Image Clustering by Source Camera via Sparse Representation

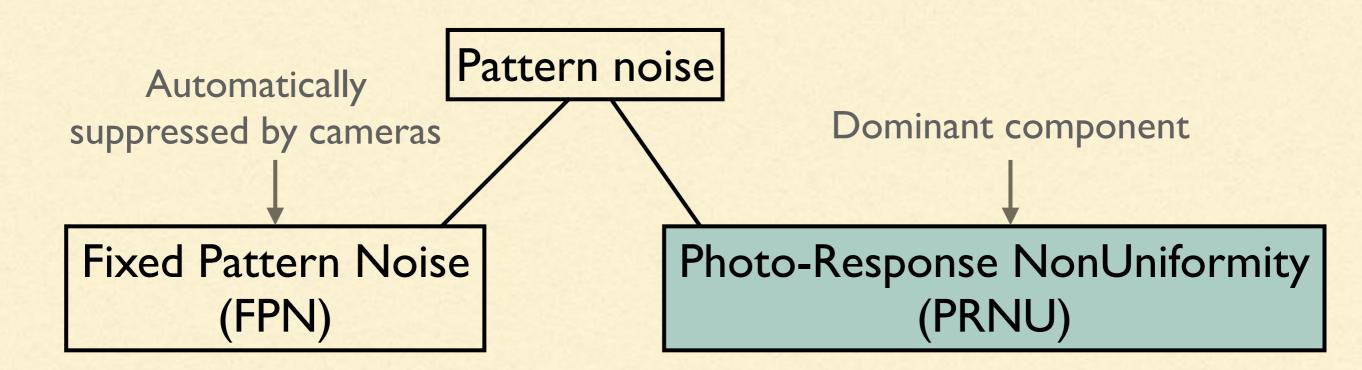
Quoc-Tin Phan, Giulia Boato, Francesco G. B. De Natale University of Trento, Italy.

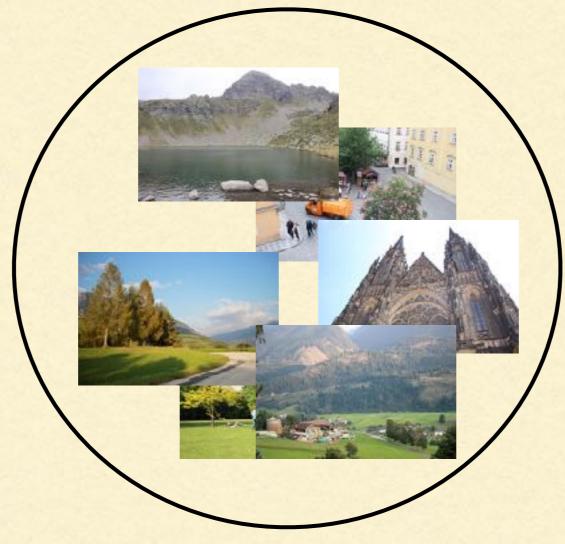
Contact:

