

Multimedia Knowledge Laboratory

Research Agenda on Social Web and Media

Yiannis Kompatsiaris, MKLab Head Symeon Papadopoulos, MKLab Researcher

Yahoo! Research Labs

Barcelona, 12 Dec 2008

Overview

MKLab (1)

Located outside Thessaloniki, Greece.

MKLab ∈ Informatics & Telematics Institute (ITI) ∈ Centre for Research and Technology Hellas (CERTH)

Main research interests

Image & Video analysis (feature extraction, content classification, clustering)

Semantics (ontology design, reasoning)

Image & Video Retrieval

Social Web

MKLab (2)

30 people

(researchers, developers, administration)

Participation in many European and national research projects.

FP7: WeKnowIt (coordination), JUMAS

FP6: AceMedia, X-Media, MESH, BOEMIE, VIDI-

Video, K-Space, PATExpert, ELU, etc.

Possibilities for:

Bilateral collaborations for R&D and EU projects Joint Publications / Patents

MKLab / traditional lines of research

Computer Vision

Feature extraction, image filtering Segmentation (images, videos) Event detection (videos)

Machine Learning / Classification

SVM

Hidden Markov Models

Logic

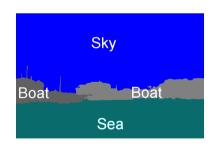
Ontology design Reasoning, Rules

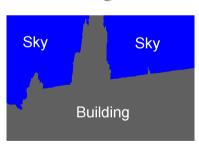
- Context estimation and usage
- Hybrid Techniques

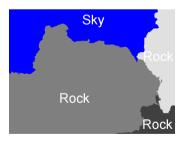
Image Segmentation and Region Classification

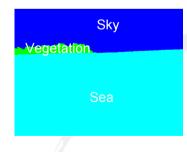
Input images

Region-concept associations









GA

PSO

SOM

SVM

Evaluation of Image Region Classification

Concepts

c1: Building, c2: Foliage, c3: Mountain, c4: Person, c5: Road, c6: Sailing-boat, c7: Sand, c8: Sea, c9: Sky, c10: Snow

