A comparative study on mobile visual
recognition

Elisavet Chatzilari!2, Georgios Liaros'3, Spiros Nikolopoulos!, and Yiannis
Kompatsiaris'

! Information Technologies Institute, Centre for Research and Technology Hellas,
Thessaloniki, Greece,
2 Centre for Vision, Speech and Signal Processing University of Surrey Guildford, UK
3 Dept. of Informatics, Tonian University, 49100, Kerkyra, Greece
{ehatzi,geoliaros,nikolopo,ikom}@iti.gr

Abstract. In this work we perform an extensive comparative study of
approaches for mobile visual recognition by simultaneously evaluating
the performance and the computational cost of state-of-the-art key-point
detection, feature extraction and encoding algorithms. Every step is inde-
pendently tested so that its contribution to the final computational cost
can be measured. The widely used OpenCV library is utilized for the im-
plementation of the algorithms, while the evaluation is performed on the
PASCAL VOC 2007 dataset, a challenging real world dataset crawled
from the web. Our study identifies the algorithmic configurations that
manage to optimally balance performance and computational cost, and
provide a viable solution for real time mobile visual recognition.
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1 Introduction

In the 90s, the second generation (2G) cellular technology limited the func-
tionalities of mobile phones to the very basics, i.e. making calls and sending text
messages (SMS). Rapidly, mobile networks and devices began to evolve to higher
speed networks (GPRS and WAP) and smaller devices with new functionalities
(MMS and emails). In the last decade, the third generation (3G) was launched
which in turn gave its place to 4G in 2009. In parallel with the developments in
network capabilities, mobile devices evolved to smartphones, typically equipped
with more processing power, rich sensors like GPS receivers and quality cameras.
This fact opened up a whole new range of possibilities and radically new services
like mobile visual recognition, a field of intense research for the last years. Mobile
visual recognition refers to the process of taking a photo with the mobile phone
camera and, after processing its visual content, presenting relevant information
back to the user. A typical example is when a photo of a landmark is processed
to return textual information (e.g. a wikipedia article) or related images (e.g.
different views of the same landmark).



The basic motivation for using mobile image recognition is the ability of vi-
sual content to transfer rich semantic content that is either too complicated or
too ambiguous to be expressed with words. Indeed, if the user is not sure how to
describe something with words it may be easier to search with a picture. More-
over, it is also possible to use image recognition services with embedded optical
character recognition (OCR) capabilities for translating foreign billboards and
road signs. Finally, the ability of mobile image recognition to turn the world
around us into semantic links through a mobile phone camera, e.g. in the form
of augmented reality metatags pointing to news, websites, or special offers (e.g.
Layar, Wikitude) is what makes this service way more attractive than text or
voice-based search that are more demanding from the perspective of user input.

Although research in visual recognition has made great progress during the
last decade achieving relatively high performance figures [11],[24], the situation
is different when aiming for practical applications where real-time processing
is a critical factor. According to [4], 40% of the users will abandon a mobile
application if they have to wait more than three seconds, and if that time rises
to 10 seconds, 60% will not use it for a second time. For a visual recognition
application, this formulates the typical trade off between the accuracy of the
utilized algorithms and their computational cost, which is even more critical
in the mobile environment where the resources are limited. In this context, the
majority of existing mobile visual recognition applications employ a client/server
architecture (Fig. 1). Cell phones act as clients that capture the object of interest
and send queries to the server where the actual processing part takes place
(i.e. analyze the image, identify its content, retrieve relevant information from
the data pool and send it back to the client). However, with the fast paced
evolution of mobile phones and the increased processing power, it becomes more
and more interesting to investigate whether the entire processing load can be
allocated solely on the smartphone, and in this way avoid the shortcomings of
the client/server architecture like bandwidth limitations, data transfer latencies
and service dependence on the existence of WiFi or 3G network availability.
Moreover, another appealing property of this architecture is its potential to
scale to an unlimited number of users since the algorithms run entirely on the
phone and information is stored locally, removing the possibility of overloading
the centralized server by numerous requests.
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Fig. 1. Client/server architecture
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In this work, we attempt to balance the computational cost and the per-
formance of a visual recognition system so as to select a configuration that is



