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•  Conclusions 
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Need for annotation + metadata  

“The value of information depends on how 
easily it can be found, retrieved, 

accessed, filtered or managed in an 
active, personalized way… 

…matching user needs” 
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 otherwise… 
we are LOST in content 
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http://mklab.iti.gr/verge/ 
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http://mklab.iti.gr/verge/ 
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•  Semantic Gap for multimedia: To map 
automatically generated numerical low level-
features to higher level human-understandable 
semantic concepts <?xml version='1.0' encoding='ISO-8859-1' ?> 

<Mpeg7 xmlns…> 
  <DescriptionUnit xsi:type = "DescriptorCollectionType"> 
    <Descriptor xsi:type = "DominantColorType"> 
      <SpatialCoherency>31</SpatialCoherency> 
      <Value> 
        <Percentage>31</Percentage> 
        <Index>19  23  29 </Index> 
        <ColorVariance>0  0  0 </ColorVariance> 
      </Value> 
    </Descriptor> 
  </DescriptionUnit> 
</Mpeg7> 

Dominant Color Descriptor of 
a sky region 

This image  
contains a sky 
region and is a 
holiday image 
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Natural-Person: 0.456798 
Sailing-Boat: 0.463645 
Sand: 0.476777 
Building: 0.415358 
Pavement: 0.454740 
Road: 0.503242 
Body-Of-Water: 0.489957 
Cliff: 0.472907 
Cloud: 0.757926 
Mountain: 0.512597 
Sea: 0.455338 
Sky: 0.658825 
Stone: 0.471733 
Waterfall: 0.500000 
Wave: 0.476669 
Dried-Plant: 0.494825 
Dried-Plant-Snowed: 0.476524 
Foliage: 0.497562 
Grass: 0.491781 
Tree: 0.447355 
Trunk: 0.493255 
Snow: 0.467218 
Sunset: 0.503164 
Car: 0.456347 
Ground: 0.454769 
Lamp-Post: 0.499387 
Statue: 0.501076 

Visual features based Classification 

Segment’s  
hypothesis set 
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Snoek et al., “Adding Semantics to Detectors for Video Retrieval”, IEEE Multimedia, 2007 

Semantics goes beyond perceptual manifestations 
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Problem definition 
•  Semantic image and video analysis: how 

to translate the automatically extracted visual 
descriptions into human like conceptual ones 

•  Low-level features provide cues for 
strengthen/weaken evidence based on visual 
similarity 

•  Prior knowledge is needed to support 
semantics disambiguation / enforce coherent 
interpretations 
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Additional 
Analysis 
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Manual 
Annotation 
- Models 

Semantic 
Analysis 

Single 
Modality 
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Feature extraction 
Text, Image analysis 
Segmentation, SVMs 
Evidence generation 
“Vehicle”, “Building” 

Classifiers fusion 
Global vs. Local 
Modalities fusion 
Context 
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Reasoning 
Fusion of annotations 
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events 
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Multimedia content 
annotation tools 
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Context and Reasoning for Analysis 

KAA 

beach scene 

person 

face 
person/face 
detection 

scene 
classification 

<RDF /> rock sky 

sea 

beach beach/rock 

rock/beach 

sea, sky 

person/bear 

… other analysis methods 

Creation of 
contextual 
information 

multimedia 
reasoning 

• Use of contextual information 
• From metadata layer 
• spatio-temporal relations 
• Domain knowledge 

• Reduction of label sets 
• Merging of segments 
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16 

Multimedia Content Annotation 
VIA: http://mklab.iti.gr/via/ 
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Multimedia Content Analysis 
(Implicit) ! 