Classification Techniques

ML Maximum Likelihood

SVM Support Vector Machine

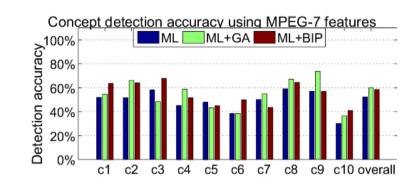
GA Genetic Algorithm

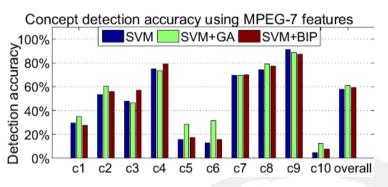
BIP Binary Integer Programming

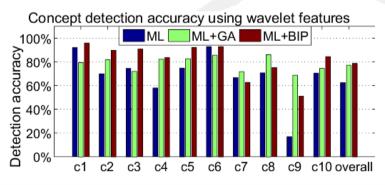
Data set

~450 images train / ~ 3000 regions

~450 images test



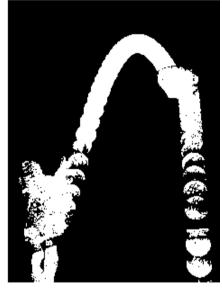


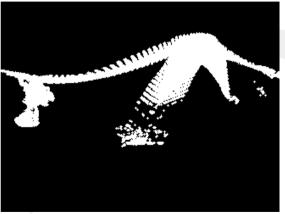


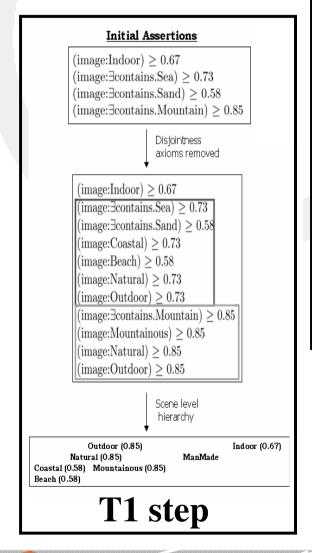
Event Detection in Videos

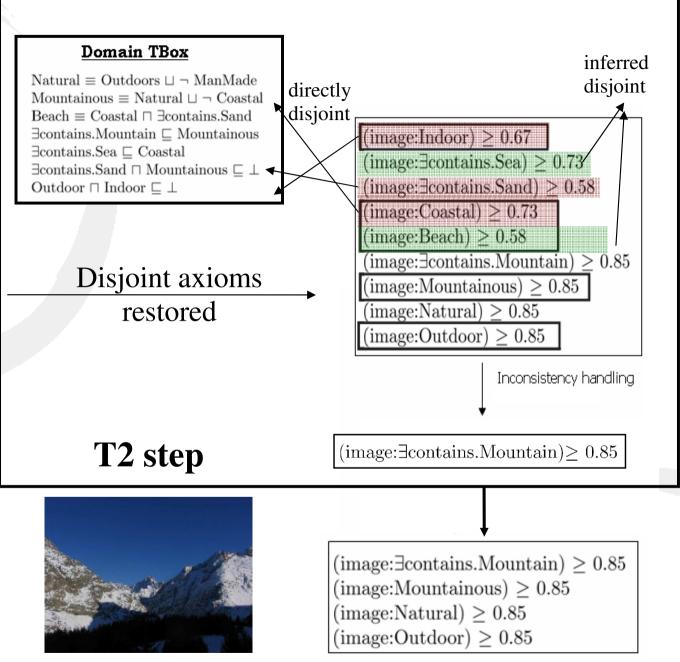
Activity area detection by means of motion features.

Event detection based on activity area characteristics.









Web 2.0 as a Database

Time

Location

social context

Information Retrieval

- keyword search
- tag-based browsing

Statistical Analysis

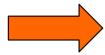
- tag frequency
- time series

Web 2.0: Multi-facet association

Social setting

Time

Appearance



Tagging

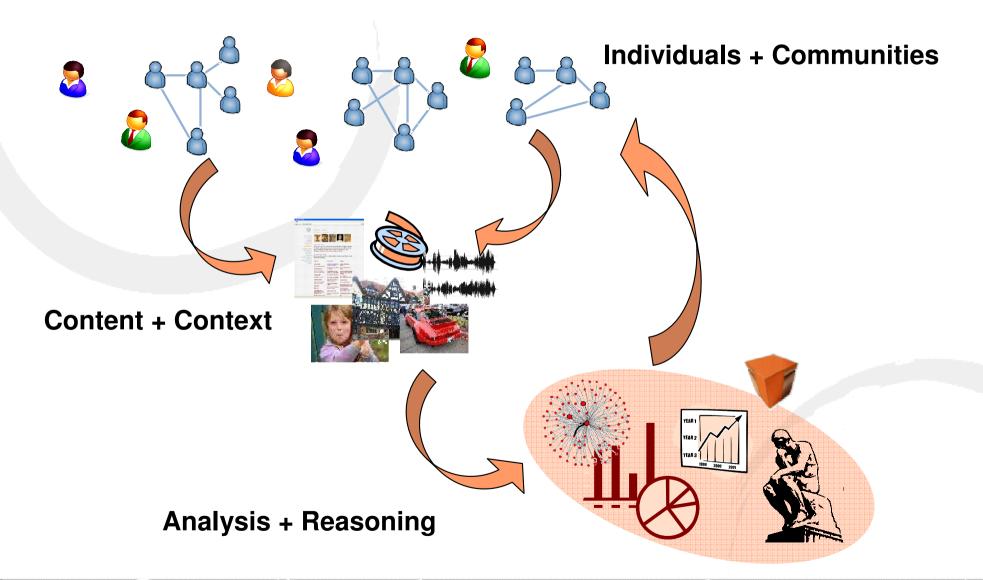
camera barcelona SagradaFamilia tourist pics spain catalunya monument vacation visitor architecture **gaudi**

Machine Learning

- Context
- Rules

Facts Relations Trends

MKLab positioning in the ecosystem



Technologies involved

- Media processing
 Text / Image / Video → features, concepts
- Data mining & knowledge discovery
 Uncover structure (Clusters / Patterns)
- Reasoning with context
 Make inferences, check consistency of information

WeKnowIt

Emerging, Collective Intelligence for personal, organisational and social use

Mass user-generated content Web 2.0 Little understanding

Organizations – Processes

No benefits from community and mass content

Analysis techniques: Content, Social, Mass

Loose interaction

Users & Devices Limited sharing and access

Collective Intelligence

Elements of Collective Intelligence

Media Intelligence

User-generated content

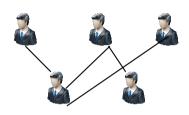
Sources

Mass Intelligence

AAAAA

Blogs, forums, ratings, voting

Social Intelligence



Social Networks

Harnessing CI

Personal Intelligence

Organizational Intelligence

Beneficiaries

Personal Intelligence

Profile of contributor

>> What to send where. e.g. location, age, picture

Media Intelligence

Picture arrives at emergency response

>> Automatic detection of a fire event

Organizational Intelligence

The right knowledge to the right people at the right time

>> Whom (fire-fighters, ambulances,...) to inform about what

Mass Intelligence

Many contributors

>> Extraction of trends about the scale of the incident



Social Intelligence

Trust and feedback

>> Determine trustworthiness and hub-structures by SNA

Personal Intelligence

Community Detection in complex networks A local approach

Symeon Papadopoulos prof. Athena Vakali

Community Detection

Problem

Identify groups of vertices in a network that are closely intertwined → communities.

