
1

Human Motion Analysis via Statistical Motion

Processing and Sequential Change Detection

Alexia Briassouli, Vagia Tsiminaki, Ioannis Kompatsiaris

Informatics and Telematics Institute

Centre for Research and Technology Hellas

Thermi-Thessaloniki, 57001, Greece

{abria,vagiula,ikom}@iti.gr

ABSTRACT

The widespread use of digital multimedia in applications such as security, surveillance and the

semantic web, has made the automated characterization of human activity necessary. In this work,

a method for the characterization of multiple human activities based on statistical processing of

the video data is presented. First the active pixels of the video are detected, resulting in a binary

mask called the Activity Area. Sequential change detection is then applied to the data examined

in order to detect at which time instants there are changes in the activity taking place. This leads

to the separation of the video sequence into segments with different activities. The change times

are examined for periodicity or repetitiveness in the human actions. The Activity Areas and

their temporal weighted versions, the Activity History Areas, for the extracted subsequences are

used for activity recognition. Experiments with a wide range of indoors and outdoors videos of

various human motions, including challenging videos with dynamic backgrounds, demonstrate

the proposed system’s good performance.

I. I NTRODUCTION

The area of human motion analysis is one of the most active research areas in computer vision,

with applications in numerous fields such as surveillance, content-based retrieval, storage, virtual

reality and many others. A wide range of methods has been developed over the years to deal
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with problems like human detection, tracking, recognition, the analysis of activity in video and

the characterization of human motions [1].

One large category of approaches for the analysis of human motions is structure-based, using

cues from the human body for tracking and action recognition [2]. The human body can be

modeled in2-D or 3-D, with or without explicit shape models [3]. Model-based methods include

the representation of humans as stick figures [4], cardboard models [5], volumetric models [6],

as well as hybrid methods that track both edges and regions [7]. Structure-based approaches

that do not use explicit models detect features [8], objects [9], or silhouettes [10], which are

then tracked and their motion is classified. Feature-based methods are sensitive to local noise

and occlusions, and the number of features is not always sufficient for tracking or recognition.

Statistical shape models such as Active Contours have also been examined for human motion

analysis [11], but they are sensitive to occlusions and require good initialization.

Another large category of approaches extracts cues about the activity taking place from motion

information [12]. One such approach examines the global shape of motion features, which are

found to provide enough information for recognition [13]. The periodicity of human motions is

used in [14] to derive templates for each action class, but at a high computational cost, as it is

based on the correlation of successive video frames. In [15] actions are modeled by temporal

templates, i.e. binary and grayscale masks that characterize the area of activity. Motion Energy

Images (MEIs) are binary masks indicating which pixels are active throughout the video, while

Motion History Images (MHIs) are grayscale, as they incorporate history information, i.e. which

pixels moved most recently. This approach is computationally efficient, but cannot deal with

repetitive actions, as their signatures overwrite each other in the MHI. In [16], spatiotemporal

information from the video is used to create “space-time shapes” which characterize human

activities in space and time. However, these spatio-temporal characteristics are specific to human

actions, limiting the method to this domain only. Additionally, the translational component of

motions cannot be dealt with in [16].

Both structure and motion information can be taken into account for human action analysis

using Hidden Markov Models (HMMs), which model the temporal evolution of events [17], [18].

However, the HMM approach requires significant training to perform well [19] and, like all

model-based methods, its performance depends on how well the chosen model parameters

represent the human action.

May 29, 2009 DRAFT



3

In this work, a novel, motion-based non-parametric approach to the problem of human motion

analysis is presented. Since it is not model-based, it does not suffer from sensitivity to the correct

choice of model, nor is it constrained by it. Additionally, it is based on generally applicable

statistical techniques, so it can be extended to a wide range of videos, in various domains. Finally,

it does not require extensive training for recognition, so it is not computationally intensive, nor

dependent on the training data available.

A. Proposed framework

The proposed system is based on statistical processing of video data in order to detect times

and locations of activity changes (Fig. 1). The first stage of the system involves the extraction

of the Activity Area, a binary mask of pixels which are active throughout the sequence. Only

these pixels are processed in the subsequent stages, leading to a lower computational cost, and

also a reduction in the possibility of errors in the motion analysis. The extraction of the Activity

Area can be considered as a pre-processing step, which can be omitted for real-time processing.

The second stage of the system is one of the main novel points of this framework, as it

leads to the detection of changes in activity in a non ad-hoc manner. In the current literature,

temporal changes in video are only found in the context of shot detection, where the video is

separated into subsequences that have been filmed in different manners. However, this separation

is not always useful, as a shot may contain several activities. The proposed approach separates

the video in a meaningful manner, into subsequences corresponding to different activities by

applying sequential change detection methods. The input, i.e. inter-frame illumination variations,

is processed sequentially as it arrives, to decide if a change has occurred at each frame. Thus,

changes in activity can be detected in real time, and the video sequence can then be separated

into segments that contain different actions. The times of change are further examined to see if

periodicity or repetitiveness is present in the actions.

After the change detection step, the data in each subsequence between the detected change

points is processed for more detailed analysis of the activity in it. Activity Areas and a temporally

weighted version of them called the Activity History Areas are extracted for the resulting

subsequences. The shape of the Activity Areas is used for recognition of the activities taking

place: the outline of each Activity Area is described by the Fourier Shape Descriptors (see

Sec. V), which are compared to each other using the Euclidean distance, for recognition. When
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different activities have a similar Activity Area (e.g. a person walking and running), the Activity

History Areas (AHAs) are used to discriminate between them, as they contain information about

the temporal evolution of these actions. This is achieved by estimating the Mahalanobis distance

between appropriate features of the AHAs, like their slope and magnitude (see Sec. V for details).