able to run in an acceptable time frame and, at the same time, can provide
satisfactory results for the specific application. We only consider the case where
the entire process runs on the smartphone, and additionally look for a solution
that can be executed close to real time. The goal is to identify a configuration
that performs at less than one second per image in order to be appealing to the
end user. In addition, considering the space and memory limitations of a mobile
device environment, the typical content-based image retrieval scheme (i.e. find
relevant images with the query image captured by the phone) would not be able
to scale to large databases. For this reason, the objective of the proposed system
falls under a classification scheme (i.e. analyze a captured image and provide
keywords that describe its content), that only requires the storage of a machine
learning model in the local database for each concept. Possible applications of
such a scheme include the automatic annotation of mobile photo collections for
keyword-based retrieval, personalized photo sharing and object recognition and
annotation in real time for relevant information provision (e.g. detecting a bus
and combining location information, the routes timetables can be presented).

We select one of the most popular image recognition pipelines that con-
sists mainly of two parts, the image representation and the machine learning-
classification component. For the classification component, being a field of high
research interest for many decades now, many advances have been achieved, re-
sulting in very effective and efficient algorithms [32]. It usually consists of the
training step, which is the computationally expensive one, and the testing step.
In a mobile recognition setting, the training step is done offline and only the
testing step is performed online. Considering that the testing step can be rather
fast even for very expensive algorithms, we have decided to employ Support
Vector Machines (SVMs) [8], which is a state-of-the-art algorithm that can be
very fast at the testing step for linear and additive kernels, while demonstrating
exceptional generalization ability. On the other hand, the image representation
algorithms will need to be executed online for every captured image and thus
need to be carefully selected in order to achieve maximum performance at min-
imum cost. Towards this direction, we compare different algorithmic configura-
tions consisting of key-point detection, feature extraction and feature encoding,
so as to identify the ones that combine speed and performance. Our contribu-
tion is on thoroughly studying the existing state-of-the-art algorithms for visual
recognition in a mobile environment and providing the necessary information
for deciding how to optimally balance the aforementioned trade off based on the
requirements of the application at hand.

The rest of this manuscript is organized as follows. In Section 2, related
works are presented. In Section 3, an overview of the evaluated system architec-
ture is described, while the two components of the system, image representation
and classification, are analytically discussed in the next two Sections 4 and 5,
respectively. The experimental results are shown in Section 6, while Section 7
concludes our work and discusses our plans for future work.



2 Related Work

Visual recognition has been a field of intense research interest for the past
decades. This has increased even more with the recent changes in software,
hardware and network technologies, i.e. digital cameras, Web 2.0 applications,
smartphones, computers with high processing power, etc. This technological evo-
lution has resulted into huge amount of multimedia content and has brought up
the need for automatic visual recognition. The Query-by-example is the first ap-
pearance of image retrieval attempts that are based on visual content. ALIPR
(Automatic Photo Tagging and Visual Image Search) [17] is one of the first
attempts by researchers to incorporate visual content in search engines. In a
similar direction, the authors of [25] present a framework for efficient large scale
object retrieval that can potentially be applied on web-scale databases of billions
images. Nowadays, Google search engine has employed an image retrieval service
where the user can drag an image to the search box and it searches for similar
images and sites with respect to its visual content in the Web.

On a mobile environment visual-based image search is even more useful and
practical as it is way easier to capture an image to trigger the search than to
type keywords. In general, in the visual recognition area the leap from academic
research to commercial products has been much shorter and many companies
have already incorporated visual recognition in mobile applications. For exam-
ple, the service offered by Kooaba (www.kooaba.com) receives a snapped im-
age as query and displays related information, further links and available files,
applied to wine lists, printed catalogues, etc. oMoby (www.omoby.com) offers
a shopping service that helps users find information about products by snap-
ping a photo, such as links to retailers offering product information, reviews,
prices, and more. Point & Find (pointandfind.nokia.com) is a service offered
by Nokia that uses visual search technology to let users find more informa-
tion about the surrounding objects, places, etc., in real time. Google Goggles
(www.google.com/mobile/goggles/) is a mobile application that lets users search
the web using pictures taken from their mobile phones.