Applications

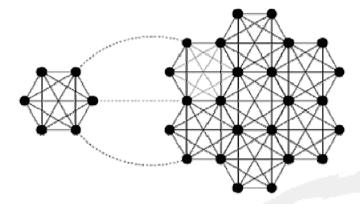
Social systems

Metabolic networks

Ecological webs

Web graphs

Web 2.0: blogs, tagging systems, content



Global vs. Local

Global measures for community:

Intra-edges
$$\sum_{v \in C} w_{uv} \ge \sum_{v \in V-C} w_{uv} \text{ for all } u \in C.$$

Modularity
$$Q = \sum_i (e_{ii} - a_i^2) = \operatorname{Tr} \mathbf{e} - \| \mathbf{e}^2 \|$$

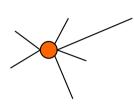
Conductance
$$\phi(S) = \frac{\sum_{i \in S, j \notin S} A_{ij}}{\min\{A(S), A(\overline{S})\}}$$

Although many good methods available for global detection, the problem is still hard in practical settings.

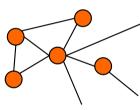
→ Local community detection

Local community detection

Start from a seed node.

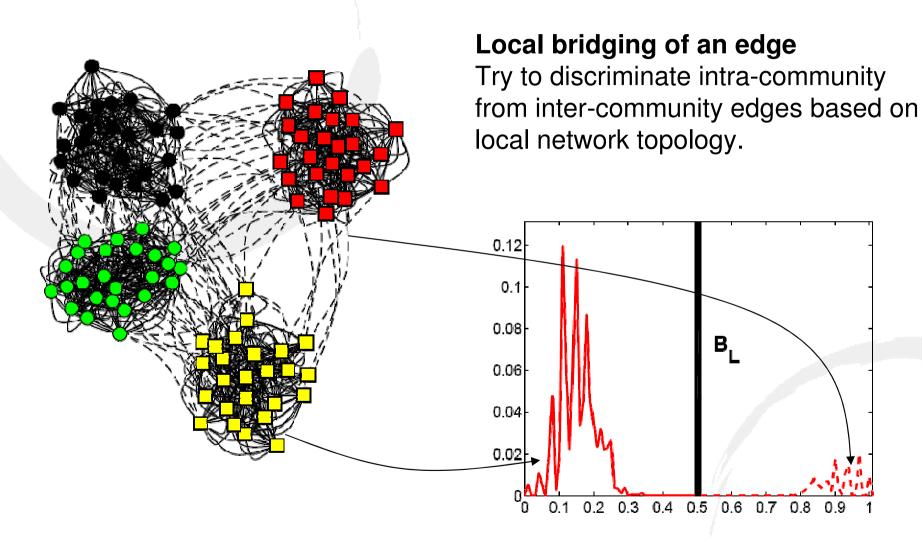


Attach neighboring nodes using some criterion.



Stop when a certain condition is satisfied.

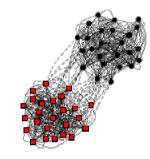
Bridge Bounding



Evaluation (synthetic networks)

Synthetic networks according to method of Newman and Girvan.

$$S_{PAR} = \{N, K, z_{tot}, p_{out}, s_{var}\}$$



(a) $p_{out} = 0.01$

(b)
$$p_{out} = 0.08$$

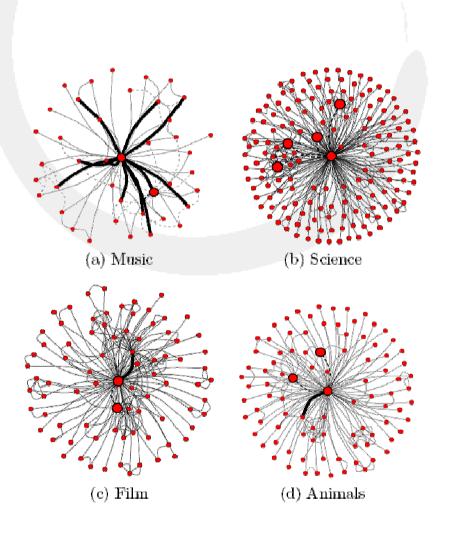
Change conspicuity of underlying communities (p_{out}).

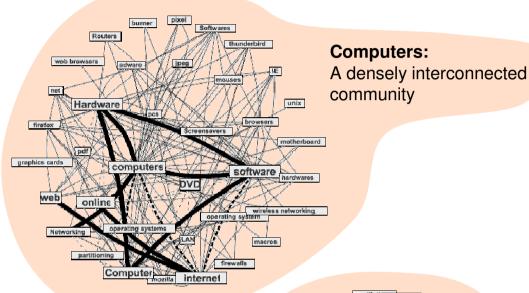
	F_C			NMI			
p_{out}	BB	BB'	GN	BB	BB'	GN	
0.01	100	100	100	1.0	1.0	1.0	
0.05	100	100	100	1.0	1.0	1.0	
0.1	100	100	50	1.0	1.0	0.86	
0.15	100	99	50	1.0	.98	0.86	
0.20	99	74	50	0.98	0.84	0.86	
0.25	24	24	0	0.54	0.56	0.02	

Change relative sizes of underlying communities (s_{var}).