It is important to note that Activity History Areas would have the same limitations as MHIs [15]

if they were applied on the entire video sequence: the repetitions of an activity would overwrite

the previous activity history information, so the Activity History Area would not provide any

new information. This issue is overcome in the proposed system, as the video is already divided

into segments containing different activities, so that Activity History Areas are extracted for each

repeating component of the motion separately, and no overwriting takes place.

Fig. 1. Proposed system: Initially, kurtosis-based processing provides the binary Activity Area. Sequential change detection

then finds change points in the video. The subsequences between the change points are processed to find their Activity Areas

(AA) and Activity History Areas (AHA), that are used for activity recognition.

II. M OTION ANALYSIS: ACTIVITY AREA

In the proposed system, the inter-frame illumination variations are initially processed statisti-

cally in order to find the Activity Area, a binary mask similar to the MEIs of [15], which can be

used for activity recognition. Unlike the MEI, the Activity Areas are extracted via higher-order

statistical processing, which makes them more robust to additive noise and small background

motions. Inter-frame illumination variations, resulting from frame differences or optical flow

estimates (both referred to as “illumination variations” in the sequel), can be mapped to the

following two hypotheses:

H0 : v0
k(r̄) = zk(r̄)

H1 : v1
k(r̄) = uk(r̄) + zk(r̄), (1)
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where vi
k(r̄), i = 0, 1 are the illumination variations for a static/active pixel respectively, at

framek and pixelr̄. The termzk(r̄) corresponds to measurement noise anduk(r̄) is caused by

pixel motion. The background is considered to be static, so only the pixels of moving objects

correspond toH1. The distribution of the measurement noise is unknown, however it can be

sufficiently well modeled by a Gaussian distribution, as in [20], [21]. In the literature, the

background is often modeled by mixtures of Gaussian distributions [22], but this modeling is

computationally costly and not reliable in the presence of significant background changes (e.g.

a change in lighting), as it does not always adapt to them quickly enough. The method used

here is actually robust to deviations of the data from the simple Gaussian model [23], [24], so

even in such cases, it provides accurate, reliable results at a much lower computational cost.

The illumination variations of static pixels are caused by measurement noise, so their values

over time should follow a Gaussian distribution. A classical test of data Gaussianity is the

kurtosis [24], which is equal to zero for Gaussian data, and defined as:

kurt(y) = E[y4]− 3(E[y2])2. (2)

In order to find the active pixels, i.e. Activity Areas, the illumination variations at each pixel

are accumulated over the entire video and their kurtosis is estimated from Eq. (2). Even if in

practice the static pixels do not follow a strictly Gaussian distribution, their kurtosis is still

significantly lower (by orders of magnitude) than that of active pixels. This is clearly obvious

in the experimental results, where the regions of activity are indeed correctly localized, as well

as in the simulations that follow.

As a practical example with a real sequence, we estimate the kurtosis of all active pixels

and that of all static pixels, taken from the real video of a person boxing (Sec. VI-B), where

the ground truth for the active and static pixels is extracted manually. The kurtosis of active

and static pixels are plotted in Fig. 2, where it can be seen that the active pixels’ kurtosis is

significantly higher than that of the static pixels; note that the y-axis on Fig. 2(a) is from 0 to

4.5× 107, while on Fig. 2(b) its range is from0 to 106 (for clarity of presentation). In the static

pixels of Fig. 2(b), the kurtosis is almost zero in almost all of them. It obtains higher values in

pixels 8000 − 10000, most likely due to the presence of local noise, but even these values are

much lower than those of the active pixels. Indeed, the mean value of the kurtosis for the active

pixels is found to be1.34 × 106 and for the static ones it is equal to669.54. Results like this
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motivate us to compare the relative values of pixels’ kurtosis in practice, in order to determine

if a pixel is active or static, rather than their absolute value.

(a) (b)

Fig. 2. Kurtosis estimates from a real video of a person boxing for (a) active and (b) static pixels.

A very common model for the background is the Mixture of Gaussians (MoG) [25], so we

compare the kurtosis of data following a Gaussian, a MoG and an Exponential distribution.

The exponential data is chosen as it is clearly non-Gaussian and will provide a measure of

comparison for the other data. Monte Carlo simulations take place with500 sample sets of data

from each distribution, of length5000 each. The kurtosis estimated for each sample set and for

each distribution is shown in Fig. 3 where it can be seen that the Gaussian and MoG data have

significantly lower kurtosis values than the Exponential (non-Gaussian) data. Indeed, the average

kurtosis for the Gaussian data is−0.004, for the MoG it is−0.0034 and for the Exponential

it is 5.76. Consequently, the kurtosis can reliably discriminate between active and static pixels

even for background data that is modeled by a MoG instead of by a simple Gaussian.

Fig. 3. Kurtosis estimates for data following a Gaussian, a MoG and an Exponential distribution.
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III. M OTION ANALYSIS: ACTIVITY HISTORY AREA

As mentioned in Sec. I-A, the Activity Area is not always sufficient for recognizing activities,

as some actions can lead to Activity Areas with very similar shapes. For example, different

translational motions like jogging, running and walking have similar Activity Areas, although

they evolve differently in time. Thus, information about their temporal evolution should be used

to discriminate amongst them. The temporal evolution of activities is captured by the Activity

History Area (AHA), which is similar to the Motion History Area of [15], but extracted using

the kurtosis, as in Sec. II, rather than straightforward frame differencing. If the Activity Area

value AA (binarized kurtosis value) on pixelr̄ is AA(r̄) at framet, the AHA is defined as:

AHA(r̄, t) =





τ, if AA(r)=1;

max(0, AHA(r, t− 1)− 1), else.
(3)

Essentially, the AHA is a time-weighted version of the Activity Area, with higher weights given

to the pixels which were active more recently. This introduces information about an activity’s

evolution with time, which can be particularly helpful for the classification of different actions.

