Image Clustering by Source Camera via Sparse Representation

Quoc-Tin Phan, Giulia Boato, Francesco G. B. De Natale

University of Trento, Italy.

Contact:
- Email: quoctin.phan@unitn.it
- Personal page: http://quoctin.github.io
All cameras (CMOS, CCD, etc.) have an intrinsic pattern noise: FPN + PRNU

PRNU properties: robustness, stability, universality.

Automatically suppressed by cameras

Pattern noise

Fixed Pattern Noise (FPN)

Photo-Response NonUniformity (PRNU)

Dominant component
IMAGE CLUSTERING BY SOURCE CAMERA
EXISTING CLUSTERING PIPELINE

Camera fingerprint estimation

Correlation calculation

Clustering

\[
W = I - \text{filter}(I)
\]

\[
W : \text{noise residual}
\]

Spectral clustering
Hierarchical clustering
Markov Random Field

Affinity matrix

\[
\begin{align*}
(W^{(i)} - \bar{W}^{(i)}1^T) \odot (W^{(j)} - \bar{W}^{(j)}1^T) \\
\|W^{(i)} - \bar{W}^{(i)}1^T\| \|W^{(j)} - \bar{W}^{(j)}1^T\|
\end{align*}
\]

\[
\overline{W} : \text{arithmetic mean}
\]
OUR CONTRIBUTION

Camera fingerprint estimation

$W = I - \text{filter}(I)$

W : noise residual

Correlation calculation

Sparse Representation Learning

- Better represent relationship among data points in high dimensional space.
- Avoid pairwise correlation calculation.

Clustering

- Spectral clustering
- Hierarchical clustering
- Markov Random Field
OVERALL SCHEMA

Input data → Fingerprint Estimation → Sparse Rep. Learning → Spectral clustering
Sparse Subspace Clustering (SSC) was proposed by [E. Elhamifar et al. 2009] and theoretically analyzed in [E. Elhamifar et al. 2013].

Each data point can be expressed as the linear combination of a proper basis.

If the input data sufficiently fulfilled the underlying subspaces, the data matrix itself can be used as the subspace basis.
For each, \(X_{:,i} \) we want to learn its corresponding sparse representation \(Z_{:,i} \) by solving \(\ell_1 \)-regularized least squares.

\[
Z_{:,i} = \arg\min_z \gamma \|z\|_1 + \|X_{:,i} - X_{:,i}z - X_{:,i}\|_2^2
\]

\(\text{Sparsity} \quad \text{Reconstruction error} \)
SOLVING ℓ_1-REGULARIZED LEAST SQUARES

- The objective function is non-smooth due to ℓ_1 norm.

- The dimensionality of data is high, off-the-shelf optimization tools, e.g., CVX, cannot manage.

Alternating Direction Method of Multiplier (ADMM) [Boyd. 2011]

- Decouple non-differentiable term and differentiable term.

$$Z_{:,i} = \arg\min_z \gamma\|v\|_1 + \|X_{:,i} - X_{:,i} - X_{:,i}z\|^2_2 \quad \text{s.t.} \quad v = z$$

- At each iteration:
 - Keep v fixed and update z by an analytical solution.
 - Keep z fixed and update v by soft thresholding.
ESTIMATING NUMBER OF CLUSTERS

- **Step 1:** Generate the affinity matrix and its corresponding normalized Laplacian matrix

\[H = |Z| + |Z^T| \]

\[L = I - D^{-1/2}HD^{-1/2} \quad \text{where} \quad D_{i,i} = \sum_j^N H_{i,j} \]

- **Step 2:** Estimate the number of clusters \(\hat{K} \) using eigengap heuristic

\[\hat{K} = \arg\max_K \lambda_{K+1} - \lambda_K, \]

where \(\lambda_1, \cdots, \lambda_N \) are non decreasing eigenvalues of \(L \)
ESTIMATING REGULARIZATION PARAMETER

\[Z_{:,i} = \arg \min_z \gamma \|v\|_1 + \|X_{:,i} - X_{:,j}\|_2^2 \quad \text{s.t.} \quad v = z \]

- The regularization parameter \(\gamma \) controls the tradeoff between the sparseness of solutions and the reconstruction errors.
- **Too dense** solutions result in merged clusters.
- **Too sparse** solutions result in many small clusters.