•  MPEG-7, SIFT, ... widely used for LL features 
•  Segmentation and feature extraction tools 
•  Well-known classifiers applied and developed 

•  SVMs, EM, HMM 
•  Bio-inspired approaches 

•  Increasing use of context  
•  Spatial, Frequency, EXIF 

•  Fusion 
•  Classifiers  (global+local) 
•  Modalities 

•  Text+Image+1D data 
•  Text+Speech+Video 
•  Tags+Image (Web 2.0) 

•  Mostly statistical and machine learning (implicit) based but also 
•  Hybrid (implicit + explicit) 
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Approaches 
•  Spatial Context  

•  Optimisation: genetic algorithm 

•  Fuzzy DL Reasoning  
•  Imprecise ontology reasoning: fuzzy DLs 

•  Probabilistic inference 
•  Bayesian network 
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Spatial Context 
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Use of Context: Spatial Relations 

•  Objects tend to be present in a scene within a 
particular spatial context 

•  Spatial information can assist in discriminating 
between objects exhibiting similar visual 
characteristics 

•  Directional relations: denote the order of objects 
in space 

•  Eight relations supported: Above, Above-Right, 
Above-Left, Right, Left, Below, Below-Right, 
Below-Left 
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Spatial Context Demonstration 

Initial image Segmentation Mask 
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29 

Spatial context comparative evaluation 
•  Aim: 

•  In-depth investigation of the advantages of different spatial context techniques 
•  The selected techniques cover the main categories of the approaches 

proposed in the literature 

•  Gain of a better insight on the use of spatial context 

•  Developed framework: 
•  Techniques: Genetic Algorithm, Energy-based Model, Binary Integer 

Programming  

•  Datasets: Coastal scenes (D1) – 7 concepts, SCEF  (D2) – 10 concepts, Personal 
collection (D3) – 17 concepts, MSRC (D4) – 21 concepts 

•  Features: MPEG-7, SIFT 

•  Classifiers: Support Vector Machines, Random Forest, Logitboost  

•  Spatial relations: Fuzzy directional relations 
•  Above, Above-right, Above-left, Below, Below-right, Below-left, Right, Left 

http://mklab.iti.gr/project/scef 1 

1 
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Developed evaluation 
framework 
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Spatial context techniques 
•  Genetic Algorithm 

•  Realizes image analysis as a global optimization problem 

•  Makes use of complex fuzzy spatial constraints 

•  Uses a set of Bayesian Networks for combining the spatial, visual and concept 
co-occurrence information 

•  Binary Integer Programming 
•  Formalizes the spatial constraints enforcement as a binary integer problem 

•  Uses binary constraints 

•  Utilization of product operator for information fusion 
•  Energy-based Model 

•  Reduces the region labeling problem to that of minimizing an energy function 
of a graphical model 

•  Uses fuzzy constraints 

•  Assigns a global weight factor to each information source 
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Overall spatial context results 

Combinations: CB1: MPEG-7-SVM, CB2: MPEG-7-RF, CB3: MPEG-7-LB,  
CB4: SIFT-SVM, CB5: SIFT-RF, CB6: SIFT-LB 
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Indicative concept-level results 

D2 dataset 

Supported concepts: c1: Building, c2: Foliage, c3: Mountain, c4: Person,  
c5: Road, c6: Sailing-boat, c7: Sand, c8: Sea, c9: Sky, c10: Snow 
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Indicative concept-level 
results (cont’d) 

D4 dataset 

Supported concepts: c1: Building, c2: Grass, c3: Tree, c4: Cow, c5: Sheep,  
c6: Sky, c7: Aeroplane, c8: Water, c9: Face, c10: Car, c11: Bicycle, c12: Flower, 
c13: Sign, c14: Bird, c15: Book, c16: Chair, c17: Road, c18: Cat, c19: Dog,  
c20: Body, c21: Boat 
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Effect of the number of image 
regions 
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Effect of the amount of data 
used for context acquisition 
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Conclusions on the use of spatial 
context 

•  Spatial context is efficient in improving the initial (i.e. based 
solely on visual features) region-concept association results 

•  The highest performance is achieved when complex spatial 
constraints are acquired and their weight against the visual and 
co-occurrence information is efficiently adjusted 