As an example, Fig. 4 shows the Activity Area and AHA of a person running to the right and

the same person running to the left. It is obvious that the direction of motion is captured by the

AHA, which obtains higher values in the most recently activated pixels, but not by the Activity

Area, which is a binary mask, and therefore can only provide spatial localization. In Fig. 4, the

AHA values have warmer colors (darker in grayscale) for the most recently activated pixels,

while cooler colors (lighter in grayscale) represent pixels that were active in the past.

(a) (b)
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(d)

Fig. 4. Person running. (a) Frame 10. (b) AA. AHA for motion: (c) to the right, (d) to the left. The AHA has higher values

in the regions of the Activity Area that were active most recently, represented by warm colors, and lower values in pixels that

were active in the past, corresponding to cooler colors.
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IV. SEQUENTIAL CHANGE DETECTION

One of the main novel points of the proposed system is the detection of the times at which

the activity taking place changes. The input data for the change detection is a sequence of

illumination variations from framek0 to k, i.e.vk0,k = [vk0 , vk0+1, ..., vk]. If only the pixels inside

the Activity Area are being examined, the data from each framek∗ contains the illumination

variations of that frame’s pixels, for the pixels inside the Activity Area. Thus, if the activity area

containsNa pixels, we havevk∗ = [vk∗(1), ..., vk∗(Na)]. In this work we examine the case where

only the pixels inside the Activity Area are processed. It is considered that the data follows a

distributionf0 before a change occurs, andf1 after the change, at an unknown time instantkch.

This is expressed by the following two hypotheses:

H0 : vk0,k ∼ f0

H1 : vk0,k ∼ f1. (4)

At each framek, vk0,k is input into a test statistic to determine whether or not a change has

occurred until then, as detailed in Sec. IV-A. If a change is detected, only the data after framek

is processed to detect new changes, and this is repeated until the entire video has been examined.

A. Cumulative Sum (CUSUM) for Change Detection

The sequential change detection algorithm [26] uses the log-likelihood ratio (LLRT) of the

input data as a test statistic. For the detection of a change between framesk0 andk, we estimate:

Tk = LLRTk(f1||f0) = ln
f1(vk0,k)

f0(vk0,k)
= ln

k∏

i=k0

f1(vi)

f0(vi)
=

k∑

i=k0

ln
f1(vi)

f0(vi)
, (5)

where it has been assumed that the frame samplesvi are identically independently distributed

(i.i.d.) under each hypothesis, so thatfH(vk0,k) =
∏k

i=k0
fH(vi), H = 0, 1. Similarly, it is

assumed that the illumination variations of the pixels inside the Activity Area are i.i.d., so

fH(vi) =
∏Na

n=1 fH(vi(n)), H = 0, 1, i = k0, ..., k.

Pixels in highly textured areas can be considered to have i.i.d. values of illumination variations,

as they correspond to areas of the moving object with a different appearance, which may be

subject to local sources of noise, shadow, or occlusion. In homogeneous image regions that move

in the same manner this assumption does not necessarily hold, however even these pixels can be
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subject to local sources of noise, which remove correlations between them. The approximation

of the data distribution for data that is not considered i.i.d. is very cumbersome, making this

assumption necessary for practical purposes as well. Such assumptions are often made in the

change detection literature to ensure tractability of the likelihood test.

Under the i.i.d. assumption, the test statistic of Eq. (5) obtains the recursive form [26]:

Tk = max

(
0, Tk−1 + ln

f1(vk)

f0(vk)

)
, (6)

wherevk = [vk(1), ..., vk(Na)] is the data from the active pixels in the current framek. Then,

Eq. (5) can also be written as:

Tk =
k∑

i=k0

Na∑
j=1

ln
f1(vi(j))

f0(vi(j))
, (7)

and Eq. (6) becomes:

Tk = max

(
0, Tk−1 +

Na∑
j=1

ln
f1(vk(j))

f0(vk(j))

)
. (8)

A change is detected at this frame when the test statistic becomes higher than a pre-defined

threshold. Unlike the threshold for sequential probability likelihood ratio testing [27], [28], the

threshold for the CUSUM testing procedure cannot be determined in a closed form manner. It

has been proven in [29] that the optimal threshold for the CUSUM test for a pre-defined false

alarm γ is the threshold that leads to an average number of changes equal toγ underH0, i.e.

when there are no real changes. In the general case examined here, the optimal threshold needs

to be estimated empirically from the data being analyzed [30]. In Sec VI we provide more details

about how we determine the threshold experimentally.

In practice, illumination variations of only one pixel over time do not provide enough samples

to detect changes effectively, so the illumination variations of all active pixels in each frame are

used. If an Activity Area containsNa pixels, this givesNa× (k−k0 +1) samples from framek0

to k, which leads to improved approximations of the data distributions, as well as better change

detection performance.