On a research level, a few approaches have been presented that attempt to
exploit the benefits of visual recognition in a mobile environment. The authors
of [29] propose an augmented reality system, that recognizes landscapes within a
database which is cached locally in the mobile phone, and presents related links
to the user. They utilize a combined visual and location (GPS) based retrieval
scheme and the whole system runs exclusively on the phone. In [18], a mobile
application that uses visual recognition in order to find relevant documents in a
locally hosted database is proposed. The authors of [33] propose lighter mobile
versions of two popular feature descriptors so that the adopted natural scene
tracking system can perform at frame rates of up to 20Hz.

In this work we attempt to examine the visual recognition pipeline in a
mobile environment by simultaneously evaluating the image representation al-
gorithms with respect to performance and computational cost. Our work can be
considered more closely related to [13], which evaluates a retrieval scheme and
focuses on the various architectures that can be employed in a mobile visual



search framework. On the other hand, we select to implement the architecture
which dictates that all the processing takes place on the phone and focus our
experiments on comparing the various algorithmic configurations in an effort to
balance performance and computational cost.

3 Framework Overview

A visual recognition framework can be considered to consist of two parts, the
image representation and the classification part. In the last decade, the most
popular approach that has been employed for image representation is referred
to as bag of visual words (BOW) [9]. A typical pipeline for this approach is
shown in Figure 2. For each image, points of interest are detected and for every
key-point a set of features are extracted so as to be encoded into a single vector
using the BOW approach. In order to train the vocabulary of visual words, key-
point detection and feature extraction is applied on a large database of images
and the features are clustered into visual words. Each component is analyzed in
more detail in Section 4.

Fig. 2. Framework overview

Finally, after representing each image with a single feature vector, a model
that learns the correspondence between image labels and features needs to be
trained. A very popular algorithm that learns to map features to concepts is the
SVMs [8], which aims at splitting the input feature space so that the different
classes are separated. For every concept, the images are either labelled as positive
or negative if they depict or not the concept respectively. The algorithm attempts
to split the feature space by a hyperplane that maximizes the margin between
the positive and the negative side. A new image is then classified as positive
or negative depending on the placement of its feature vector according to the
hyperplane.
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Table 1. Description of key-point detection algorithms ( stars represent the fastest

and * star the slowest).

Algorithm [Speed | Translation|Description Ref.
invariance

Dense oAk O Key-points are selected on a grid using a step of al-
fixed number of pixels.

FAST orx 0 Key-points are selected based on the intensities of the|[26]
pixels around the examined pixel

GFTT oK g Pixels are ranked based on a quality measure that is|[28]
extracted using eigen analysis

HARRIS |** O Detects high intensity variations of sliding windows|[14]
around the pixel and defines a corner based on a score

MSER * g Detects connected regions with little change across|[21]
several intensity thresholdings of the image

SIFT oK g Locations at minima and maxima of a Difference of|[20]
of Gaussian function are selected as key-points

STAR * g Detects the extrema of the Gaussian operator’s Lapla-|[1]
cian across scale

SURF ok g Uses integral images and box filtering techniques 3]

ORB ok O Augments the FAST detector with a pyramid scheme|[27]
and the Harris corner measure

4 Image Representation

4.1 Key-point Detection

Key-point detection refers to the detection of well defined positions in an image
that can robustly characterize its conent. They are usually points of high interest
that are used to represent important aspects of the image. Visual recognition
requires repeatable key-points under several transformations such as rotation,
scale changes, translation and lighting variations, whilst maintaining the de-
tection time to the minimum. Mikolaijczyk et al. [22] review several key-point
detectors on a benchmark dataset. The key-point detection algorithms that were
used for our experiments can be seen at the first column of Table 1. In the sec-
ond column, the relative speed of each detector is indicated by stars (more/less
stars means the detector is faster/slower). In the third column, the translation
invariant detectors are checked and the non invariant are crossed.