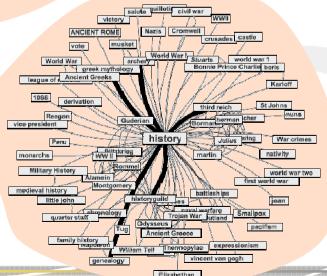
	F_C			NMI		
s_{var}	$^{\mathrm{BB}}$	BB	GN	$^{\mathrm{BB}}$	BB'	$_{ m GN}$
1.1	100	100	100	1.0	1.0	1.0
1.5	100	100	100	1.0	1.0	1.0
1.6	99.5	100	100	0.99	1.0	1.0
1.7	88	98	100	0.82	0.96	1.0
1.8	85.5	97	100	0.79	0.95	1.0
1.9	58.5	87	90	0.68	0.82	0.88
2.0	12.5	80	82	0.45	0.73	0.81
2.5	0	62	75 /	0.45	0.63	0.72

Case Study: LYCOS iQ



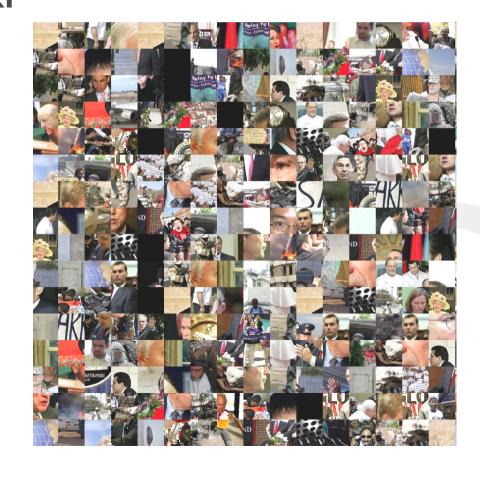


History: A star-shaped community



Clustering in Multimedia Social Tagging Systems A case study in Flickr

Eirini Giannakidou prof. Athena Vakali



Social Tagging & Multimedia

Setting

Abundance of

- multimedia content in social media sharing sites
- user-generated metadata

Convergence in the patterns of tagging behaviour

Motivation

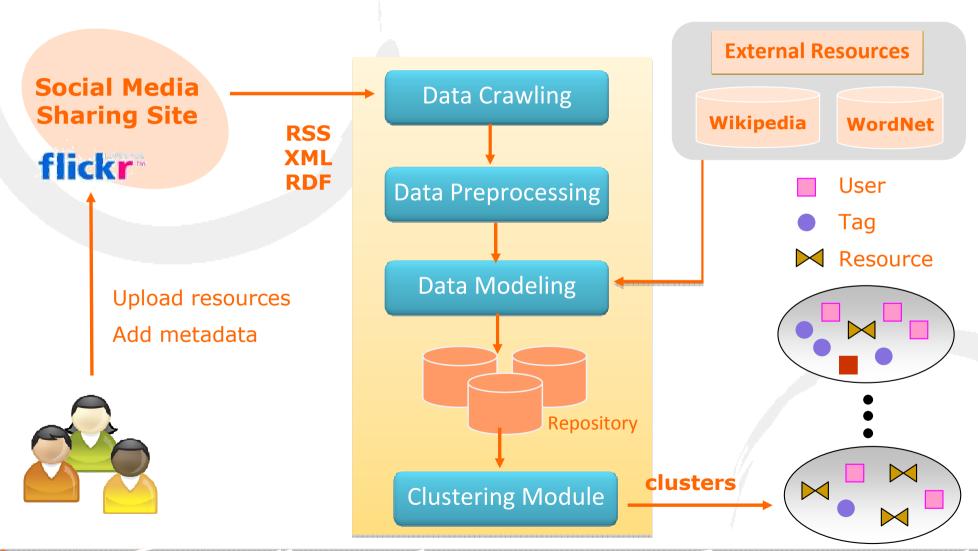
Poor IR (lack of structured information, tag polysemy/ ambiguity)

Questionable tag validity

Problem Formulation

Exploit knowledge hidden in social media sharing sites through clustering.