B. Data Modeling

As Eq. (6) shows, in order to implement the CUSUM test, knowledge about the family of

distributions before and after the change is needed, even if the time of change itself is not known.
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For the case where only the pixels in the Activity Area are being examined, it is known that

they are active, and hence do not follow a Gaussian distribution (see Sec. II). The distribution

of active pixels over time contains outliers introduced by a pixel’s change in motion, which

lead to a more heavy-tailed distribution than the Gaussian, such as the Laplacian or generalized

Gaussian [31]. The Laplacian distribution is given by:

f(x) =
1

2b
exp

(
−|x− µ|

b

)
, (9)

whereµ is the data mean andb = σ/
√

2 is its scale, for varianceσ2. The tails of this distribution

decay more slowly than those of the Gaussian, since its exponent contains an absolute difference

instead of the difference squared. Its tails are consequently heavier, indicating that data following

the Laplace distribution contains more outlier values than Gaussian data. The test statistic of

Eq. (7) for N data samples can then be written as:

Tk =
k∑

i=k0

Na∑
j=1

ln

[
b0

b1

exp

(
−|vi(j)− µ1|

b1

+
|vi(j)− µ0|

b0

)]

= NNa ln
b0

b1

+
k∑

i=k0

Na∑
j=1

(
−|vi(j)− µ1|

b1

+
|vi(j)− µ0|

b0

)
(10)

In order to verify the validity of the Laplacian approximation of the data, the illumination

variations are modeled by the Gaussian and Laplacian distributions, and their accuracy is com-

pared. The generalized Gaussian model is not examined, as its approximation is computationally

costly and hence impractical. Fig. 5 contains plots showing the distribution of the actual data

in comparison with its approximation by a Gaussian and Laplacian distribution. The Root

Mean Square error (RMS) between the actual empirical data distribution and the corresponding

Gaussian and Laplacian model is presented in Table I for several videos, where it can be seen

that the Laplacian distribution provides a better fit. Modeling experiments are conducted on all

the videos used in the experiments, but have not been included in Table I for reasons of space and

readability. The mean RMS estimated from all the video sequences examined is0.0915 for the

Gaussian and0.0270 for the Laplacian model, justifying the choice of the latter as a better fit for

our data. The data could be modeled even more accurately by heavier tailed distributions, such

as alpha-stable distributions [32]. However, these do not exist in closed form, so they cannot be

used in the likelihood ratio test. A closed form distribution from the alpha-stable family, namely
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the Cauchy, describes the data well in the DCT domain [33], but the Laplacian has been shown

to better describe quantized image data [34].

(a) (b) (c)

(d) (e) (f)

Fig. 5. Empirical distribution, Laplace and Gaussian data modeling for: (a) Daria Jump, (b) Denis Jack, (c) Eli Jump in place,

(d) Moshe Run (e) Daria Walk (f) Moshe Skip. (g) Boxing. (h) Clapping. (i) Waving.

V. RECOGNITION

The proposed system detects when activities change in a video, based on sequential processing

of the inter-frame illumination variations. After change points are detected, the subsequences

resulting inbetween them are further processed in order to characterize and recognize the activities

taking place in them. We focus on the case where there is a pre-processing stage that extracts the

active pixels, as this reduces the system’s overall computational cost and increases its reliability,

since it does not look for activity changes in static pixels. The complete system consists of the

following stages:

1) Activity areas are extracted to find the active pixels.

2) The illumination variations of the pixels inside the activity area over time are estimated.

3) Sequential change detection is applied to the illumination variations, to detect changes.
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TABLE I

GAUSSIAN AND LAPLACE MODELING ERRORS

Model/Video Lyova Run Eli Run Daria Run Denis Run Moshe Run Shahar Run Lena2 Run

Gaussian 0.0913 0.0976 0.1077 0.0898 0.1010 0.0975 0.1128

Laplace 0.0239 0.0265 0.0344 0.0253 0.0310 0.0295 0.0409

Model/Video Lena1 Run Ira Run Ido Run Daria Jack Denis Jack Eli Jack Ido Jack

Gaussian 0.1206 0.0801 0.0933 0.1026 0.1031 0.1105 0.0879

Laplace 0.0433 0.018 0.0253 0.0371 0.0333 0.042 0.0257

Model/Video Ira Jack Lena Jack Lyova Jack Moshe Jack Shahar Jack Daria Jump Denis Jump

Gaussian 0.1129 0.0864 0.108 0.1081 0.1057 0.0815 0.0734

Laplace 0.047 0.0307 0.0359 0.0368 0.0383 0.0179 0.0153

Model/Video Eli Jump Ido Jump Ira Jump Lena Jump Lyova Jump Moshe Jump Shahar Jump

Gaussian 0.094 0.0827 0.0680 0.0956 0.0788 0.0947 0.0984

Laplace 0.0228 0.0237 0.0219 0.0239 0.0207 0.027 0.0234

4) If the change points are (nearly) equidistant, the motion is considered to be (near) periodic.

5) The Activity Areas and Activity History Areas for the frames (subsequences) between

change points are extracted. The shape of the Activity Areas and the direction and mag-

nitude of motion are derived from the Activity History Area, to be used for recognition.

6) False alarms are removed: if motion characteristics of successive subsequences are similar,

those subsequences are merged and the change point between them is deleted.

7) Multiple Activity Areas and Activity History Areas originating from the same activity are

detected and merged if their motion and periodicity characteristics coincide.

8) Shape descriptors of the resulting Activity Areas and motion information from the Activity

History Areas are used for recognition.

The detection of different activities between change points increases the usefulness and accuracy

of the system for many reasons. The proposed system avoids the drawback of “overwriting” that

characterizes MHIs that are extracted using the entire sequence. In periodic motions, for example,

where an activity takes place from left to right, then from right to left and so on, all intermediate

changes of direction are lost in the temporal history image if the all video frames are used. This

is overcome in our approach, as Activity History Areas are estimated over segments with one

May 29, 2009 DRAFT



13

kind of activity, giving a clear indication of the activity’s direction and temporal evolution. This

also allows the extraction of details about the activity taking place, such as the direction of

translational motions, periodicity of motions like boxing, or of more complex periodic motions,

containing similarly repeating components (see Sec. VI-B). Finally, the application of recognition

techniques to the extracted sequences would not be meaningful if the sequence had not been

correctly separated into subsequences with one activity each.