4.2 Feature Extraction

The feature extraction component attempts to describe the surrounding envi-
ronment of each key-point so that it captures characteristic and indicative in-
formation of its visual content. Each key-point that was previously detected is
represented as a multidimensional feature vector (descriptor). Several state-of-
the-art descriptors are evaluated in [30]. In this work the evaluated descriptors
are shown in Table 2, along with information about the extraction time and
whether they are rotation and/or scale invariant.
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*** stars represent the fastest

Table 2. Description of feature extraction algorithms (
and * star the slowest).

invariance |invariance

Algorithm|Speed |Size  |Rotation |Scale Description Ref.

BRIEF [*** |32 O d Bit string description of an image
patch, constructed by a set of bi-
nary tests

ORB|*** 132 O O Steered version of BRIEF according| [27]

to the orientation of key-points

SURF|** 128 O 0 Uses box filtering techniques and
integral images

puted in a 16x16 area around the
key-point

SIFT|* 128 O 0 A histogram of orientations is com-| [19]

4.3 Feature Encoding

After applying the key-point detection and the feature description algorithms,
each image is represented by a set of multidimensional vectors. In order to trans-
form these vectors into a single vector representation, a feature encoding algo-
rithm is applied. The most popular method, borrowed from text retrieval, is the
bag of visual words. A vocabulary of visual words is constructed from a large
independent training set of images by clustering the extracted descriptors in n
clusters/visual words, using an algorithm such as k-means. Afterwards, the fea-
ture encoding algorithm is applied. An extensive empirical study on encoding
methods can be found at [7]. We have implemented and tested three different
algorithms for encoding:

Hard assignment: The local feature descriptors of the image are matched
with the visual words of the vocabulary. A histogram of the visual descriptors
is populated by adding ones to the corresponding bins.

Soft (kernel codebook) assignment [31]: In this case instead of assigning
a descriptor to a single corresponding visual word we assign it to k bins in a soft
manner. More specifically, for every descriptor we add a quantity ¢ to the bins
of the k top nearest visual words. This quantity ¢ is the Gaussian kernel (Radial
Basis Function) distance of the descriptor and the visual word.

Vector of Locally Aggregated Descriptors (VLAD) [15]: In this case,
first each descriptor is assigned to its closest visual word. Then for each visual
word a vector is calculated by accumulating all the differences of the assigned
descriptors with the visual word. Finally, these vectors are concatenated into a
single vector representation.

In all the aforementioned cases, for each descriptor the nearest visual words
must be computed. The baseline method, brute force, searches for the near-
est neighbours amongst all possibilities in a greedy fashion. However, as this
can be computationally expensive, approximate indexing algorithms that are
significantly faster are examined. One of the most popular libraries for approxi-
mate neighbour search is the Fast Approximate Nearest Neighbor Search library
(FLANN) [23], which is optimized for use in high dimensional spaces.



5 Machine Learning and Classification

The second part of a typical visual recognition system is to train a classifica-
tion model for every visual concept that will learn to assign unseen images to
concepts. In order to train a classification model for a specific concept we need
a set of positive and a set of negative images. Each image is described by a
feature vector which is extracted by the representation framework described in
the previous section. Then, an SVM model is trained on these data in order to
learn the properties that define the examined concept. The models are trained
using the one versus all (OVA) technique, i.e. all positive examples of the specific
concept versus all negative examples. The model is practically the hyperplane
that separates the space of the positive and negative samples. In the case of a
linear kernel, it can be represented by a vector w, i.e. the model parameters,
and a bias scalar b. For a concept ¢ and a test image I, which corresponds to
a feature vector f;, a confidence score is extracted by computing its distance to
the hyperplane of the model for the concept c:

confidence(l,c) = we * £ + b, (1)
The distance of a vector from the hyperplane indicates our confidence that
the examined image depicts the concept of interest. High positive values of this
score increase our confidence that this image belongs to the positive class while
high negative values provide strong confidence that the image does not depict
the concept. The fact that each model can be represented by a single vector
and a scalar and that the testing process is essentially a vector multiplication,
renders SVMs the best solution for a real time classification framework. This
allows for storing the information about all the models in the phone memory,
while testing is computationally very efficient, making it possible for the image
classification algorithm to run entirely on a mobile phone.