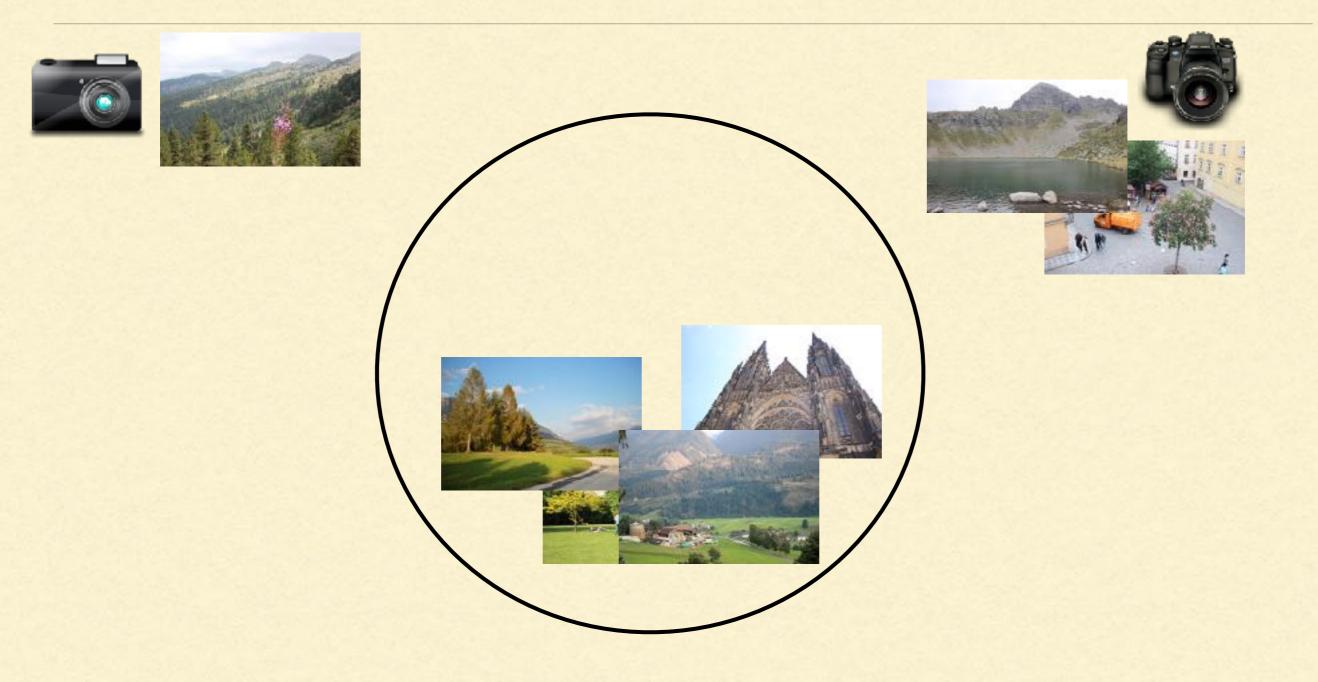
- Email: quoctin.phan@unitn.it
- Personal page: http://quoctin.github.io