Both the shape of the Activity Area and motion information from the Activity History Area

are used for accurate activity recognition, as detailed in the sections that follow.

A. Fourier Shape Descriptors of Activity Area

The shape of the Activity Areas can be described by estimating the Fourier Descriptors

(FD) [35] of their outlines. The FDs are preferred as they provide better classification results

than other shape descriptors [36]. Additionally, they are rotation, translation and scale invariant,

and inherently capture some perceptual shape characteristics: their lower frequencies correspond

to the average shape, while higher frequencies describe shape details [36]. The FDs are derived

from the Fourier Transform (FT)F1, F2, ..., FN of each shape outline’s boundary coordinates.

The DC componentF1 is not used, as it only indicates the shape position. All values are divided

by the magnitude of|F1| to achieve scale invariance, and rotation invariance is guaranteed by

using their magnitude. Thus, the FDs are given by:

f̄ =

[ |F2|
|F1| ,

|F3|
|F1| , ...,

|FN |
|F1|

]
. (11)

Only the 20 first terms of the FD, corresponding to the20 lowest frequencies, are used in the

recognition experiments, as they capture the most important shape information. The comparison

of the FDs for different activities takes place by estimating their Euclidean distance, since they

are scale, translation and rotation invariant. WhenL = 20 elements of the FDs are retained, the

Euclidean distance between two FDsf̄A, f̄B is given by:

dEucl =
L∑

k=1

|f̄A(k)− f̄B(k)|. (12)

and each activity is matched to that with the shortest Euclidean distance.
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B. Activity History Area for motion magnitude and direction detection

Although the shape of Activity Areas is characteristic of many activities and is effectively used

for their recognition, there also exist categories of activities with very similar Activity Areas.

A characteristic example commonly encountered in practice is that of translational motions,

whose Activity Area covers a linear region (horizontally, vertically, or diagonally). It is seen

in Fig. 6, 14(g)-(i) that this shape is linear for different translational motions, such as jogging,

running, walking, so it is insufficient for discriminating amongst them. However, this linearity

property can be used to separate translations from other kinds of motions. The linearity can be

derived from its mean in the horizontal direction, shown in the first three pairs of images of

Fig. 6 for walking, jogging, running. Activities that do not contain a translational component,

such as boxing, clapping, waving lead to a local concentration of pixel activity, which makes

sense since they take place over a confined area (last three image pairs of Fig. 6).

Fig. 6. Activity Area outlines and their mean in horizontal direction for: Walking, jogging, running, boxing, clapping, waving.

The mean AA outline is linear for translational motions.

In order to separate translational motions from each other, the Activity History Areas (Fig. 7)

are used. Motion direction and magnitude information is extracted by estimating the mean of

the Activity History Area in the horizontal and vertical directions. In this work all translational
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motions are horizontal, so only the horizontal mean of the AHA is estimated. This mean forms

a line whose slope provides valuable information about the direction and magnitude of motion:

• The sign of the slope shows the direction of motion: it is negative for a person moving to

the left and positive for motion to the right.

• The magnitude of the slope is inversely proportional to the velocity, i.e. higher magnitudes

correspond to slower activities.

The values of the Activity History Area are higher in pixels that were active recently; here the

the pixel locations correspond to the horizontal axis, and the slope is estimated by:

slope =
tlast − tfirst

xlast − xfirst

, (13)

where tfirst is the frame at which the first horizontal pixel (the leftmost x location here) is

activated, andtlast the frame where the last horizontal pixel is activated (the rightmost x location).

This can be seen in Figs. 8(a), (b) for motions to the right and left respectively: motion to the

right leads to a positive slope since the rightmost pixel is activated at the most recent frame,

while motion to the left leads to a negative slope.
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Fig. 7. Activity History Areas and their means for translational motions to the left and right: walking (top row), jogging

(middle row) and running (last row). Direction and magnitude information is included in these areas.
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Fig. 8. Mean of Activity History Area in horizontal direction for motion to the right and left.

TABLE II

SLOPE MAGNITUDE OF MEAN AHA FOR BASELINETRANSLATIONAL V IDEOS

Motion Run Jog Walk

AHA slope 0.1192± 0.0358 0.1651± 0.0455 0.27248± 0.054625

The Activity History Area of a fast activity (e.g. running) contains a small range of frames

(from tfirst to tlast), since it takes place in a short time, whereas the Activity History Area of a

slow activity occurs during more frames, since the motion lasts longer. In order to objectively

discriminate between fast and slow actions, the same number of pixels must be traversed in each

direction. Thus, in Eq. (13),xlast− xfirst is the same for all activities, andtlast− tfirst has high

values for slow actions and low values for fast ones. Consequently, higher magnitudes of the

slope of Eq. (13) correspond to slower motions and lower magnitudes correspond to faster ones.

The activities examined are horizontal walking, jogging, running, and cover the same distance,

so that the slope magnitude can be objectively used to discriminate amongst them. For com-

parison, the Activity History Area is extracted from a set of baseline translation videos, and its

horizontal mean is estimated. The slope of the mean is found from Eq. (13) and its magnitude is

given in Table II for each activity. As expected, the slope has higher values for slower motions.

