33% 92% 92.67 % 
 
For URADL, Wang’s [3] method needed 23 hrs, 1 min and 15 
sec for activity recognition, while our method leads to a lower 
computation time of 15 hrs, 50 min and 23 sec. This is mainly 
because the approach of [3] processes the entire high 
definition video frame, while we extract descriptors on the 
MBAAs, which are significantly smaller than the entire frame. 
 
B. Dem@Care Dataset 

 
It was shown that GMM with the Fisher vector provided the 
best results on the URADL data, applied to our method and to 
[3]. Thus, we only examine GMM with Fisher for the 
Dem@Care dataset. Tables 6 and 7 show that our algorithm 
now surpasses [3] by around 3.37%, although the Dem@Care 
videos are more challenging than URADL.  
 
Dem@Care videos contain more complex activities, in less 
constrained environments, with a large variety of subjects, 
occlusions and behaviours. Their difficulty further 
compounded by the fact that many of the volunteers suffer 
from dementia, ranging from mild to Alzheimer’s disease (in 
most cases the subjects were accompanied to the site of the 
recordings), which affects their performance in carrying out 
ADLs. Also, the Dem@Care videos involve walking around a 
room, behind tables/chairs, similarly to a real home 
environment, whereas in URADL the actors are for the most 
part standing in the same spot. 
 
Table 6. Activity recognition results of our algorithm on the 
Dem@Care videos 
 

HOGHOF	
  with	
  compact	
  spatial	
  pyramid	
  

	
   CU	
   DB	
   EP	
   E
R	
   ES	
   H

S	
   PS	
   RP	
   SB	
   SP	
   T
V	
  

C
U	
  

0.6
9	
  

0.0
8	
   	
   	
   0.0

8	
   	
   	
   	
   	
   0.1
5	
   	
  

D
B	
  

	
   1	
   	
   	
   	
   	
   	
   	
   	
   	
   	
  

EP	
   	
   	
   0.8
8	
   	
   	
   	
   	
   	
   	
   0.1

3	
   	
  

ER	
   	
   	
   	
   1	
   	
   	
   	
   	
   	
   	
   	
  

ES	
   	
   0.5
7	
   	
   	
   0.3

8	
   	
   	
   0.0
5	
   	
   	
   	
  

HS	
   	
   	
   	
   	
   	
   1	
   	
   	
   	
   	
   	
  

PS	
   	
   0.2
3	
   	
   	
   	
   	
   0.3

1	
   	
   0.4
6	
   	
   	
  

RP	
   	
   	
   	
   	
   	
   	
   	
   1	
   	
   	
   	
  
SB	
   	
   	
   	
   	
   	
   	
   	
   	
   1	
   	
   	
  
SP	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   1	
   	
  
TV	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   1	
  

Average	
  Accuracy	
  0.8414	
  



Table 7. Activity recognition of Wang’s method [3] applied to 
the Dem@Care dataset. 

HOGHOF	
  Wang	
  

	
   CU	
   DB	
   EP	
   ER	
   ES	
   H
S	
   PS	
   RP	
   SB	
   SP	
   TV	
  

C
U	
  

0.6
9	
   	
   0.2

3	
   	
   	
   	
   	
   	
   	
   0.0
8	
   	
  

D
B	
  

	
   0.7
9	
  

0.0
5	
   	
   0.1

6	
   	
   	
   	
   	
   	
   	
  

EP	
   	
   	
   1	
   	
   	
   	
   	
   	
   	
   	
   	
  

ER	
   	
   	
   	
   1	
   	
   	
   	
   	
   	
   	
   	
  

ES	
   	
   0.4
3	
   	
   0.2

9	
  
0.2
4	
   	
   	
   0.0

5	
   	
   	
   	
  

HS	
   	
   	
   	
   	
   	
   1	
   	
   	
   	
   	
   	
  

PS	
   	
   0.0
8	
   	
   	
   0.0

8	
   	
   0.3
1	
   	
   0.5

4	
   	
   	
  

RP	
   	
   	
   	
   	
   	
   	
   	
   1	
   	
   	
   	
  

SB	
   	
   	
   	
   	
   	
   	
   	
   	
   1	
   	
   	
  

SP	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   1	
   	
  

TV	
   	
   	
   	
   0.1
4	
   	
   	
   	
   	
   	
   	
   0.8

6	
  
Average	
  Accuracy	
  0.807	
  

 

V. CONCLUSIONS 
We present a new method for detecting activities of daily 
living, which will prove particularly useful when monitoring 
people’s daily life, behavioural patterns, lifestyle, as is the 
case in assisted living situations, in smart homes for example. 
We introduce MBAAs to localize points of interest, where the 
velocity changes, so as to reduce the computational cost of the 
method by working in much smaller regions of each video 
frame. Trajectories are temporally segmented in a near optimal 
manner by applying CUSUM to detect changes in velocity and 
thus separate the trajectories in a meaningful manner. Dense 
spatiotemporal features on several scales are employed in 
order to have rich descriptive information about the data and 
also be scale invariant. Finally, the best encoding methods are 
tested in various combinations in order to find the most 
accurate, yet quick method for recognizing activities. Results 
on benchmark datasets and a more challenging and very 
realistic dataset of people expected to benefit from assisted 
living solutions prove that the proposed method is, in the first 
case comparable with the SoA, and with the latest dataset 
gives more accurate results at a lower computational cost.  
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