•  The improvement over the initial classification results tends to 
decrease when the number of supported concepts increases 

•  For a given dataset, the highest initial classification performance 
leads also to the highest spatial context performance 

•  Fuzzy spatial constraints are less likely to result in performance 
decreases when the amount of training data is reduced, 
compared to binary constraints 
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Comparison among techniques 

Factors 
considered 

Spatial context techniques 

GA BIP EBM 

Concepts 
favored 

Concepts with more well-
defined spatial context and 

concepts with low initial 
classification rate 

Concepts with less 
well-defined spatial 

context 

Concepts with more 
well-defined spatial 

context 

Number of 
image 
regions 

Continuous increase in 
performance improvement, 

when the number 
of regions increases 

(N ! 4) 

Significant performance 
improvement only when 
the number of regions 

is significantly high 
(N ! 10) 

Highest performance 
when very few image 
regions are present 

(N = 2) 

Reduction 
in amount 
of training 

data 

Small changes 
in performance 
(changes < 1%) 

Significant performance 
reduction in datasets 
with many concepts 

(up to "6,62%) 

Performance reduction 
in datasets with 
many concepts 
(up to "3,19%) 
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Fuzzy DL reasoning 
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Reasoning in multimedia content 
analysis 

•  Imprecision  
•  Uncertainty (degrees of probability)/Vagueness (degrees of 

truth), Incompleteness (missing input, background knowledge) 
•  Formal approaches 

•  Fuzzy/probabilistic/possibilistic logic (DLs, rules), abductive 
reasoning, inductive reasoning… 

•  Statistical approaches  
•  Bayesian inference, HMMs… 

•  Used for: 
•  Fusion / Integration 
•  Consistency checking 
•  Higher-level abstraction results 
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Why Reasoning in MM 
Annotation? 

•  Problem Definition 
•  Machine learning provides now generic methodologies for supporting 

more than 100 concepts  
•  captures conveniently complex associations between perceptual features and 

semantics 
•  successful application examples, yet highly variable general performance 

•  Semantics goes beyond perceptual manifestations 
•  possibly contradictory (Mountain, Sand and Indoor) 
•  possibly overlapping / complementary (Beach and Sea) 
•  of restricted abstraction w.r.t. semantic expressiveness (Person inside Sea vs 

Swimmer) # 

•  Learning-based extracted annotations need to be semantically 
interpreted into a consistent,  meaningful final description  
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Semantics goes beyond perceptual manifestations 
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Our Approach: Fuzzy DLs based 
Reasoning in Multimedia Annotation 

•  Goal: enhance the robustness and completeness 
of learning-based extracted annotations 
•  annotations at object and scene level 
•  different implementations 

•  How: semantics utilisation  
•  to integrate initial annotations  
•  to detect and resolve inconsistencies 
•  to enrich by means of logical entailment 

•  Methodology: fuzzy DLs reasoning framework 
•  Crisp TBox to conceptualise the domain semantics 
•  Fuzzy assertions to capture the imprecision of initial annotations 
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DLs in brief 

•  Family of knowledge representation languages characterised by 
formal semantics and sound & complete inference algorithms 

•  Terminological Box (TBox): vocabulary (concepts & roles) 
and interrelations describing the application domain 
•  equivalence 
•  subsumption 
•  complex descriptions inductively build with constructors 

•  Assertional ABox (ABox): facts describing a specific state of 
the application domain  
•  concept assertions 
•  role assertions 
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Three Reasoning Tasks 
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Three Reasoning Tasks 
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Three Reasoning Tasks (cont’d) 

•  T1 - scene level interpretation: find plausible 
(logically admitted) interpretations 

•  T2 – consistency handling: track and resolve 
inconsistencies 

•  T3 – Enrichment: augment final interpretation 
making entailments explicit 
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Three Reasoning Tasks - I 