Cluster structure in folksonomies



Clustering resources

Vector Space Model

- Each resource (picture) is projected onto a space defined by the most prominent tags.
- Projection takes place by using:
 Semantics (WordNet)
 Usage context (co-occurrence)
- Some standard clustering scheme is employed on the N×D matrix (N resources, D dimensions): K-means, Hierarchical, COBWEB

Experimental results

Buildings

Cars

Festival

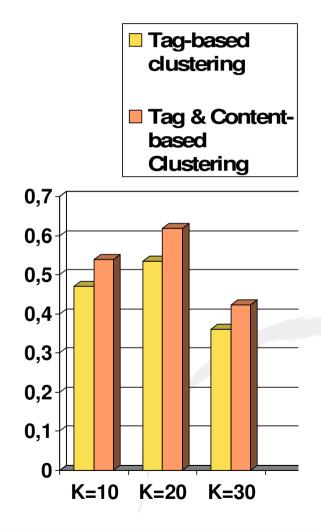
Rock

Music

Refining clustering by visual cues

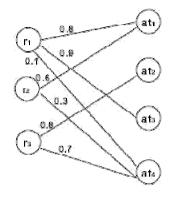
MPEG-7 descriptors
Scalable Color
Color Structure, etc.

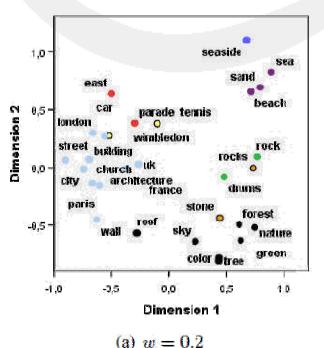
- Carry out 2nd order clustering based on visual features → break-apart polysemous clusters
- Outlier detection and removal

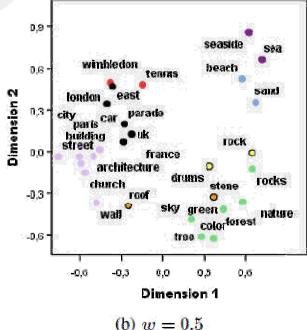


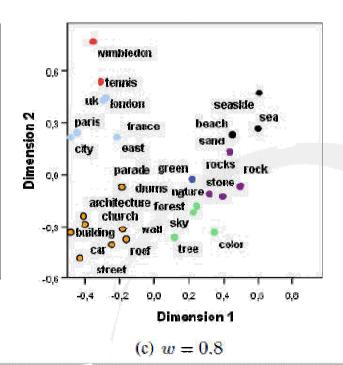
Co-clustering tags & pictures

Graph spectral methods and SVD → reduced dimensionality clustering problem





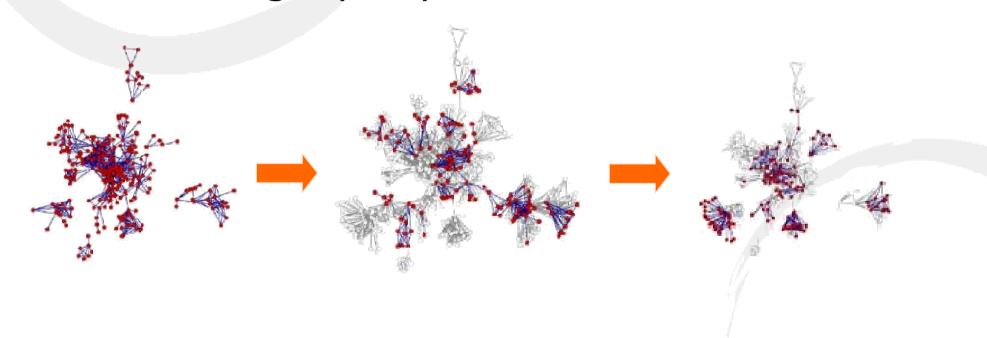




Clusters over time

Increase relevance of clusters:

- Temporal relations between users & tags.
- Dominating topics per time slot.



Social Web for improved Machine Learning

Exploiting social annotations for the automatic derivation of concept

detectors



Social annotations → Object Detection

Problem

Manual annotation of content → laborious and time consuming

Object detection schemes require region-detail annotations → hard to create concept classifiers