For the classification of a test video, its Activity History Area is extracted, and its mean

is estimated. The sign of its slope indicates whether the person is moving to the right or left
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and its magnitude is compared to the average slope of the three baseline categories of Table II

using the Mahalanobis distance. For a baseline set with meanµ = [µ1, ..., µN ] and covariance

matrix Σ, the Mahalanobis distance of datay = [y1, ..., yN ] from it is defined asdMahal(y) =
√

(y − µ)T Σ−1(y − µ). The Mahalanobis distance is used as a distance metric as it incorporates

data covariance, which is not taken into account by the Euclidean distance. In this case the data

is one dimensional (the slope) so its variance is used instead of the covariance matrix.

VI. EXPERIMENTS FORRECOGNITION

Experiments with real videos take place to examine the performance of the change detection

module. These videos can be found on http://mklab.iti.gr/content/temporal-templates-human-

activity-recognition, so that the reader can observe the ground truth and verify the validity of

the experiments. The ground truth for the times of change is extracted manually and compared

to the estimated change points to evaluate the detection performance.

We model the data by a Laplacian distribution (Sec. IV-B) to approximatef0 andf1 of Eq. (5),

which are unknown and need to be estimated from the datavk0,k at each timek. The distribution

of the “current” dataf0 is extracted from the firstw0 samples ofvk0,k, in order to take into

account samples that belong to the old distribution, whilef1 is approximated using the most

recentw1 samples. There could be a change during the firstw0 samples used to approximatef0,

but there is no way to determine this a priori, so there is the implicit assumption that no change

takes place in the firstw0 frames. Currently, there is no theoretically founded way to determine

the optimal length of the windowsw0 andw1, as stated in the change detection literature [37].

Consequently, the best possible solution is to empirically determine the window lengths that

give the best change detection results for certain categories of videos, and use them accordingly.

After extensive experimentation,w0 = 10 andw1 = 5 are found to give the best detection results

with the fewest false alarms, for detecting a change between successive activities. For periodic

motions, the changes occur more often, so smaller windows are used, namelyw0 = w1 = 4.

At each framek, the test statisticTk is estimated and compared against a threshold in order to

determine whether or not a change has occurred. Due to the sequential nature of the system, there

is no closed form expression for this threshold, so an optimal value cannot be determined for it

a priori [38]. It is found empirically that for videos of human motions like the ones examined

here, the threshold which leads to the highest detection rate with the fewest false alarms is given
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by:

ηopt = µT + 2.3 · σT , (14)

whereµT andσT are the mean and standard deviation of the test statisticTk until framek.

A. Experiments with translational motions

In this section, experimental results for videos containing translational motions, namely walk-

ing, jogging and running, are presented. Characteristic frames of some videos, the corresponding

activity area and the likelihood ratio over time are shown in Fig. 9 and all the videos examined can

be seen on http://mklab.iti.gr/content/temporal-templates-human-activity-recognition. The activity

areas correctly capture the pixels that are active in each video and the likelihood ratio values

change at the time when the actual change occurs. In total, change points are correctly detected

for 16 videos with translational motions, as shown in Table III, but for three of the videos false

alarms are also detected. These false alarms are easily eliminated by examining the average

motion and its variance for each extracted subsequences as they do not change significantly

before and after a false alarm. In this manner, no false alarms remain and only the correct

change points are detected, shown in bold fonts in Table III (for the cases where there were

false alarms). In the table, LR indicates that an activity takes place from left to right, HD means

“horizontally-diagonally”, LRL is left-right-left and LRLR is left-right-left-right. The numbers

(e.g. Jog LR1) distinguish between different videos of the same activity. The last two videos,

Walk LRL and Walk LRLR have two and three change points respectively, which are correctly

detected in both cases, with no false alarms.

Fig. 9(e)-(i) contains frames from a walking sequence, where the pixels around the person’s

neck are mistaken for static pixels, leading to two Activity Areas, one corresponding to the head

and one to the body, shown in Fig. 9(f), (g). When there are more than one Activity Areas, the

sequential testing is applied to each Activity Area separately, since there could be more than one

different activity taking place. In this example the area corresponding to the head is too small to

provide enough samples for a reliable estimate of the change-point, so only the likelihood ratio

values for the Activity Area corresponding to the body of the person with the coat are shown

in Fig. 9(h), (i). Even in this case, the change points are correctly found.
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Fig. 9. (a), (b) Frames of person jogging left, right. (c) Activity area. (d) Likelihood ratio values for each active pixel, over

all frames. (e) Person walking left, right. (f), (g) Activity areas for head and body. (h) Likelihood ratio (LRT) values for each

active pixel (in the body area), over all frames. (i) LRT values for all pixels (in the body area), showing change times.

TABLE III

CHANGE POINTS FOR VIDEOS WITH TRANSLATIONAL MOTIONS

Video Jog LR 1 Jog LR 2 Run LR 1 Run LR 2 Walk HD Walk LR 1 Walk LR 2 Walk LR 3

Change points 35 33 23 20 57 58 61 18, 30,89

Video Walk LR 4 Walk LR 5 Walk LR 6 Walk LR 7 Walk LR 8 Walk LR 9 Walk LRL Walk LRLR

Change points 37-93-134 58-71 49 67 74 70 58, 102 35, 69, 104

B. Experiments with non-translational motions

Combinations of non-translational motions are examined in this section. The first video con-

tains a person clapping, followed by a person boxing, and the second shows a person waving

followed by a person clapping (see Fig. 10 and http://mklab.iti.gr/content/temporal-templates-

human-activity-recognition). The resulting Activity Areas contain the pixels that move in both

activities and the likelihood ratio values estimated over all active pixels lead to correct change

point detection. For the clapping-boxing sequence the correct change point is detected at frame