•  T1 – Scene level interpretation  
•  involves both asserted and inferred assertions of scene level 

concepts 
•  removes disjointness axioms from TBox to consider all 

related assertions (disjointness semantics maintained 
separately) 

•  computes scene level concept hierarchy 
•  starting from the leaf concepts maintains between conflicting 

assertions the one with highest degree 
•  propagates degrees according to fuzzy subsumption 

semantics to the next level 
•  repeats procedure, if current prevalent assertions contradict 

the previous level (i.e. have higher plausibility) remove and 
update accordingly the previous level 

•  procedure ends when reaching the top level concepts 
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Scene level 
interpretation 
demonstration 
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Three Reasoning Tasks - II 

•  T2 – Consistency handling 
•  performs over the initial set of annotations 
•  removes all assertions (asserted & inferred) 

pertaining to object level concepts disjoint to T1 
interpretation 

•  removes all assertions pertaining to scene level 
concepts disjoint to T1 interpretation 

•  removal of assertions is performed w.r.t. to the 
type of inclusion axioms they appear in 

•  in case of more than one consistent descriptions 
we chose the one that requires the removal of 
assertions with the lowest average degree 
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T1 step 

Consistency handling 
demonstration 

Disjoint axioms 
restored 

directly 
disjoint 

inferred 
disjoint 
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Three Reasoning Tasks - III 

•  T3 – Enrichment 
•  performs on the set of assertions 

maintained after step T2 
•  through typical DLs reasoning inferred 

assertions are obtained, leading to 
enriched descriptions 
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T1 step 

Enrichment 
demonstration 

Disjoint axioms 
restored 

directly 
disjoint 

inferred 
disjoint 

T2 step 
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Experimental Results 

•  Domain of outdoor images (~360 images) 
•  Use of fuzzyDL(*) as inference engine for core 

fuzzy DLs reasoning services 
•  Experiment I 

•  three implementations for scene level classifiers, 
two implementations for object level 

•  Experiment II 
•  one implementation for scene level classifiers 
•  one implementation for object level classifiers 

(*) http://faure.isti.cnr.it/~straccia/software/fuzzyDL/fuzzyDL.html 
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Outdoor images TBox extract 
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Experiment I – Scene level concepts 

Analysis extracted descriptions are ‘semantically treated’,  
i.e. detection of Beach is considered as positive detection of  
Outdoor also. Not much impact because of low semantic association 
between object level and scene level concepts. 
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Experiment I – Object level concepts 

Concepts semantically related to scene level concepts are affected the most, e.g. the Sand 
concept. In general, precision is improved due to the utilisation of disjoint semantics. 
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Experiment II – Scene level concepts 

Higher impact as the analysis supported concepts are characterised 
are more strongly related to each other. 
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Experiment II – Object level concepts 

Cliff detector has better performance than the corresponding Rockyside scene level one; replacing though 
Rockyside µ !contains.Cliff with !contains.Cliff µ Rockyside would be a customisation of domain knowledge, not 
generally applicable. 

Again, higher impact as the  
analysis supported concepts bear  
stronger semantic relatedness. 

Interesting to note the lower  
performance for Boat, which is due 
to analysis mistaken degrees 
estimation of the scene level 
concepts (Cityscape appears 
prevalent, which is disjoint with 
Boat).  
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Conclusions 
•  The proposed fuzzy DLs reasoning enables 

•  formal handling of the imprecision inherent in the input 
classifications 

•  utilisation of domain semantics 
•  consistent interpretations / image descriptions 

•  The use of explicit semantics and logic-based 
reasoning is crucial in multimedia semantics 
extraction 
•  yet not the only necessary component 

•  Largely miscalculated classification degrees can 
mislead the interpretation 
•  combined usage of additional (probabilistic) knowledge could be 

a possible solution, along with logic-based reasoning to account 
for possible worlds/interpretations 
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Probabilistic inference 
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Our approach 
Goal: Combine explicit (provided by humans) and implicit (extracted from training data) knowledge for 
enhancing image analysis  
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BN: A Directed Acyclic Graph 