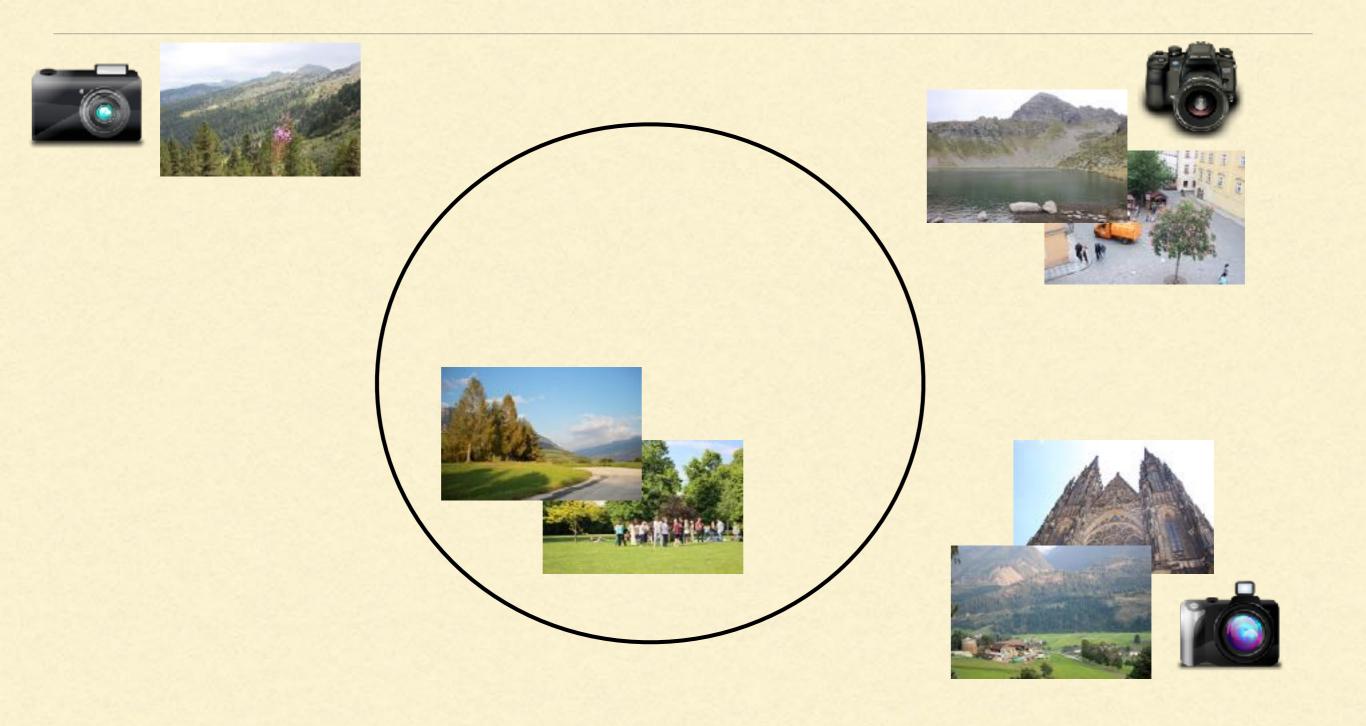
CAMERA FINGERPRINT

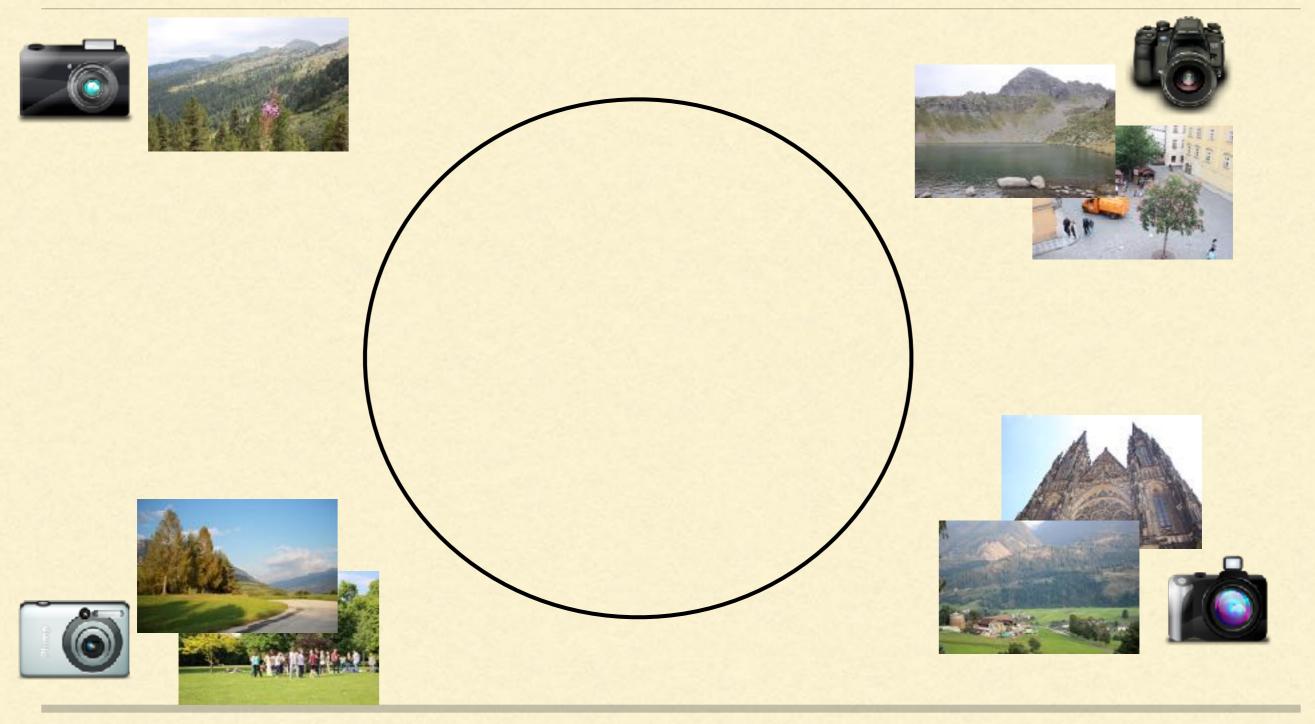
- All cameras (CMOS, CCD, etc.) have an intrinsic pattern noise:
 FPN + PRNU
- PRNU properties: robustness, stability, universality.







