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Abstract—In this paper, we explore building classifiers to detect
Salsa dance step primitives in choreographies available in the
Huawei 3DLife data set. These can collectively be an important
component of dance tuition systems that support e-learning.
A dance step is reasoned as the shortest possible extract of
bodily motion that can uniquely identify a particularly repeatable
movement through time. The representation of dance steps
adopted is a concatenation of vectorized matrices involving the 3D
coordinates of tracked body joints. Under this modeling context,
a Salsa dance performance is seen as an ordered sequence of
Salsa dance steps, requiring a multiple of the variables allocated
in the representation of a single step. Following a previous work
by Masurelle & Essid that discusses the classification of six Salsa
dance steps from 3DLife, we show that it is possible to obtain
better classifiers under a similar experimental protocol in terms
of both test accuracy and F-measure. By carefully re-annotating
the data in 3DLife, we refocus on the six-step classification
problem and then extend the protocol to the case of 20 dance
steps. In comparison to common classifiers of the trade operating
on full-dimensions, we show that it is possible to produce more
accurate models by computing a subspace of the data. At the
same time it is possible to reduce problematic bias in resulting
models due to the uneven distribution of samples across step data
classes. We provide and discuss experimental findings to support
both hypotheses for the two experimental settings.

I. INTRODUCTION

Learning to dance with the help of a Kinect sensor has

been a popular practice in the last 5 years. A sheer number of

commercial applications in the entertainment sector have been

available for the Xbox game console, selling several millions

of devices. With the availability of the Kinect appliance

at a low price along with the abundant supply of major

open software libraries for handling and processing captured

data (such as OpenNI1), a large number of ideas have been

prototyped. A prominent example is the commercial Xbox

Dance Central2 title. The game helps human dancers learn

how to perform dance gestures and choreographies, offering

“more than 650 dance movements and over 90 dance routines”.

It also allows for one or several subjects to perform in front

of the same Kinect sensor and be graded simultaneously. The

game can classify the users’ dance motion in real-time and

prepare visual scoring feedback to them, while it basically

allows for the real sensor-observed dance scene to be actuated

to a virtual one. Another commercial example that is similar

1http://structure.io/openni
2http://www.harmonixmusic.com/games/dance-central/

to the previous one is the Just dance game title developed by

Ubisoft.

From an academic point of view, some research effort in

dance analysis has been spent in developing algorithms that

can recognize how well a user can imitate certain motion

patterns presented by an avatar. Several dance flavors have

recently been the topic of research, such as ballet dance [1],

Tsamiko dance (see [2], [3], [4]), and Salsa dance [5] that this

paper deals with.

The inherent difficulty in modeling continuous motion has

ties with: a) the problem of computing a reliable degree of

belief about how well a realized motion resembles an ideal

motion primitive; b) capturing failed attempts of movements

and backtracking immediately; and c) classifying movements

which are largely corrupted (e.g., a movement is performed

well for some fraction of its ideal duration but it is irregular

in the rest of it); d) dealing with position and scale artifacts

possibly in combination with (a)-(c). Humans are able to

recognize the identity of dance steps even under the existence

of time lag (slow or fast performance) or scale artifacts, for

example. Computationally, such artifacts can be addressed by

an algorithm that aligns an observed motion trajectory signal

with the signal of an ideal motion trajectory.

Motion activity in Salsa dance is naturally reasoned in terms

of steps, and steps are structured as consecutive sub-steps

that are in general synchronized with music beat. One sub-

step regularly lasts for one quarter of the duration of a step.

Sub-steps in dance motion are ideally mapped to quarters in

the music meter, although this requirement can be adhered

with difficulty from non-experts. Hence, if we assume that a

performance is executed in order of the correct steps, then

observed trajectory structure can be concretely analyzed in

terms of a predefined set of ideal steps. In practice, however,

this temporal analysis is inherently affected by bodily-induced

signal transformations. This difficulty may be due to a dancer

missing some of the steps, or the difficulty of encoding these

transformations within the model.

In this paper, we are interested in learning classifiers that

can recognize steps of Salsa dance from skeletal poses, i.e.,

algorithms that make non-soft decisions about the identity of a

step. A Salsa step is sensed as the maximum possible extract

of a motion trajectory that is lengthy enough to describe a

commonly perceived, repeatable motion. We represent dance

steps as lists of consecutively concatenated skeleton poses cap-
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tured by the technique3 of Shotton et al. [6] which estimates

the position of skeletal joints from sequences of depth images.