A 

B 

C D 

Each node in the graph is a 
random variable 

A node X is a parent of 
another node Y if there is an 
arrow from node X to node Y 
eg. A is a parent of B  

Informally, an arrow from 
node X to node Y means X 
has a direct influence on Y 
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A Set of Tables for Each Node 
Each node Xi has a 
conditional probability 
distribution P(Xi | Parents(Xi)) 
that quantifies the effect of 
the parents on the node 

The parameters are the 
probabilities in these 
conditional probability tables 
(CPTs) 

A P(A) 

false 0.6 

true 0.4 

A B P(B|A) 

false false 0.01 

false true 0.99 

true false 0.7 

true true 0.3 

B C P(C|B) 

false false 0.4 

false true 0.6 

true false 0.9 

true true 0.1 B D P(D|B) 

false false 0.02 

false true 0.98 

true false 0.05 

true true 0.95 

A 

B 

C D 
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Bayesian Networks 

Two important properties: 
1.  Encodes the conditional independence 

relationships between the variables in 
the graph structure 

2.  Is a compact representation of the 
joint probability distribution over the 
variables 
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Inference 

•  Using a Bayesian network to compute 
probabilities is called inference 

•  In general, inference involves queries of the 
form: 

 P( X | E ) 

X = The query variable(s) 

E = The evidence variable(s) 
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Designing, training and  performing inference on 
the BN 

BN Our approach 

Network Structure 
•  nodes 
•  arcs  

Ontology 
•  concepts 
•  ontology relations 

Network Parameters 
•  Conditional Probability Tables 
•  Prior Probabilities 

Annotated data (context) 
•  frequency of co-occurrence between 
concepts 
•  frequency of concepts’ appearance 

Evidence 
•  Probabilities for the evidence variables 

Visual stimulus 
•  Probabilistic output of the SVM-based 
classifiers 
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Framework Components 
•  Visual stimulus 

•  Segmentation using a Recursive Shortest Spanning Tree algorithm [Adamek 
& O’Connor, 2005] 

•  MPEG-7 visual descriptors (region and global level) 
•  SVM-based concept classifiers producing probability estimates by fitting the 

decision values by a sigmoid function 

•  Domain knowledge 
•  Ontology (OWL-DL) 

•  Application context 
•  Quantifies the effect/causality between concepts using co-occurrence 

information 

•  Probabilistic inference 
•  Bayesian Networks and message passing belief propagation 
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Image Analysis - Running Example 

SVM-based  
Concept Classifiers 

(global level) 

SVM-based  
Concept Classifiers  

(region level) 
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Ontology-to-BN – Network Structure  
(Explicit Knowledge) 

Z. Ding, Y. Peng, and R. Pan, “A bayesian approach to uncertainty modeling in owl ontology,” in Proc. of the Int. 
Conf. on Advances in Intelligent Systems - Theory and Applications, Nov. 2004 
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Ontology-to-BN - Parameter Learning  
(Implicit Knowledge) 

Concept labels 

BN with estimated CPTs 

•  Concept labels were obtained 
by manual annotation 

•  Concepts co-occurrence was 
used to estimate causality 
relations 

•  Expectation Maximization was 
applied on concept labels 

•  CPTs were estimated between the 
connected nodes 



72 
SSMS 2010, Amsterdam 
CERTH - Informatics and Telematics Institute 

Belief Propagation with Message 
passing 

•  Pearl’s message passing algorithm for belief propagation 
•  Top-down and bottom-up message passing between parent and child nodes 

•  Junction tree variation for coping with complexity issues 

-   Pearl, “Fusion, propagation, and structuring in belief networks,” Artif. Intell., vol. 29, no. 3, pp. 241–288, 1986. 
-   F. V. Jensen and F. Jensen, “Optimal junction trees,” in Proc. of the 10th Conf. on Uncertainty in Artif. Intel., C. 
M. Kaufmann, Ed., San Mateo, 1994 
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Experimental Study 
•  Image analysis Tasks  

•  Image categorization: Select the category concept that best 
describes an image as a whole. 