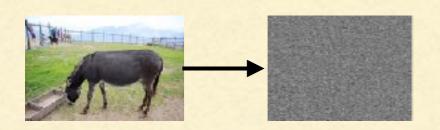




EXISTING CLUSTERING PIPELINE

Correlation calculation

Clustering



$$\frac{\left(W^{(i)} - \overline{W^{(i)}}\mathbf{1}\mathbf{1}^{T}\right) \odot \left(W^{(j)} - \overline{W^{(j)}}\mathbf{1}\mathbf{1}^{T}\right)}{\left\|W^{(i)} - \overline{W^{(i)}}\mathbf{1}\mathbf{1}^{T}\right\| \left\|W^{(j)} - \overline{W^{(j)}}\mathbf{1}\mathbf{1}^{T}\right\|}$$

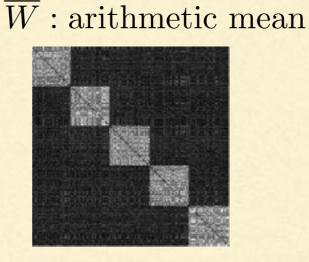
Spectral clustering

Hierarchical clustering

Markov Random Field

$$W = I - filter(I)$$

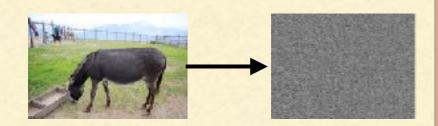
W: noise residual



Affinity matrix

OUR CONTRIBUTION

Camera fingerprint estimation



W = I - filter(I)

W: noise residual

Sparse Representation Learning

- Better represent relationship among data points in high dimensional space.
- Avoid pairwise correlation calculation.