To prepare Salsa dance step training data from skeletal

motion trajectories pertaining to performed choreographies,

we have developed an annotation tool called DanceAnno. We

open-source this software in hopes that it will be useful for

researchers working on the same dataset or similar ones. The

tool allows a user to annotate motion trajectories by letting

them place starting and ending marks to delimit a compact

activity. Along with a set of body joint coordinates being

plotted on a time-line, the tool provides the annotator with

sample-level imagery depicting the actual subject performing

the activity to be annotated. Handling more modalities within

DanceAnno is possible by extending its object-oriented inter-

face with add-on application logic.

The paper of Masurelle & Essid [5] constitutes the basis

of our work, which extends its findings and supplements the

problem toolkit with a careful data annotation and a data

annotation tool. In [5] the authors explore the applicability of

generative machine learning models, namely Gaussian mixture

models and Hidden Markov Models (HMMs), in predicting six

Salsa dance steps from the 3DLife data set [7].

In this paper, our contributions are the following:

a) We developed an open-source, extendable dance motion

annotation tool called DanceAnno that allows a user to pro-

duce annotations of events in alignment with motion trajectory

signals and sample-by-sample footage of the entire activity; b)

Using DanceAnno, we carefully created an accurate annotation

of the performance trajectories in 3DLife to step level by

filtering out noise being uninformative to the actual payload

of the motion; c) We reproduce and further extend the exper-

imental protocol of Masurelle & Essid both for the case of

six steps studied (for both male-only and male-plus-female

step instances), and provide a discussion on the obstacles

met in classifying 20 classes using the data produced from

our annotation; and d) We provide evidence that performing

feature extraction with PCA on dance steps helps to create

more accurate4 classifiers, and can control the effect of class

imbalance in resulting classifiers due to the uneven distribution

of training samples across all of the available classes.

The classification models discussed in this paper can be a

useful component within e-learning Salsa dance tuition games

which may provide, among other features, visual feedback to

users about the steps they perform.

In Section II, we provide a review of recent related work

on human action recognition and accompanied motion de-

scriptors. In Section III, the data set and annotation tool

used are described. Section IV provides a description of the

pre-processing and the dimensionality reduction algorithms

used on the raw motion trajectory signals. The classification

algorithms are outlined in Section V. Experimental results are

3The algorithm is wrapped in OpenNI2.
4We compute the average test accuracy and F-measure by rotating over

a unique testing dancer out of a total of 14 ones that are kept for training
classifiers.

given in Section VI. Section VII states conclusions and future

work.

II. RELATED WORK

The dimensionality of raw skeletal motion extracts over

a number of k frames is O(mk), where m is the number

of variables to describe a single skeletal pose and k is the

count of frames accumulated within a contiguous motion

segment. Even for small values of k (assuming m is fixed),

the total count of variables that describe a succession of

poses can become large to an unnecessary extent. In previous

work by Bashir et al. [8] it was shown that a parsimonious

representation over only a few of the total variables can be

uncovered by projecting raw motion data onto a subspace

spanned by a projection matrix of low rank. We come back to

this hypothesis in the experimental section of this paper.

Being a critical point in the representation of motion,

skeletal data in the Human Action Recognition loop can be

broadly divided in the set of approaches which attempt to

directly learn feature representations off from raw data and to

those approaches which explicitly map raw data into a feature

space governed by a feature transformation procedure. Such a

procedure is generally called a descriptor in the literature. In

this paper, we explore the case where a classifier is learned

on the raw motion data without applying a descriptor.

In the rest of this paper, we will be using the shorthand

notation HAR to refer to the field of Human Action Recog-

nition. In the course of learning more complex data structure

from either raw or descriptor-piped data, the area of HAR

has unquestionably drawn reincarnation from prior but recent

advances in image modeling for image retrieval in multimedia

databases. The bag of visual words model [9] is a common

example that has been studied extensively.

Evangelides et al. [10], [11] propose the skeletal quad

descriptor that embeds skeletal poses into a feature space of

6 dimensions, instead of using the raw coordinate data of

the skeletal pose. In addition to compressing skeletal poses,

the authors show that the descriptor is invariant to basic

geometric transformations. The descriptor is applied in an

action recognition scenario.