Solution

Social media sharing (flickr) → image corpora consisting of user tagged images

Framework → Training corpus from weakly annotated (tagged) images

Framework concepts

Tagged images

sand, wave, rock, sky

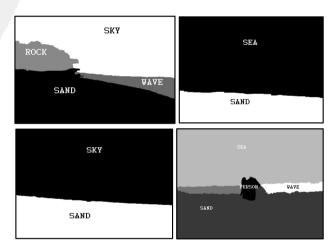
sand, sky

sea, sand

person, sand, wave, see

Social Computer information + Vision

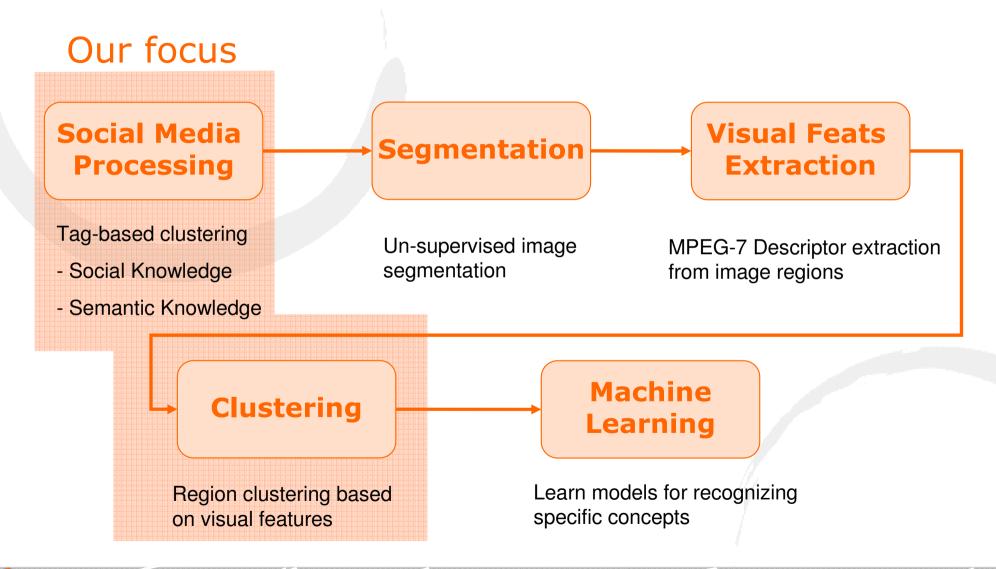
Region-detail annotated images

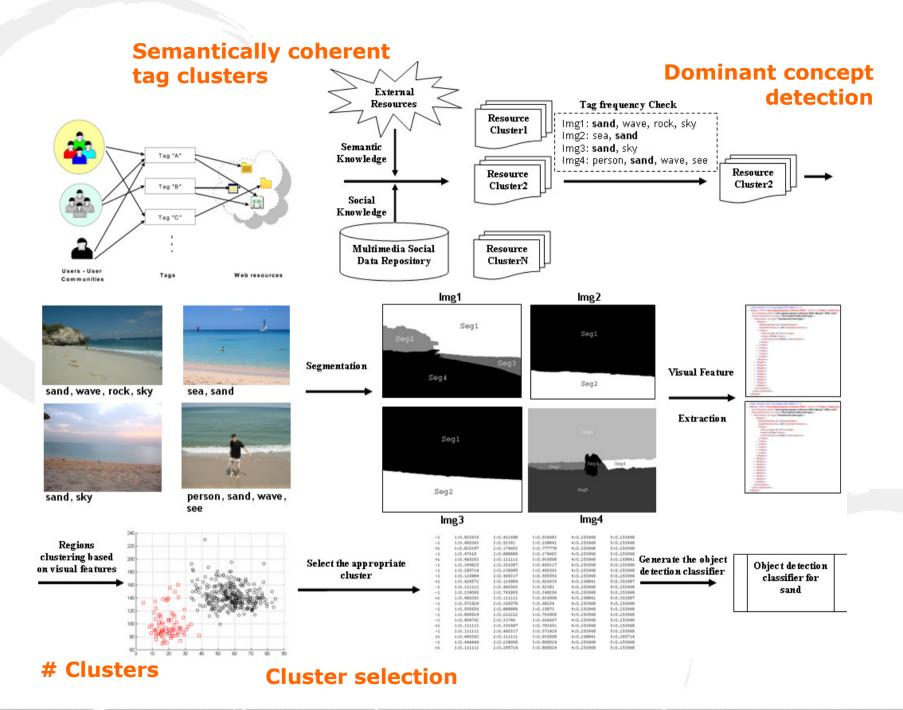


Machine Learning Models recognizing concepts

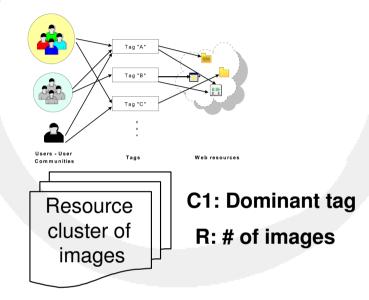
Object Detectors

Analysis Pipeline





Assumption for tag-based processing



Probabilities that selected image contains a given concept

P1 → C1

P2 → C2

P3 → C3

Assumption: P1 > P2 > P3 >....