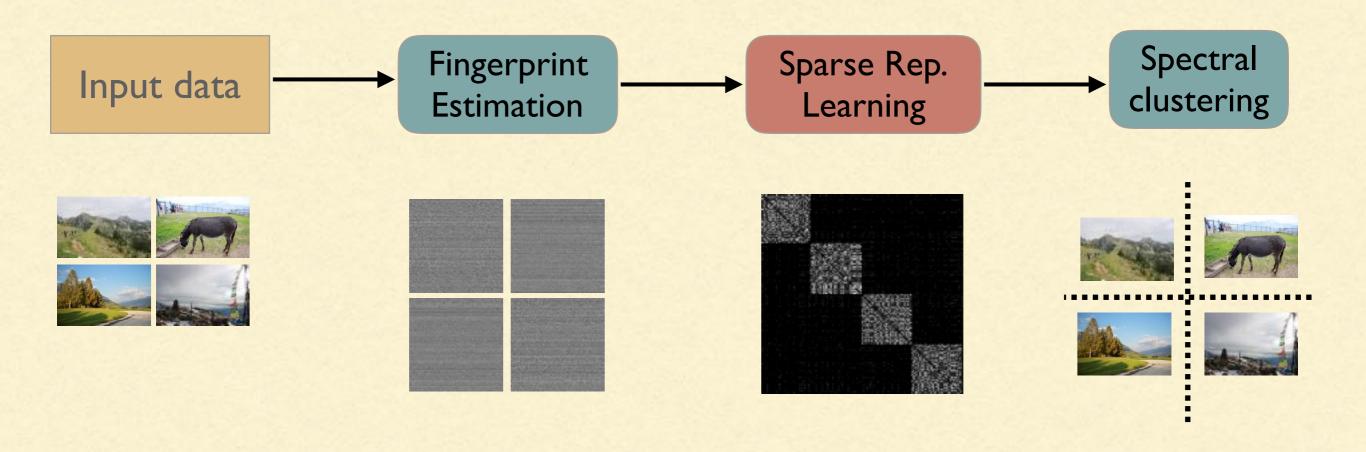
Clustering

Spectral clustering

Hierarchical clustering

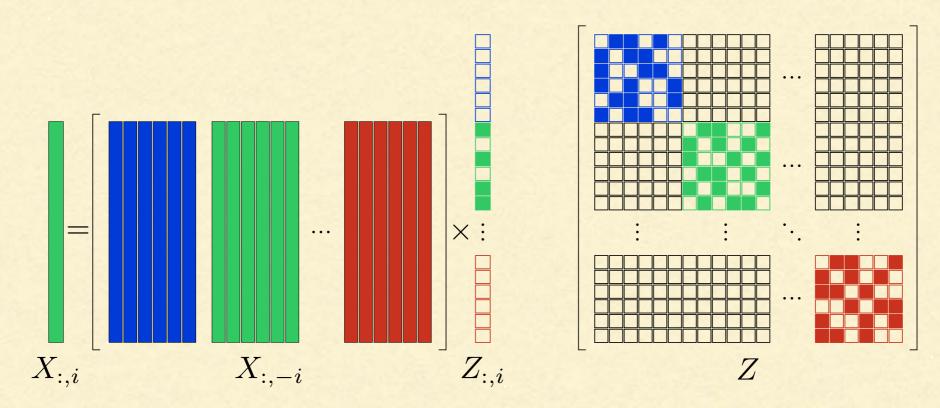
Markov Random Field

OVERALL SCHEMA

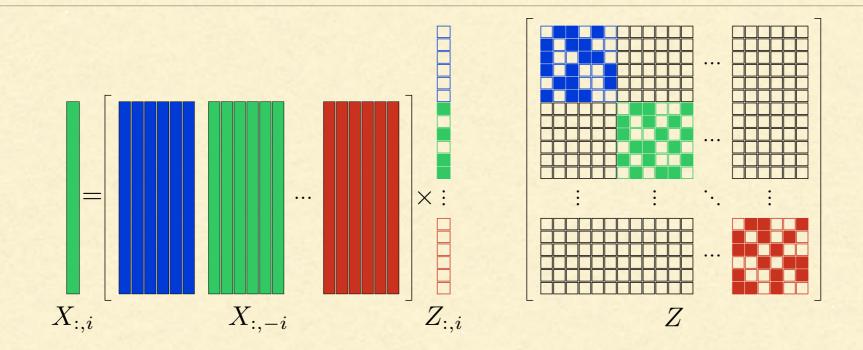


SPARSE REPRESENTATION LEARNING

- Sparse Subspace Clustering (SSC) was proposed by [E. Elhamifar et al. 2009] and theoretically analyzed in [E. Elhamifar et al. 2013].
- Each data point can be expressed as the linear combination of a proper basis.
- If the input data sufficiently fulfilled the underlying subspaces, the data matrix itself can be used as the subspace basis.



SPARSE REPRESENTATION LEARNING



For each, $X_{:,i}$ we want to learn its corresponding sparse representation $Z_{:,i}$ by solving ℓ_1 -regularized least squares.

$$Z_{:,i} = \operatorname*{argmin}_{z} \quad \gamma \|z\|_1 + \|X_{:,-i}z - X_{:,i}\|_2^2$$
 Sparsity Reconstruction error

SOLVING ℓ_1 -REGULARIZED LEAST SQUARES

- The objective function is non-smooth due to ℓ_1 norm.
- The dimensionality of data is high, off-the-shelf optimization tools, e.g., CVX, cannot manage.

