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Fake videos in news reporting

e User-Generated Content (UGC): essential in news reporting

e |mportant to verify content and filter out fakes

e Types of “fake”:

1.

Staged videos: actors perform scripted actions under direction,
published as UGC

Out-of-context videos: the context of the depicted events is
misrepresented (e.g. the claimed video location is wrong)

Past videos: presented as UGC from breaking events

Tampered videos: visual or audio content has been altered
through editing

Synthetic videos: contain Computer-generated Imagery (CGl)
posing as real
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“Hezbollah sniper kills ISIS”
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Fake videos
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Real UGC videos
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Detecting fake videos

e Tampering detection can only catch a subset of real-
world fakes

e We have to exploit contextual information
— Video metadata (video description & channel features)

— Comment features

e Existing approaches for Tweet verification (Gupta
2013, Boididou et al, 2015 & 2016)

— Tweet text features
— Tweet context features (shares, retweets, etc.)
— User profile features
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Approach
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Comment-based classification

[T - reatures applicable to both

01  Textlength tweets and comments

02 Number of words e Model | trained on a corpus
03-04 Contains question/exclamation mark (Boolean) of fa ke/real tweets

05-06 Contains happy/sad emoticon (Boolean) e Fach video comment

07-09 Contains 1st/2nd/3rd person pronoun (Boolean) assi gned a score

10 Number of uppercase characters e Video-level aggregate

11-12 Number of positive/negative sentiment words descriptor formed as a 10-
13 Number of slang words bin score histogram

] e e )  Model ll trained on a Video
R SR S S RS Corpus & used to evaluate
18  Readability score video credibility
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Metadata-based classification
#  [Featuredescripton [

From channel description

Features extracted from

01 Channel view count Channel and VIdEO

02 Channel comment count . .

03 Channel subscriber count descrl pt|0n

04 Channel video count o Model “l tr‘a“’]ed on a

From video description

05 Text length

Video Corpus

L e Used to evaluate video
07-08 Contains question/exclamation mark (Boolean) e e

09-10 Contains 1st/3rd person pronoun (Boolean) Cred I blllty

11 Number of uppercase characters

12-13 Number of positive/negative sentiment words
14 Number of slang words
15 Has "’ symbol (Boolean)

16-17 Number of question/exclamation marks
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Datasets

e Image Verification Corpus! e Video Verification Corpus?

— 17,857 tweets with images — 104 YouTube videos (55
(7,229 real, 10,628 fake) fake, 49 real)
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thttps://github.com/MKLab-ITI/image-verification-corpus
2https://github.com/MKLab-ITl/contextual-video-verification
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Experimental Results

|precision |Recall |F1
0.88 0.74  0.79

Video metadata [ek:1: 0.79 0.82
Ideal fusion 1.00 0.83 0.90
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Conclusions

The two classifiers do not fully overlap

— There is potential for a fusion method

Comment-based classification requires ~6 hours after
video posting to be practical

Using different classifiers per timeframe does not yield
an advantage

The comment credibility value distributions differ
significantly between real and fake videos

— However, the actual meaning of the values is hard to
interpret
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Future work

Extend the dataset
— Ongoing work: challenging to increase the scale

Extension to Facebook, Dailymotion, Vimeo

— Direct correspondence between YouTube features and
features in other platforms

— Relative difficulty of finding fakes in other platforms
Classifier fusion

— Need for larger-scale dataset

Explore the role of features in classification

— Especially comment credibility scores
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Thank you!

Get in touch:
markzampoglou@iti.gr VI D

papadop@iti.gr
olgapapa@iti.gr

http://caa.iti.gr/
http://www.invid-project.eu/
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