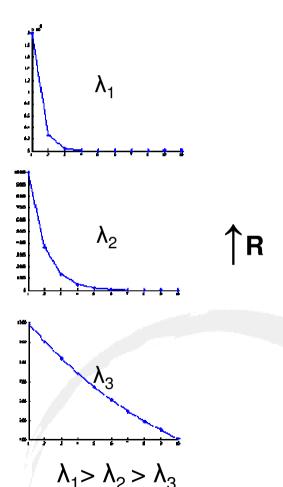
As the volume of the analyzed dataset grows arbitrary big, R increases too

As R increases the regions distribution converges to exponential distribution:

$$f(x) = \lambda e^{-\lambda x}$$

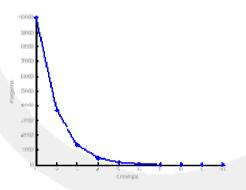
Distribution of regions depicting concepts

C1, C2, C3,.....

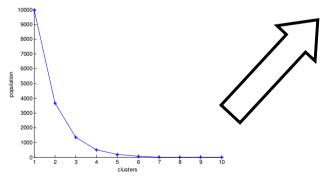


Theoretical Interest -> Clustering

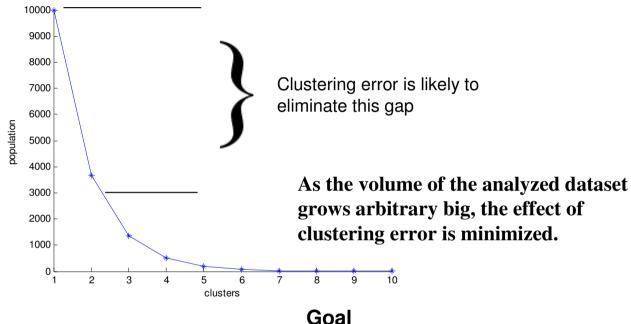
Distribution of regions depicting concepts C1, C2, C3,.....



Distribution of population for clusters CL1, CL2, CL3,.....



When clustering works perfect... these distributions coincide



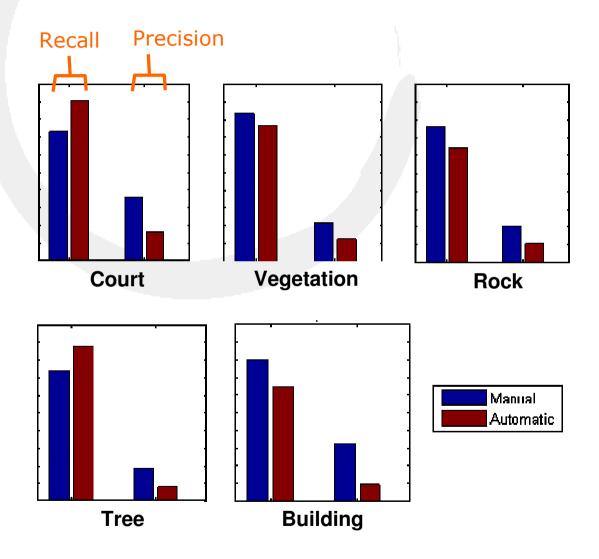
Clustering efficiency $\rightarrow \lambda$ and R

Function connecting the population of two clusters i, j with λ :

$$\frac{Pop(i)}{Pop(j)} = \frac{\text{Re}(i)}{\text{Re}(j)} \frac{\text{Pr}(j)}{\text{Pr}(i)} e^{-\lambda(i-j)}$$

Derive useful conclusions regarding the required clustering efficiency with respect to the utilized R

Experimental Results



Setting

- Train:

Manual: 300 annotated pics Auto: 3000 tagged flickr pics Test: 300 ground truth pics

- Build detectors using train
- Build detectors using Flickr
- Use test set for evaluation

Conclusion

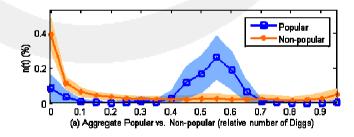
Comparable performance across a range of concepts