Alternating Direction Method of Multiplier (ADMM) [Boyd. 2011]

Decouple non-differentiable term and differentiable term.

$$Z_{:,i} = \underset{z}{\operatorname{argmin}} \quad \gamma \|v\|_1 + \|X_{:,-i}z - X_{:,i}\|_2^2 \quad \text{s.t.} \quad v = z$$

- At each iteration:
 - lacktriangle Keep v fixed and update z by an analytical solution.
 - ullet Keep z fixed and update v by soft thresholding.

ESTIMATING NUMBER OF CLUSTERS

 Step I: Generate the affinity matrix and its corresponding normalized Laplacian matrix

$$H = |Z| + |Z^{T}|$$

$$L = I - D^{-1/2}HD^{-1/2} \text{ where } D_{i,i} = \sum_{j}^{N} H_{i,j}$$

Step 2: Estimate the number of clusters \hat{K} using eigengap heuristic

$$\hat{K} = \underset{K}{\operatorname{argmax}} \quad \lambda_{K+1} - \lambda_K,$$

where $\lambda_1, \dots, \lambda_N$ are non decreasing eigenvalues of L

ESTIMATING REGULARIZATION PARAMETER

$$Z_{:,i} = \operatorname*{argmin}_{z} \quad \gamma \|v\|_1 + \|X_{:,-i}z - X_{:,i}\|_2^2 \quad \text{s.t.} \quad v = z$$
 Sparsity Reconstruction error

- The regularization parameter γ controls the tradeoff between the sparseness of solutions and the reconstruction errors.
 - Too dense solutions result in merged clusters.
 - Too sparse solutions result in many small clusters.

On a development set, select γ minimizing Normalized Cuts and maximizing eigengap.

EXPERIMENTAL SETUP

Images from **Dresden** [T. Gloe et al. 2010] and **RAISE** [D.-T. D.-Nguyen et al. 2015] are used to generate 5 datasets.

Name	From	#models	#cameras	#images/camera	Total
Dı	RAISE	3	3	50	150
D_2	Dresden	10	10	100	1000
D_3	RAISE	3	3	50,75,100	225
D ₄	Dresden	10	10	40, 60, 80, 100	660
Dev	Dresden	5	5	100	500

 D_1, D_2 are symmetric; D_3, D_4 are asymmetric; D_{ev} is used as the development set

EXPERIMENTAL SETUP

- Evaluation metric:
 - FI-score.
 - The ratio of number of discovered clusters K_p to the number of ground-truth clusters K_g .
- Comparison to SoA:
 - MRF: Markov Random Field (Li et al. 2010).

- **HC**: Hierarchical Clustering (Villalba et al. 2015).
- MSC: Multiclass Spectral Clustering (Liu et al. 2010). LS: Large-Scale method (Lin et. al. 2017).
- SCNcuts: Spectral Clustering with

Normalized Cut criterion (Amerini et al. 2014).