99, but there are also false alarms at frames65, 85, 123, 159, 176, 200, introduced because of

changes in the individual repeating activities (clapping only or boxing only). As in Sec VI-
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A, these false alarms are eliminated by simply estimating the motion characteristics of the

extracted subsequences, which undergo significant change only at frame99. In the handwaving-

handclapping video, the true change point is found at frame127, but false alarms are also detected

at frames11, 35, 56, 75, 89, 141, 225, which are removed as before, leading to the detection of

only the correct change point. It should be emphasized that the relative height of the likelihood

ratio values is not taken into account for the elimination of false alarms. Instead, the motion

characteristics of the resulting subsequences are measured, as explained above.
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Fig. 10. Handclapping-boxing video: (a) frame 30, (b) frame 100. (c) Activity area of clapping and boxing. (d) Likelihood

ratio estimated for each pixel. (e) Likelihood ratio values for all pixels. Handwaving-handclapping video: (f) frame 10, (g) frame

254. (h) Activity area. (i) Likelihood ratio estimated for each pixel. (j) Likelihood ratio values for all pixels, used for change

detection.

Periodic Motions:

The values of the data windowsw0, w1, chosen for approximatingf0, f1 respectively, affect

the resolution of the system. Whenw0, w1 have higher values, they detect changes at a coarse

granularity, but at the cost of missing small changes inside each individual activity. In this section

we present experiments where these windows are set tow0 = w1 = 4, enabling the detection of

changes in repeating activities with good accuracy.

Fig. 11 shows frames of the videos examined, along with the corresponding activity areas,

and log-likelihood ratio values. For the Boxing and Jumping in Place videos, two activity areas

are extracted, one corresponding to the upper part of the human’s body and one to the legs. This

is because the middle area of the body is relatively static. For those cases each activity area
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Fig. 11. First row: Boxing. Second row: Jumping. Third row: Jumping in place. Fourth row: Composite walking sequence.

Each row shows video frames, the activity area, likelihood ratio values for all pixels.

TABLE IV

CHANGE POINTS FOR PERIODIC MOTIONS, EXTRACTED PERIOD

Video Change points Period

Box 8, 13, 18, 23,..., 203, 208, 213 5

Jump 10, 15, 20, 15,...,46, 51, 56 5

Jump in place 6, 11, 18, 26, 34, 42, 50 8

Walk 22, 19, 56, 44, 22, 19, 56, 44, 22, 19, 56, 44 3

is examined separately: the resulting change points for the two activity areas coincide, and the

motion characteristics between these change points are the same, so these areas are (correctly)

assigned to the same activity. Table IV shows the detected change points for each video and

the resulting period. The last video is more complex, containing3 identical subsequences of

a person walking left-right-left: all change points are found, and form a pattern that repeats3

times.
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C. Experiments with multiple Activity Areas

A video of two people performing different activities at different, but overlapping, time

intervals, is examined (Fig. 12, top two rows). The Activity Area consists of two distinct binary

masks, corresponding to the different activities, so the sequential change detection takes place

in each area separately. For both Activity Areas, the likelihood ratios for all pixels inside them

correctly locate the times of change at frames53, 81, 97 for the person walking on the left, and

at frame33 for the person walking on the right. Two more complicated videos, with multiple

but overlapping activity areas are examined (Fig. 12, last two rows). In this case there is only

one activity area, containing more than one activities, but the proposed method can still detect

the changes of each activity. This is because enough of the data being processed undergoes

a change, which is then detected by the sequential likelihood test. In the first video, with the

crossing ladies, changes are found at frames35, 81 when one lady enters and when another

leaves, respectively. In the second video with the beach scene, changes are detected at frame

37, when the two ladies disappear behind the umbrella, at frame52 when the three ladies meet,

frame66 when one lady is hidden by the umbrella,78 when the girl reappears, and94 when the

two walking ladies disappear (see http://mklab.iti.gr/content/temporal-templates-human-activity-

recognition). This shows that the proposed system can handle cases of multiple activities taking

place during different, possibly overlapping, intervals, with accurate results. Also, these videos

contain dynamically moving backgrounds, and yet accurate change detection is obtained for

them.

D. Experiments with Dynamic Backgrounds

Several challenging videos involving dynamic backgrounds are examined. Despite the moving

background, the activity areas are found with accuracy, as seen in Fig. 13. The change detection

results are extracted from the last column of Fig. 13 and are tabulated in Table V. All change

points are detected correctly, along with a few false alarms, which are in italics in Table V.

The false alarms are easily removed by comparing the motion characteristics between estimated

change points: before and after a false alarm, the motion characteristics do not change, so those

change points are eliminated.
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Fig. 12. Videos with multiple Activity Areas. First two rows, people walking, two separate activity areas. Third row, crossing

ladies. Fourth row, beach. The activity area from rows3 and 4 contains both motions, but change points are correctly found.

Each row shows video frames, the activity area, likelihood ratio values and likelihood ratio values for all pixels.

VII. E XPERIMENTS FOR RECOGNITION

Experimental results for recognition based on the Activity Area and Activity History Area

information are presented here. It should be emphasized that the activity recognition results are

good although there is no training stage, so the proposed method is applicable to various kinds

of activity, without restrictions imposed by the training set.