Applications @ MKLab Case studies & prototypes

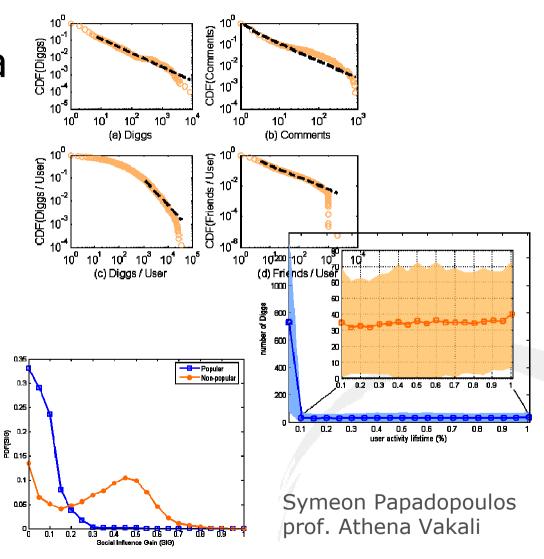
Content Popularity: Digg

Power-law phenomena

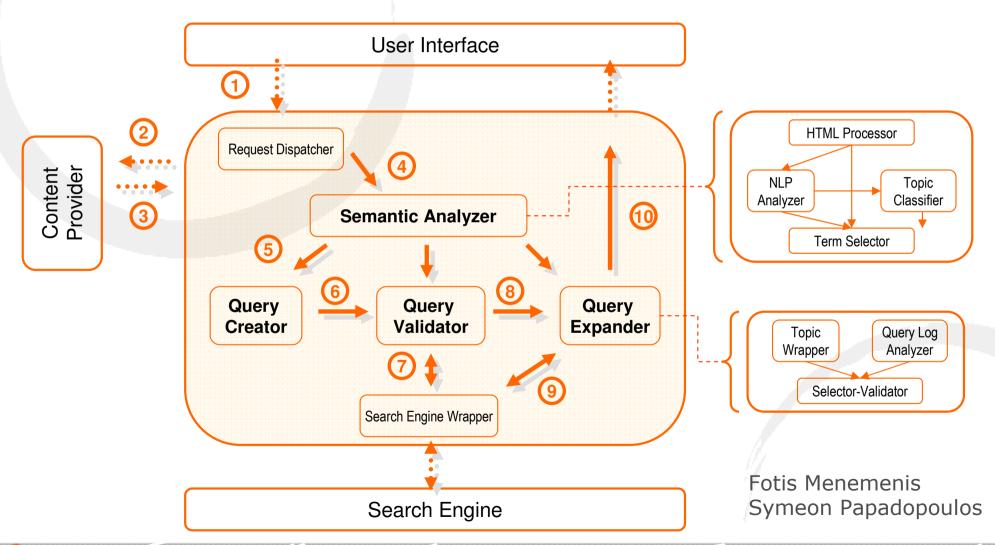
Temporal evolution



Social Influence



Context-based Query Formulation



Advertisement Recommendation based on Lexical Graphs

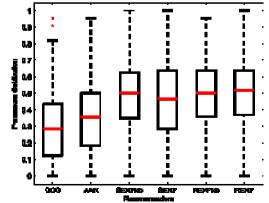
Vocabulary impedance coupling by means of lexical graphs.

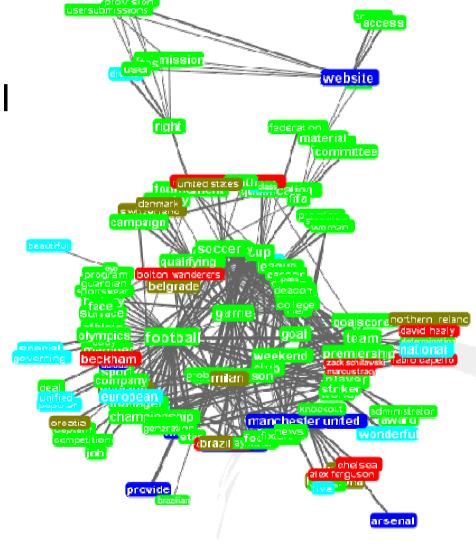
Exploit lexical affinities on the web for ad vocabulary

expansion.

Symeon Papadopoulos

Fotis Menemenis





Semantic Retrieval: Reach

Cultural Heritage Collections
Paintings, inscriptions, coins

Content-based retrieval

Ontology-based retrieval Facets, Semantic Links

Hybrid retrieval

Item recommendations

http://195.251.117.128/reach/search.html

Stefanos Vrochidis

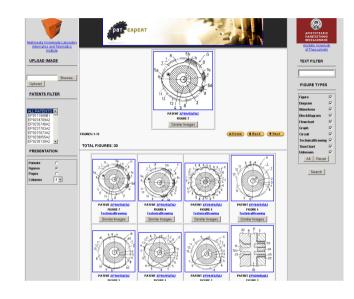
PAT-MEDIA: Patent Image Retrieval @ PATExpert

Automatic Image extraction

- OCR
- Page Segmentation
- Page Orientation Detection

Patent Images

- Flowcharts, technical drawings
- Binary Content-based retrieval
- Text-based retrieval
- Ontology-based retrieval

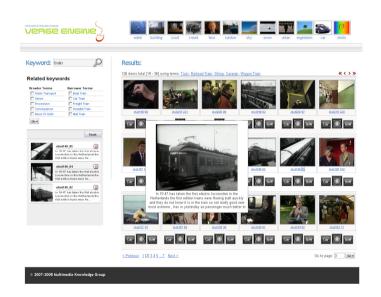


http://mklab-services.iti.gr/patexpert/

Stefanos Vrochidis Symeon Papadopoulos

VERGE: Video search engine

- TRECVID collections
- Key frame selection
- Content-based retrieval
- Text-based retrieval
- High level concept retrieval
- Basket for results storing
- Participation
 - TRECVID
 - VideOlympics



http://mklab-services.iti.gr/trec2008/

Stefanos Vrochidis

Thank you!

http://mklab.iti.gr