•  Localized region labeling: assign labels to pre-segmented image 
regions, with one of the available regional concepts 

•  Weak annotation of video shot key-frames:  associate multiple 
concepts to an image, but not with specific image regions 

•  Test-beds 
•  Personal Collection, 648 images, 6 global concepts, 25 local 

concepts 

•  MSRC, 591 images, 21 local concepts 

•  TRECVID 2005, 61600 images, 374 global concepts   
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Image Categorization (Personal 
Collection) 

•  CON1: Baseline configuration that 
is based solely on visual stimulus 

•  CON2: Concept hierarchy 
information is used but no 
semantic constraints are taken into 
account 

•  CON3: Semantic constraints are 
also taken into account 
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Image Categorization using a 
 Focus of Attention (FoA) mechanism 

- Start from the most likely hypothesis and attempt to verify it by looking for evidence that 
would have normally been present if the hypothesis was true.  

- Exploit the mutual information (learned from training data) between the hypothesis and 
evidence concepts. 

3172 (sec)  gain in time 
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Localized region labeling  

When there is a conflict between the prediction of global and local classifiers we make two 
different hypothesis, we evaluate them into the BN and eventually select the one with 
highest probability.  

Personal Collection Dataset MSRC Dataset 
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Weak annotation of video shot key-
frames (1/2) 

AF (Appearance Frequency) > 10% 
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Weak annotation of video shot key-
frames (2/2) 

 10% > AF (Appearance Frequency) > 5% 

 5% > AF (Appearance Frequency) > 2% 
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Comparing with existing methods 

•  None of the three systems manages to outperform the others for a significant portion of the 21 
classes 

•  Error rates are often quite different on individual classes showing that while there are some classes 
that can be modeled very efficiently using the visual features and the model proposed by one 
method, there are other classes that are best modeled using a different set of visual features and 
model 

•  Our work focus on using context and knowledge for improving the performance of a set of baseline 
concept classifiers, not to discover the optimal feature space 

[17] J. J. Verbeek and B. Triggs, “Region classification with markov field aspect models,” in CVPR, 2007 

[18] J. Shotton, J. M. Winn, C. Rother, and A. Criminisi, “TextonBoost: Joint appearance, shape and context 
modeling for multi-class object recognition and segmentation,” in ECCV (1), 2006, pp. 1–15. 
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Conclusions  
•  Combining explicit & implicit knowledge is beneficiary for 

enhancing image analysis … 
•  Hierarchy information and causality relations between domain 

concepts was found to be useful in most of the cases 
•  The value of semantic information depends largely on the 

special characteristics of the domain … 
•  Semantic constraints were only able to help image interpretation, 

when the imposed rules could be directly reflected into the visual 
space and when the domain is rich enough to impose meaningful 
interconnections 

•  A large amount of training data is required for 
approximating the prior and conditional probabilities using 
frequency information … 
•  No improvement was delivered for the rarely appearing concepts of 

TRECVID dataset 
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Common (Open) Issues 

•  Evaluation 
•  Annotated content 
•  Ontologies 
•  Fusion in analysis 
•  Uncertainty in reasoning 
•  Large-Scale 
•  Generic vs. Specific approaches 
•  Multiple domains support 
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Conclusions 

•  Semantic analysis of multimedia is 
already providing results 

•  Fundamental and applied research in 
•  Logic-based + signal approaches 
•  Implicit + explicit (knowledge) approaches 
•  Logic + statistical/learning based  

•  Different applications and requirements 
•  Ongoing research in all areas 
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Thank you!  

http://mklab.iti.gr 