Xia et al. [12] propose the Histogram of 3D Joints (HOJ3D)

descriptor. The feature description technique first transforms

the three dimensional coordinate space to a polar one (non-

linearly), and the polar coordinate values are used to compute

a 2D radial-angular discrete histogram.

Raptis et al. [13] develop a complete real-time dance gesture

recognition system which has been estimated to be able to rec-

ognize 96, 9% of gestures over a time frame of four seconds.

In their design, the authors compute the angular difference

among joint pairs that are either deemed as first-order joints

or second-order ones exclusive. All angular divergences are

packed into a feature vector, which is the proposed skeletal

pose descriptor.

Thanh et al. [14] describe an analytical technique for skele-

ton based HAR. At first, they divide an entire motion time-

line into temporal segments. Among the temporal segments,



key skeletal poses that optimize a local objective function are

selected. In that way, one action is considered as the collection

of skeletal action poses. To represent the coordinate data in the

histogram, the authors make use of a histogram of 3D skeletal

sequences that hashes joint points into the bins of a histogram.

Yang et al. [15] discuss a natural idea for HAR and

action representation introduced as the EigenJoint skeletal

data descriptor, which attempts to learn significant patterns of

motion using PCA as the data description technique. Before

identifying significant components in the space of skeletal

poses, the affinity matrix of skeletal joints is considered.

The descriptor attempts to take into account information that

reveals temporally varying activity (e.g., acceleration and

velocity). The authors test their descriptor on the so-called

Naive-Bayes Nearest Neighbor (NBNN) classifier in order to

categorize human action sequences into predefined classes.

III. DATA PREPARATION

Fig. 1. An instance of the DanceAnno motion activity annotation tool showing
one dance tutor performing a Salsa choreography.

In this section, we introduce the DanceAnno motion trajec-

tory annotation tool which we offer publicly5 as open-source

software. As is, the tool allows a user to generate annotation

for the motion trajectory data of the 3DLife data set and

the Calus dance data set of the i-treasures6 project. However,

the software can be adapted to work with other data sets as

well without requiring excessive changes to the original code

base. The tool makes use of the object oriented programming

interface of the Python 3 programming language.

To begin a new annotation, two fields are necessary to be

filled within the graphical user interface of DanceAnno: a)

the path to skeleton trajectories in .mat format, or in .skel

(Microsoft) v2 format; and b) the path to a directory containing

timestamped video frames in PNG or JPEG format. Optionally

a modal text file with music beat labels can be loaded to

possibly help increase the precision of the annotation and

better enhance the reasoning of the human annotator. The

5DanceAnno is available at https://github.com/MKLab-ITI/DanceAnno
6EU FP7 project i-treasures http://i-treasures.eu/

output of the tool is a text file with the labels and the endpoint

timestamps of the labels, assuming the annotated events do not

overlap temporally. The user has the option to select which

joints should be plotted by the visualizer (e.g., because some

signals may be less worthwhile to plot due to them being

uninformative). The ‘left foot‘ and ‘right foot‘ trajectories are

selected by default, since they are the most informative for

dance motion. Next, as shown in Figure 1, each of the 3 x/y/z

coordinates of each joint are plotted in a separate canvas,

resulting in 6 canvases for the default joints. The time-line

can be slided with a mouse drag while visual footage is also

depicted.

TABLE I
FREQUENCY OF DANCE STEPS FROM 14 DANCERS IN 3DLIFE.

Class Name Occurences
1 forward-basic-step 143 (123 in [5])
2 backward-basic-step 71 (144 in [5])
3 right-turn 1
4 cross-body 1
5 preSuzieQ-backward-step 24
6 suzie-q-a 28 (18 in [5])
7 suzie-q-b 28 (18 in [5])
8 preDoubleCross-backward-step 24
9 double-cross-a 25 (18 in [5])
10 double-cross-b 26 (18 in [5])
11 pachanga-tap-a 9
12 pachanga-tap-b 9
13 swivel-tap-a 9
14 swivel-tap-b 7
15 cross-body-a 9
16 cross-body-b 9
17 turn-call 14
18 girl-turn 14
19 boy-turn-hand-switching 12
20 girl-turn-caress 12
21 cross-body-c 9
22 cross-body-d 10

A. Sufficiency of data population

A basic problem when building classification models for

modeling aspects of Salsa dance is that often there is a limited

availability of data. Growth in the amount of samples captured

for the same event (in our case, a dance step or a whole

choreography) occurs very slowly. Therefore, at any given

point in time a model may be required to be learned using only

the data available. Often it can be the case that some classes

of an event are sufficiently populated while other classes are

very poorly populated. In such a case, we may face the so-

called class imbalance problem [16]. When training classifiers

on class-imbalanced data, the learned model may suffer from a

problematic bias in future predictions on test data. Most often

a model may be observed to classify input data to only a very

limited set of classes erroneously.