A. Recognition using Fourier Shape Descriptors of Activity Area

Experiments for activity recognition take place for boxing, handclapping and handwaving,

with Activity Area outlines like those in Fig. 14(a)-(f). The comparison of the FDs for23 videos

of boxing, handclapping and handwaving each, lead to the correct classification of75.49% of

the boxing,79.45% of the handclapping and87.15% of the handwaving sequences as can be

seen in Table VI. This makes intuitive sense, as the outlines of the Activity Areas for the boxing
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Fig. 13. Videos with dynamic backgrounds. First two rows, videos with trees moving in the wind, last row a video with moving

water surface. Each row shows video frames, activity area, likelihood ratio values, likelihood ratio values for all pixels.

videos have a blob-like shape, which is not as descriptive as the other boundaries. Indeed, the

best recognition results are achieved for the handclapping video, whose Activity Area outlines

have a very characteristic shape. Additionally, the boxing and handclapping motions are more

often confused with each other than with the handwaving, as expected, since the latter’s Activity

Area has a very distinctive shape.

Different methods have also used this dataset for activity recognition. In [39], excellent

recognition results of98% for boxing, 91.9% for clapping and91.7% for waving are achieved.

However, that method is based on extracting motion templates (motion images and motion

context) using very simple processing, which would fail for more challenging sequences, like

those in Sec. VI-D: the standard deviation of the illumination over successive video frames is

estimated to find active pixels, a measure which can easily lead to false alarms in the presence

of noise. In [40], Support Vector Machines (SVMs) are used, so training is required in their

method. They achieve recognition of97.9% for boxing, but59.7% for clapping and73.6% for

waving, i.e. worse than our results. Finally, in [41] volumetric features are used, leading to a
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TABLE V

CHANGE POINTS FOR DYNAMIC BACKGROUNDS

Video Change points

Trees 2 23, 39, 61, 72, 80

Trees 5 15, 62, 77, 87,110, 130, 153

Trees 6 14, 28

Trees 7 10, 17, 23, 37, 45,56

Water surface 13, 40, 58, 68, 81,110, 121,133, 146

TABLE VI

RECOGNITION FORBOXING, HANDCLAPPING, HANDWAVING (%)

Activity Box Handclap Handwave

Box 75.49 24.51 0

Handclap 17.39 79.45 3.16

Handwave 0 12.85 87.15

higher computational cost, but achieving recognition results of only69.4% for boxing, 55.6%

for clapping and91.7% for waving (which is comparable to our result). Overall our approach

has a consistently good performance, with recognition rates above75%, despite its simplicity,

low computational cost, and the fact that it does not require any training or prior knowledge.

B. Recognition using Activity History Area Features

For translational motion classification, we examine the subsequences extracted from the walk-

ing, jogging and running videos of Sec VI-A after change detection. The direction of motion

in each one is correctly found for all data. The Mahalanobis distance of the slope magnitude

from the test values for each video is shown in Tables VII- IX, where it can be seen that correct

classification is achieved in all cases, both for the direction and for the type of motion.

VIII. C ONCLUSIONS

In this work, a novel approach for the analysis of human motion in video is presented. The

kurtosis of inter-frame illumination variations leads to binary masks, the Activity Areas, that
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Fig. 14. Activity Area outlines for (a), (b) boxing, (c), (d) clapping, (e), (f) waving, (g) walking, (h) jogging, (i) running.

TABLE VII

MAHALANOBIS DISTANCE FOR RUNNING V IDEOS

Motion Run 1 left Run 1 right Run 2 left Run 2 right

AHA slope -0.1030 0.0801 -0.0794 0.0822

dMahal from Run 0.4524 1.0926 1.1122 1.0339

dMahal from Jog 1.3661 1.8695 1.8849 1.8233

dMahal from Walk 3.1026 3.5218 3.5346 3.4834

indicate which pixels are active throughout the video. The temporal evolution of the activities is

characterized by temporally weighted versions of the Activity Areas, the Activity History Areas.

Changes in the activity taking place are detected via sequential change detection, applied on the

inter-frame illumination variations. This separates the video into sequences containing different

activities, based on changes in their motion. The activity taking place in each subsequence is then

characterized by the shape of its Activity Area or on its magnitude and direction, derived from

the Activity History Area. For non-translational activities, Fourier Shape Descriptors represent

the shape of each Activity Area, and are compared with each other, for recognition. Translational

motions are characterized based on their relative magnitude and direction, which are retrieved

from their Activity History Areas. The combined use of the aforementioned recognition tech-

niques with the proposed sequential change detection for the separation of the video in sequences
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TABLE VIII

MAHALANOBIS DISTANCE FOR JOGGING V IDEOS

Motion Jog 1 left Jog 1 right Jog 2 left Jog 2 right

AHA slope -0.1602 0.1527 -0.1438 0.1448

dMahal from Run 1.1467 0.9370 0.6882 0.7162

dMahal from Jog 0.1088 0.2736 0.4693 0.4473

dMahal from Walk 2.0554 2.1927 2.3557 2.3374

TABLE IX

MAHALANOBIS DISTANCE FOR WALKING V IDEOS

Motion Walk 1 L Walk 1 R Walk 2 L Walk 2 R Walk 3 L Walk 3 R Walk 4 L Walk 4 R

AHA slope -0.3138 0.4112 -0.3676 0.3511 -0.3518 0.3887 -0.2729 0.3980

dMahal from Run 5.4408 8.1638 6.9449 6.4836 6.5032 7.5348 4.2974 7.7948

dMahal from Jog 3.2675 5.4085 4.4501 4.0874 4.1028 4.9139 2.368 55.1183

dMahal from Walk 0.7565 2.5395 1.7414 1.4393 1.4521 2.1276 0.0077 2.2979

containing separate activities leads to successful recognition results at a low computational cost.

Future work includes the development of more sophisticated and complex recognition methods,

so as to achieve even better recognition rates. The application of change detection on video is

also to be extended to a wider range of videos, as it is a generally applicable method, not limited

to the domain of human actions.
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