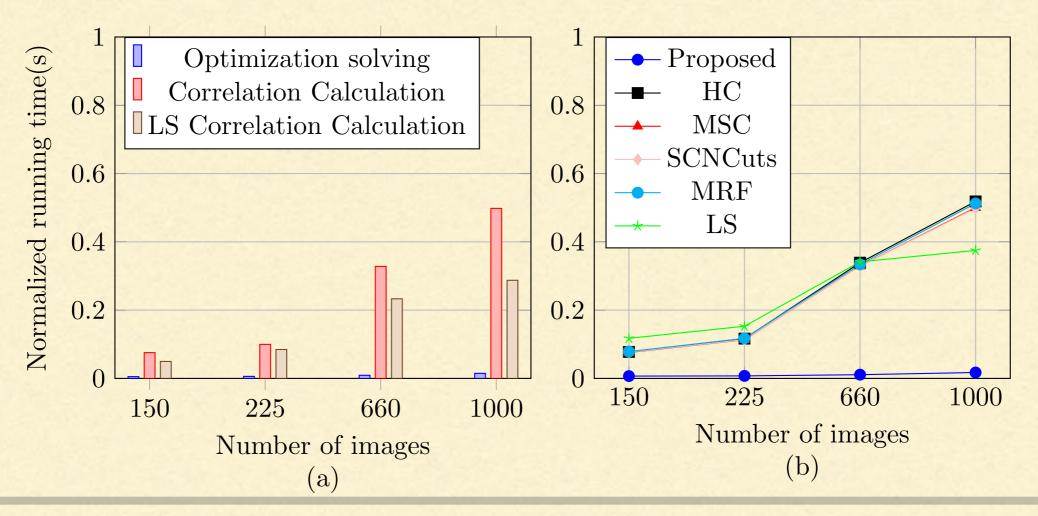
EXPERIMENTAL RESULTS

 Clustering results on symmetric datasets D₁, D₂ and asymmetric dataset D₃, D₄.

Method	Dı		D ₂		D ₃		D ₄	
	FI	K _P /K _G	FI	K _P /K _G	FI	K _P /K _G	FI	K _P /K _G
НС	0.75	28/3	0.62	48/10	0.82	39/3	0.64	25/10
MSC	0.98	5/3	0.80	21.7/10	0.92	5.5/3	0.74	12.7/10
SCNCuts	0.99	3/3	0.32	2/10	0.98	3/3	0.44	4/10
MRF	0.82	9.6/3	0.81	24/10	0.88	10/3	0.50	21/10
LS	0.93	5/3	0.91	12/10	0.97	3/3	0.89	13/10
Proposed	0.97	3/3	0.91	11/10	0.97	3/3	0.90	11/10

EXPERIMENTAL RESULTS

- Running time comparison to SoA methods.
 - Normalized correlation calculation: built-in function corr2



CONCLUSION

- A complete clustering framework for image clustering by source camera.
 - Learn sparse representations of camera fingerprints by solving ℓ_1 -regularized least squares.
 - Estimate number of clusters (cameras).
 - Without the need to set regularization parameter.
 - Outperform SoA methods.

FUTURE WORK

- Validate the framework on cameras of the same model.
- Extend the framework to deal with large-scale datasets.
- Make the software publicly available.

REFERENCES

- I. S. Boyd et al., Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers, Foundations and Trends in Machine Learning, 2011.
- 2. E. Elhamifar et al., Sparse Subspace Clustering, IEEE CVPR, 2009.
- 3. E. Elhamifar et al., Sparse Subspace Clustering: Algorithm, Theory, and Applications, IEEE Trans. PAMI, 2013.
- 4. M. Chen et al., Determining Image Origin and Integrity Using Sensor Noise, IEEE TIFS, 2008.
- 5. C.T. Li, Unsupervised Classification of Digital Images using Enhanced Sensor Pattern Noise, IEEE Int. Symposium on Circuits and Systems: Nano-Bio Circuit Fabrics and Systems, 2010.
- 6. B. B. Liu, On Classification of Source Cameras: A Graph based Approach, IEEE Int. Workshop on Information Forensics and Security, 2010.
- 7. G. J. G. Villalba et al., Smartphone Image Clustering, Expert Systems with Applications, 2015.
- 8. I. Amerini et al., Blind Image Clustering based on The Normalized Cuts Criterion for Camera Identification, Signal Processing: Image Communication, 2014.
- 9. X. Lin et al., Large-Scale Image Clustering Based on Camera Fingerprints, IEEE TIFS, 2017.
- 10. T. Gloe et al., The 'Dresden Image Database' for Benchmarking Digital Image Forensics, ACM SAC, 2010.
- 11. D.-T. D.-Nguyen et al., RAISE A Raw Images Dataset for Digital Image Forensics, ACM Multimedia Systems, 2015.

THANKYOU!!!

Q&A