In this paper, we target the class imbalance problem in the

classification of six and twenty steps. To lessen the class im-

balance effect on the learned models in both cases we reduce

the dimensions of the data with linear PCA. This transform



proves to increase the average testing accuracy, and average F-

measure (with leave-one-out model testing), while also taking

account of the bias in learned classifiers. We discuss this

behavior in Section VI by comparing learned models on the

original step feature space and a lower dimensional space

determined by linear PCA.

IV. RAW SIGNAL TRANSFORMATIONS

The transformations applied to the raw signals before a

model is adapted to them are linear interpolation, normaliza-

tion and dimensionality reduction. Linear interpolation was

used in order to make all steps of similar length (specifically,

of 32 signal samples at a sampling rate of 25 Hz). Zero-mean

normalization is applied to the data in order to bring them

to a space of similar scale and position, since the distance

between the subject and sensor, and also the subject’s height,

may affect the predictions cast by the models. At validation

time, we can use the normalization constants that we learned

at training time, as an approximation of the right position and

scale of the features.

For zero-mean normalization, we compute the mean and

standard deviation vector (μ and σ) of the steps in the

aggregate set X of steps on D dimensions. For each step

feature vector x ∈ RD, we compute a normalized instance

of it using the simple formula

yi =
xi − μi

σi

for all i ∈ [1, ..., D], (1)

hence obtaining a new vector y ∈ R
D in a feature space

confined by the scale7 in the data from which the normalization

parameters where derived. xi and yi are the i−th scalar

components of the signals x and y, respectively. Therefore,

a feature vector over 32 temporal moments × 15 joints × 3

x/y/z coordinates is obtained, which amounts to a total of 1440

dimensions.

In previous work, Masurelle & Essid [5] use only the

skeletal joints below the waist of a subject under the as-

sumption that over-the-waist joints are uninformative in the

context of Salsa dance. In our experiments, we only observe

a small increase in test accuracy when male-and-female data

are used for classification. Experiments are carried out on six

and twenty step classes, on male-only and male-and-female

data, using six lower-body joints and fifteen whole-body joints.

In a secondary data pre-processing step, the raw signals are

projected onto a lower dimensional subspace computed by

linear PCA (see [17]).

Limitations of the hypothesis The classification models

tested on step data from 3DLife [7] are learned and validated

in a controlled manner, in the sense that the length of step

extracts is fixed. As step data exhibit variance generated by

the motions of different subjects, the pipeline discussed does

not take into account special transformations such as time lag

or other spatiotemporal distortions. In this way, we assess how

well the model can penalize step data that cannot express the

7If σi
n = 1, we get positional normalization that does not affect scale.

step content within a fixed time frame. Such transformations

would also place a requirement to do some form of signal

registration with a dynamic time warping algorithm.

V. CLASSIFICATION METHODOLOGY

Three classifiers have been employed in order to assign

labels to steps: Random Forest models, linear and non-linear

support vector machines (SVMs), and multi-class AdaBoost

(called AdaBoost.M2 [18]) using decision trees as a weak

learners.

A. Motivation for random forest models

The Random Forest model is a majority voting classifier

that collectively considers the partial assertions of a series of

decision trees. Each decision tree can consider a subset of the

total variables used in a data set. After computing a model, an

input datum is passed through a succession of decision trees.

Each tree casts a vote for the input, and the label voted by the

maximum number of decision trees is predicted.