6 Experimental Evaluation

Our intention in the experimental evaluation is to perform an extensive survey of
the state-of-the-art algorithms used in a typical pipeline for visual recognition. In
section 6.1 the dataset and the implementation details are explained. The strat-
egy adopted for our evaluation experiments is to examine how the performance
of each configuration is connected to the required extraction time, aiming to
simultaneously improve the recognition performance and computational cost of
the most prominent configurations and finally identifying the one that combines
these two aspects best (Sec. 6.2).

6.1 Dataset & Implementation Details

For performing our experiments we have selected the benchmarking dataset of
the PASCAL VOC 2007 competition [10]. Ground truth for both the training
and the testing set of the 2007 dataset were released, while the datasets for the
next years’ competition lack ground truth annotations for the testing set, which



is the reason the dataset from 2007 was selected instead of the more recent
ones. It consists of 9.963 images collected from flickr, half of which are used
for training and half for evaluating the visual recognition setups. The dataset is
annotated with twenty concepts in a multi label manner (person, bird, cat, cow,
dog, horse, sheep, aeroplane, bicycle, boat, bus, car, motorbike, train, bottle,
chair, dining table, potted plant, sofa, tv/monitor). The split that was provided
with the dataset was used, i.e. divided into two equal subsets, one for training
and one for testing so that equal numbers of positive examples for each concept
exist in the two subsets. This dataset was used for the performance evaluation
of all different settings while the computational time estimation was performed
on an image with resolution 1024 x 768 was captured from the mobile phone.

OpenCV [5], one of the most popular libraries for computer vision that also
provides an interface for android cell phones was used with default parameters
for the detection and description algorithms. More specifically, OpenCV was
used to implement all possible combinations between the key-point detection
and feature extraction algorithms described in Section 4.1 and 4.2 resulting in
36 different configurations. The feature encoding algorithms described in 4.3 were
subsequently implemented using the indexing algorithms provided by FLANN.
K-means was used to cluster a set of descriptors into 2000 visual words for hard
and soft assignment. For the VLAD encoding method, the number of the cen-
ters was chosen so that the final feature vector was 2000-dimensional (i.e. 16
centers were extracted for the 128-dimensional SIFT and SURF, and 64 for the
32-dimensional BRIEF and ORB). For the classification part the LIBLINEAR
library was selected [12]. The computational costs were computed using a Sam-
sung Galaxy S3 device, which features a quad-core processor clocked at 1,4Ghz
and 1GB RAM. In order to evaluate the various pipelines we incorporate the
widely used performance measure of mean Average Precision (mAP). Average
precision takes into account both precision and recall, and measures the rank
quality of the retrieved images. It is calculated using Eq. 2, where P(k) is the
precision at rank k and rel(k) is an indicator function equaling 1 if the item
at rank k is a relevant document and zero otherwise. mAP is the mean of the
average precision over all concepts.

AP — Sor_y Pr(k) *.Tel(k) 7 @)
# of relevant images
where rel(k) is an indicator function equaling 1 if the item at rank k is a relevant
document and zero otherwise.

6.2 Classification Performance Versus Computational Cost

In this section the classification performance with respect to the total compu-
tation cost of each configuration is reviewed. Initially, in Table 3, the cost for
each pair of key-point detection - feature description using hard binning and
brute force nearest neighbour search is shown side-by-side with the recognition
performance. In order to continue experimenting only with the most prominent
configurations in terms of balancing the performance-cost trade-off we apply the
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following selection strategy. For every feature extraction approach we choose
the best performing key-point detection algorithm and dismiss the ones that
are more computationally expensive. Similarly, for every feature extraction ap-
proach, we choose the fastest algorithm and dismiss the ones that perform worse.
If we denote as Time(k, f) the computational cost and Perf(k, f) the perfor-
mance of a configuration composed by key-point detection method k and feature
extraction method f we choose to dismiss the settings (k, f) for which:

Vf; = {BRIEF,ORB,SIFT, SURF}
Time(ki, f;) > Time(argrr}caxPerf(ki, i)

or Perf(k;, f;) < Perf(argn}gaxTime(ki, i)

In this way we manage to discard cases that are computationally expensive
without adding anything to performance. In the case of GFTT and HARRIS
we can see in Table 3 that they need approximately the same time to compute
while GFTT performs better in all cases. For this reason when choosing the
fastest algorithm, we choose the GFTT even in the cases that it is not strictly
the fastest (e.g. the configurations GFTT+SURF and HARRIS+SURF where
although HARRIS+SURF is faster by 10 ms we select GFTT as faster). The
pairs selected after applying the aforementioned selection strategy are written
in bold in Table 3. Additionally, all settings are visualized in a 2D plot, in Figure
3, where the x axis represents the computational cost in logarithmic scale and
the y axis the complement of the performance measure in mAP. The dismissed
settings are depicted as red squares and the selected as black stars. It is obvious
that the selection strategy we applied picked out the cases which have the best
combination of performance and computational cost, i.e. in the area closer to
the (0,0) origin.

Table 3. Time versus Performance of hard binning using brute force. The configura-
tions that are shown in bold are the most prominent ones and are selected for further
experimentation.

Time (ms) Performance (mAP)

BRIEF | ORB| SIFT|SURF| BRIEF| ORB| SIFT| SURF
DENSE 3130| 2807(11546| 10847||15,70%|15,17%|17,30%| 13,16%
FAST|  3362| 3095|39055| 13645|| 13,26%] 12,91%|17,86%|17,59%
GFTT| 555 564| 2156] 884||11,64%|11,39%|15,80%13,27%
HARRIS 603| 873| 2146 874| 10,49%| 9,90%| 13,61%| 10,72%
MSER 3322| 3298| 34645 3843| 9,71%| 8,87%| 14,86%| 12,40%
SIFT 631| 605 3865 1400 10,04%| 9,66%| 11,49%| 12,16%
STAR 1857| 1712| 12558 2718(| 9,72%| 9,66%| 14,96%|13,68%
SURF| 2081] 1845| 56651| 5038|| 11,51%| 10,42%] 16,92%|15,75%
ORB|  761| 913| 5528 1227| 11,06%]| 10,72%]| 13,00%|14,15%

For the remaining configurations we attempt to optimize both the computa-
tional cost and the performance. The first step is to replace the expensive brute
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Fig. 3. Time versus Performance of hard binning using brute force

force search for the nearest neighbour in the hard binning setting with its faster
approximate version, FLANN. The results are shown in Table 4, from which we
can see that there is a significant gain in computational time, especially in the
DENSE, FAST and SURF configurations (shown in bold). This can be explained
by the fact that the these detectors tend to extract more key-points than the rest,
so the main processing load is in the encoding part of the algorithm. Moreover,
there are only slight variations in performance with respect to the brute force
method, which verifies that the approximate nearest neighbour algorithm works
almost as good as in the brute force case. Considering that in other encoding
methods we will need to search for even more nearest neighbours, the use of the
approximate version is mandatory.

Table 4. Time versus Performance of hard binning using FLANN. The computational
cost is significantly decreased with minor changes in performance. In bold the config-
urations where the decrease in maximum.

Time (ms) Performance (mAP)
BRIEF|ORB| SIFT|SURF BRIEF| ORB| SIFT|SURF
DENSE 1948|1349 3026 15,51%]15,92%(18,02%

FAST| 2506|1757|29767| 4274| 13,26%(12,90%|18,96%(17,18%
GFTT 576| 573| 1863 560| 11,62%(11,23%(16,21%|12,63%

STAR 2063 11,14%
SURF 2279 17,09%
ORB 1025 13,73%

The next step is to increase the performance, and towards this goal we eval-
uate two popular substitutes to the hard encoding method, the soft assignment
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and the VLAD encoding algorithms. Tables 5 and 6 depict the results for each
encoding algorithm. In the case of soft assignment, it is obvious that the perfor-
mance is significantly improved in all cases with a relatively low loss in efficiency,
especially in the cases where the number of detected key-points are limited (e.g.
GFTT, STAR, ORB). Using the VLAD encoding method, the performance of
all configurations increases, especially for the configurations with the SURF de-
scriptor, where the gain is notably higher. The best performing configuration is
the FAST-SURF-VLAD, which yields 31.35% mAP and requires 6.4 seconds to
execute. However, we can see that for the minor performance loss of 0.25% we
can use the SURF-SURF-VLAD combination in less than half the time of the
previous scheme. For this reason, we select the SURF-SURF-VLAD scheme to
continue with further enhancements.