On a development set, select \(\gamma \) minimizing Normalized Cuts and maximizing eigengap.
EXPERIMENTAL SETUP

- Images from **Dresden** [T. Gloe et al. 2010] and **RAISE** [D.-T. D.-Nguyen et al. 2015] are used to generate 5 datasets.

<table>
<thead>
<tr>
<th>Name</th>
<th>From</th>
<th>#models</th>
<th>#cameras</th>
<th>#images/camera</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_1</td>
<td>RAISE</td>
<td>3</td>
<td>3</td>
<td>50</td>
<td>150</td>
</tr>
<tr>
<td>D_2</td>
<td>Dresden</td>
<td>10</td>
<td>10</td>
<td>100</td>
<td>1000</td>
</tr>
<tr>
<td>D_3</td>
<td>RAISE</td>
<td>3</td>
<td>3</td>
<td>50, 75, 100</td>
<td>225</td>
</tr>
<tr>
<td>D_4</td>
<td>Dresden</td>
<td>10</td>
<td>10</td>
<td>40, 60, 80, 100</td>
<td>660</td>
</tr>
<tr>
<td>D_{ev}</td>
<td>Dresden</td>
<td>5</td>
<td>5</td>
<td>100</td>
<td>500</td>
</tr>
</tbody>
</table>

D_1, D_2 are symmetric; D_3, D_4 are asymmetric; D_{ev} is used as the development set.
EXPERIMENTAL SETUP

- Evaluation metric:
 - F1-score.
 - The ratio of number of discovered clusters K_p to the number of ground-truth clusters K_g.

- Comparison to SoA:
 - **MRF**: Markov Random Field (Li et al. 2010).
 - **MSC**: Multiclass Spectral Clustering (Liu et al. 2010).
 - **SCNcuts**: Spectral Clustering with Normalized Cut criterion (Amerini et al. 2014).
 - **HC**: Hierarchical Clustering (Villalba et al. 2015).
 - **LS**: Large-Scale method (Lin et al. 2017).
EXPERIMENTAL RESULTS

- Clustering results on symmetric datasets D_1, D_2 and asymmetric dataset D_3, D_4.

<table>
<thead>
<tr>
<th>Method</th>
<th>D_1</th>
<th>D_2</th>
<th>D_3</th>
<th>D_4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F1</td>
<td>K_P/K_G</td>
<td>F1</td>
<td>K_P/K_G</td>
</tr>
<tr>
<td>HC</td>
<td>0.75</td>
<td>28/3</td>
<td>0.62</td>
<td>48/10</td>
</tr>
<tr>
<td>MSC</td>
<td>0.98</td>
<td>5/3</td>
<td>0.80</td>
<td>21.7/10</td>
</tr>
<tr>
<td>SCNCuts</td>
<td>0.99</td>
<td>3/3</td>
<td>0.32</td>
<td>2/10</td>
</tr>
<tr>
<td>MRF</td>
<td>0.82</td>
<td>9.6/3</td>
<td>0.81</td>
<td>24/10</td>
</tr>
<tr>
<td>LS</td>
<td>0.93</td>
<td>5/3</td>
<td>0.91</td>
<td>12/10</td>
</tr>
<tr>
<td>Proposed</td>
<td>0.97</td>
<td>3/3</td>
<td>0.91</td>
<td>11/10</td>
</tr>
</tbody>
</table>

Int. Workshop on Multimedia Forensics and Security, 2017
EXPERIMENTAL RESULTS

- Running time comparison to SoA methods.

- Normalized correlation calculation: built-in function corr2
CONCLUSION

- A complete clustering framework for image clustering by source camera.
 - Learn sparse representations of camera fingerprints by solving ℓ_1-regularized least squares.
 - Estimate number of clusters (cameras).
 - Without the need to set regularization parameter.
 - Outperform SoA methods.
FUTURE WORK

- Validate the framework on cameras of the same model.
- Extend the framework to deal with large-scale datasets.
- Make the software publicly available.
REFERENCES

THANK YOU!!!

Q&A