B. Motivation for Support Vector Machines

Support Vector Machines (SVM)s is a family of classifiers

[19] introducing the notion of the maximum margin separating

hyperplane. It has been the core or basis of many successful

applications and algorithms in machine learning. In the simple

case where the data are linearly separable points on the plane,

a linear SVM finds a hyperplane (in this case, a line) whose

margin (the free space between the separating hyperplane and

a line passing through at least two points of the positive and

negative class, alike) is maximum. The parameters of the line

are found by solving a quadratic optimization problem. The

linear case can be extended to a non-linear setting where

distance between any two points in feature space is warped

non-linearly. In this paper, we consider one-versus-all (OVA)

multi-class construction on n classes, where each SVM model

is trained on the i-th (positive class) and the rest of n − 1
classes (negative class). The one-versus-all case for SVM

models has been studied extensively in the work of Rifkin

[20].

VI. EXPERIMENTS

In this section, we explore the ability to learn classi-

fiers that can discriminate multiple Salsa dance steps. We

measure the effect of class imbalance with the discrete en-

tropy of the normalized misclassification histogram, i.e., as

−
∑C

i=1
cilog2(ci), where ci is the proportion of misclassified

samples as belonging to class i, and C is the count of classes.

A misclassification histogram is computed over all of the

testing samples across 14 training rounds.

Comparison with Masurelle & Essid We cross-compare

the six class classification results reported in [5]. The best

F-measure8 reported by Masurelle & Essid is attained by a

Hidden Markov Model, and it is estimated at 74%. In Table I

we depict the frequency distribution of steps in both the

8F-measure is defined as 2× precision×recall
precision+recall

.



authors’ paper and also considering our annotation of noise-

free steps in 3DLife. Using data emerging from our annotation,

we find a linear SVM in a one-versus-all (OVA) scheme on

101 dimensions (amounting to 7.01% of the total variables)

that attains an average F-measure of 84.05% under a variance

of 12.60%, which gives the best observed performance higher

by 10.05% from the best baseline score (experiment 2). The

corresponding average test accuracy is estimated at 93.12% for

this classifier. The previous result is attained when 6 skeletal

joints are utilized. By reconsidering the six class problem this

time on 15 joints, we arrive at a slightly better model on

41 dimensions with an F-measure of 84.34%. This validates

the argument of Masurelle & Essid that above-the-hip skeletal

joints are uninformative for the classification task. Experiment

5 shows that misclassification histogram entropy is better than

the case where full dimensions are used by at least 0.21 (see

Figure 2(i) and Figure 2(j)).

Our extensions We now focus on the same experimental

protocol, but this time we consider the case of 20 classes9

from choreographies c3, c4 and c5 in 3DLife. We consider

our manual annotation of dance steps, aspects of which we

described earlier. The best model found in this experiment

is a random forest operating on a reduced subspace of 51

dimensions. The model on reduced dimensions attains an

average test accuracy of 67.12% and F-measure of 44.91%.

The higher the test accuracy and F-measure the more robust

the resulting model. This result improves the classification

accuracy of the same model in full dimensions, in which

case the test accuracy is 54.79% (lower by 12.33% than the

previous result) and the F-measure is 29.70%. In Figure 2(e)

and Figure 2(f), the misclassification histograms on 1440

dimensions and 51 dimensions are shown. In the second his-

togram, we get a better entropy value estimated at 4.34 (while

the value of the entropy on full dimensions is 4.19), validating

our hypothesis. For the case of one-versus-all support vector

machines, the best PCA projection on 34 dimensions yields a

classifier with an F-measure that is slightly worse than the one

computed on 1440 dimensions. The F-measure of the latter is

at 23.28% while that of the former is at 21.66%. However, the

misclassification histogram of the classifier on 34 dimensions

has an entropy value of 3.55, which is only slightly better

than the entropy of the same model on full dimensions that

equals 3.52. Similarly, a marginal increase in entropy for the

misclassification histogram of an AdaBoost.M2 model for the

case of 3 dimensions is also observed. When PCA is used

we get an entropy value of 4.14, while in the case of full

dimensions the entropy value is 4.10. For reference on the

misclassification histograms of classifiers operating on 20 step

data classes, see Figure 2(a) through to Figure 2(d).