An important note is that the time measurements were performed on a typical
image taken by the cell phone which by default has a resolution of 1024 x 728.
On the other hand, the performance measures were calculated on the PASCAL
dataset which consists mainly of smaller images, on the average scale of 300 x 500
resolution. Thus, for the SURF-SURF-VLAD configuration, we only need to
capture images at the scale of 300 x 500 in order to achieve the 31.1% mAP
which decreases the time to only 0.5 seconds per image. This reduced time
requirement renders the proposed configuration ideal for real-time mobile visual
recognition. In order to achieve better performance, we can tweak the default
values of OpenCV for the SURF detector. More specifically, if we change the
Hessian threshold from 100 to 50 and 10, the performance increases to 31.72%
and 32.6% mAP respectively, while the computational cost increases to 0.96
and 1.42 seconds respectively. Considering that our initial goal was to achieve
a computational time no more than 1 second, we choose the configuration with
the Hessian threshold set to 50, which yields 31.72% in 0.96 seconds. Finally, a
few images with the proposed annotations from the selected configuration are
shown in Table 7.

Table 5. Time versus Performance of soft binning using FLANN. The most appealing
configuration is shown in bold.

Time (ms) Performance (mAP)
BRIEF|ORB|SIFT|SURF |BRIEF| ORB| SIFT| SURF
DENSE|  3285| 2684] 4629 21,54%|21,62%|23,72%

FAST 3990| 3170(31278| 5763| 18,83%(19,01%30,14%| 26,01%
GFTT 602| 613| 1875 601| 16,34%]15,85%|24,20%)| 18,58%

STAR 2134 15,06%
SURF 2669 25,99%
ORB 1050 19,49%

7 Conclusions & Future Work

In this paper, we have reviewed state-of-the-art algorithms for image represen-
tation and compared their performance versus the computational cost when
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Table 6. Time versus Performance of VLAD encoding. The most appealing configu-
ration is shown in bold.

Time (ms) Performance (mAP) (%)
BRIEF | ORB|SIFT|SURF | BRIEF|ORB|SIFT|SURF
DENSE 3381| 2053| 4949 20,53| 20,42| 27,98
FAST 32213 6492 29,63 31,35
GFTT 526| 543| 1920 632 16,58| 16,33| 17,52 20,97
STAR 2186 17,15
SURF 2954 31,10
ORB 1019 20,84

Table 7. Images with proposed annotations by our framework. In bold the correct
proposals. Some of the mistakes can be partly justified in the case of visually similar
concepts, e.g. aeroplane-bird, person-statue.

bicycle, 8 |chair, tv-
person monitor car
person, aeroplane,
dog person bird
chair,
person,
person tv-monitor car

applied in a mobile environment for image classification. The performance was
measured in a real world dataset originating from flickr, which renders the work
of visual recognition a very challenging task. The results show that close to
real time performance can be achieved with various configurations by sometimes
sacrificing performance for the gain of speed. The case of SURF+SURF+VLAD
seems the most appealing since for 300 x 500 resolution images it requires only
0.96 seconds to achieve 31.72% mAP.

Our plans for future work are mostly directed by our intention to increase the
performance of the mobile recognition framework. More specifically, they include
the testing of the FREAK descriptor [2] that was recently published and released
by OpenCV, the evaluation of the promising super vector encoding method
[34] and the enhancement of the performance by utilizing the popular spatial
pyramids [16]. Finally, the exploitation of the visual recognition framework in
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real cases and the evaluation of the algorithm in more representative datasets
for the use cases is in our intensions as well.
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