Entropy of misclassification histograms The class im-

balance problem [16] can severely affect the applicability

of classifiers. Usually, this is manifested by the classifier

9Note that we have annotated a total of 22 steps across 3DLife. Two step
classes contain only one data sample each (namely, steps right-turn and cross-

body which belong to choregraphy c2). We exclude these two step classes from
our experiments.
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Fig. 2. Histograms show the distribution of misclassified test samples
to target classes by trained classifiers with or without PCA. Odd-ordered
columns show performance on full dimensions; even-ordered columns show
performance with linear PCA. Tables II and III enlist the corresponding
entropies computed for respective misclassification histograms (see numbering
in the Ref. # column of each table). Histograms on full dimensions tend to
accumulate a high fraction of errors to specific classes. When PCA is applied,
misclassifications are distributed more evenly.

consistently predicting a subset of possible classes. Figure 2(g)

shows an example where a classifier trained on full dimensions

falsely predicts classes 3, 4 and 5 when evaluated on the testing

set. We measure this artifact by the discrete entropy of the

misclassification histograms on test samples. The higher the

entropy of the misclassification histogram of a classifier, the

smoother the distribution of errors across classes. Figure 2(a)

through Figure 2(l) demonstrate that this effect can be resolved

in many models.

VII. CONCLUSIONS AND FUTURE WORK

We conduct experiments on the classification of Salsa dance

steps from the 3DLife data set. We extend the experiments

of Masurelle & Essid [5] for the case of 6 step classes, and

also study the case of 20 step classes. In both schemes, we

assess the hypothesis that preprocessing the step data with

linear PCA can help uncover a parsimonious representation

that boosts the accuracy of models and tackles class imbalance.

The discrete entropy of misclassification histograms shows that

model validation gets better at predicting targets. In future

work, we intend to integrate the classifiers explored here

within in a real-time Salsa dance e-learning system which will

provide real-time motion-specific feedback to users.
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TABLE II
RESULTS OF EXPERIMENTS ON 6 CLASSES IN 3DLIFE.

ref. # problem classifier data parameters D D/R CCR (%) F-measure (%) Ent.

1 6 step [5] Gaussian Mixture Model M / 6J 4 components 40 PCA n/a 68% n/a
2 6 step [5] Hidden Markov Model M / 6J 3 hidden states 60 PCA n/a 74% n/a
3 6 step [8] Gaussian Mixture Model M / 6J 6 components 80 PCA n/a 61% n/a
4 6 step [8] Hidden Markov Model M / 6J 4 hidden states 40 PCA n/a 63% n/a

5 6 step linear SVM / OVA M / 6J �2 reg/loss; C = 0.001 101 PCA 93.12± 04.87 84.05± 12.60 2.31

6 6 step Random Forest M / 15J 200 trees; mtry=�√1440� 1440 raw 80.35± 07.86 59.33± 11.61 1.58

7 6 step Random Forest M / 15J 200 trees; mtry=�√38� 38 PCA 91.42± 04.34 80.14± 10.83 2.31

8 6 step linear SVM / OVA M / 15J �2 reg/loss; C = 0.001 41 PCA 93.34± 05.19 84.34± 13.20 2.10∗

Abbreviations: M stands for male, J stands for joints, D stands for dimensionality; D/R stands for dimensionality reduction; CCR stands for Correct Classification
Rate; Ent. stands for discrete entropy; * Entropy in the case of 1440 dimensions is 1.82

TABLE III
RESULTS OF EXPERIMENTS ON 20 SALSA DANCE STEP CLASSES FROM 3DLIFE.

ref. # problem classifier data parameters D D/R CCR (%) F-measure (%) Ent.

9 20 step Random Forest M+F / 15J 200 trees; mtry=�√1440� 1440 raw 54.79± 15.58 29.70± 13.56 4.19

10 20 step Random Forest M+F / 15J 200 trees; mtry=�√51� 51 PCA 67.12± 10.52 44.91± 10.21 4.34

11 20 step linear SVM / OVA M+F / 15J �2 reg/loss, C = 0.001 1440 raw 18.01± 07.45 21.66± 08.78 3.52

12 20 step linear SVM / OVA M+F / 15J �2 reg/loss, C = 0.001 34 PCA 17.54± 04.30 23.28± 05.32 3.55

13 20 step AdaBoost.M2 M+F / 15J 500 trees; mtry=�√3� 3 PCA 32.91± 14.50 22.03± 12.18 4.14

14 20 step AdaBoost.M2 M+F / 15J 500 trees; mtry=�√1440� 1440 raw 36.29± 11.94 28.31± 08.01 4.10

Abbreviations: D stands for dimensionality; D/R stands for dimensionality reduction; CCR stands for Correct Classification Rate; Ent. stands for discrete
entropy.

Intangible Cultural Heritage and Learning the Rare Know-

How of Living Human Treasures”.
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