Extracting Collective Intelligence from Social Content

Yiannis Kompatsiaris

Multimedia Knowledge Lab

CERTH - Informatics and Telematics Institute

Thessaloniki, Greece

http://mklab.iti.gr

Contents

- Defining Collective Intelligence
- Collective Intelligence in WeKnowIt
- Two examples
 - Clustering in social content
 - Community detection in social content
- Conclusions Issues

Defining Collective Intelligence

"Collective Intelligence is the **INTELLIGENCE** of a **COLLECTIVE**, which arises from a number of **SOURCES**"

...an **INTELLIGENCE** that an individual cannot achieve by itself

What is collective?

Human Collectives (e.g. communities, groups, organizations, families)

Groups of intelligent agents in computer environments

Animal Collectives (e.g. ants, birds, bees)

Who is intelligent?

There are too many different definitions out there.

Defining intelligence is controversial and elusive activity.

Characteristics, capacities, functions that can be ascribed to intelligence

problem solving

decision making

applying knowledge

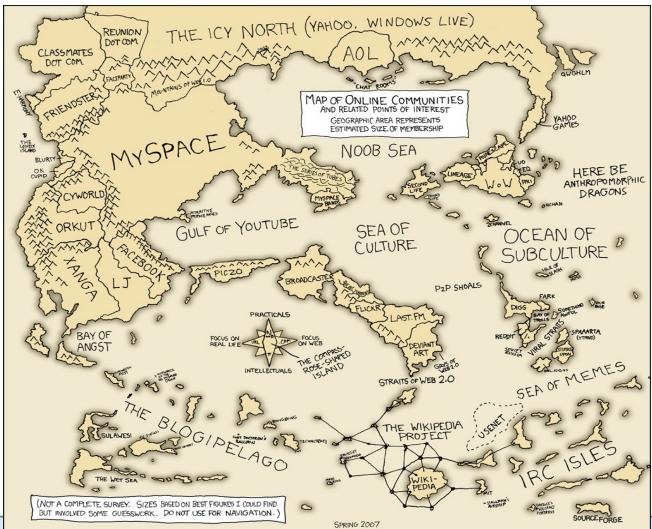
integration, synthesis

reasoning

information gathering, sorting and categorization

evolution

Why today?



Collective Intelligence Overview

Commenting

Rating

Annotating/ Tagging

Co-editing

Processes

Analysis

Recommendations

Access – Browsing –

Retrieval

Presentation

Collective

Consumption

Rersonalised services
Trend detection
Social connectivity
Meaning from content
Added-value in
services

Networks

User-generated content

Sources of CI

Conversations / Discussions

User feedbacks

Intelligence

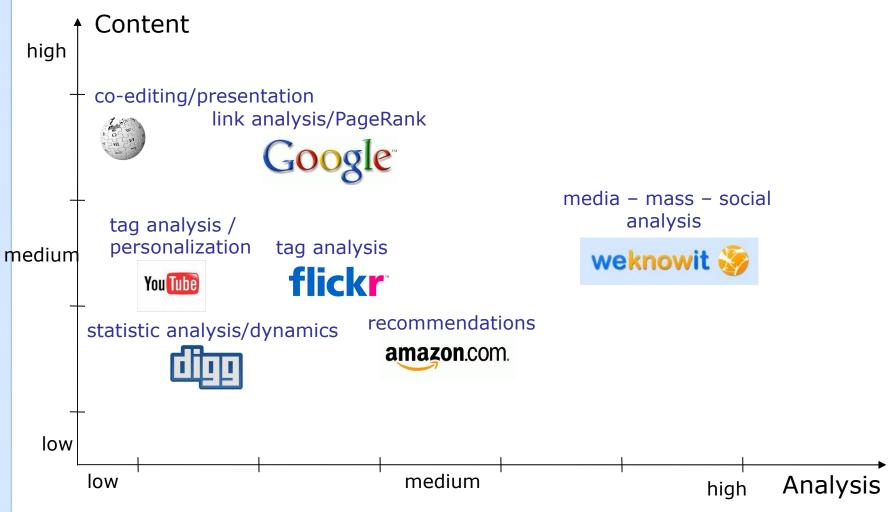
Network Analysis

Content Analysis

Tag Analysis

Statistical Analysis

Analysis? What analysis?



WeKnowIt and CI

Decomposition of Collective Intelligence

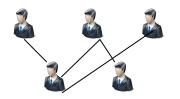
Media Intelligence

User-generated content

Mass Intelligence

Blogs, forums, ratings, voting

Social Intelligence



Social Networks

SOURCES OF CI

Harnessing CI

Personal Intelligence

Organizational Intelligence

COLLECTIVE/ **CONSUMERS**

WeKnowIt and CI

Progress beyond State-of-the art Knowledge applications

• Personal Intelligence

(e.g. Amazon Recommendations)

Media Intelligence

(e.g. TrecVid challenge)

Mass Intelligence

(e.g. PageRank, Flickr, YouTube)

Social Intelligence

(e.g. LinkedIn)

Organizational Intelligence

(e.g. MS SharePoint)

WeKnowIt

Knowledge applications are based on combinations of these five layers of intelligence.

Harness the capabilities of truly Collective Intelligence!

Harnessing CI @ WeKnowIt

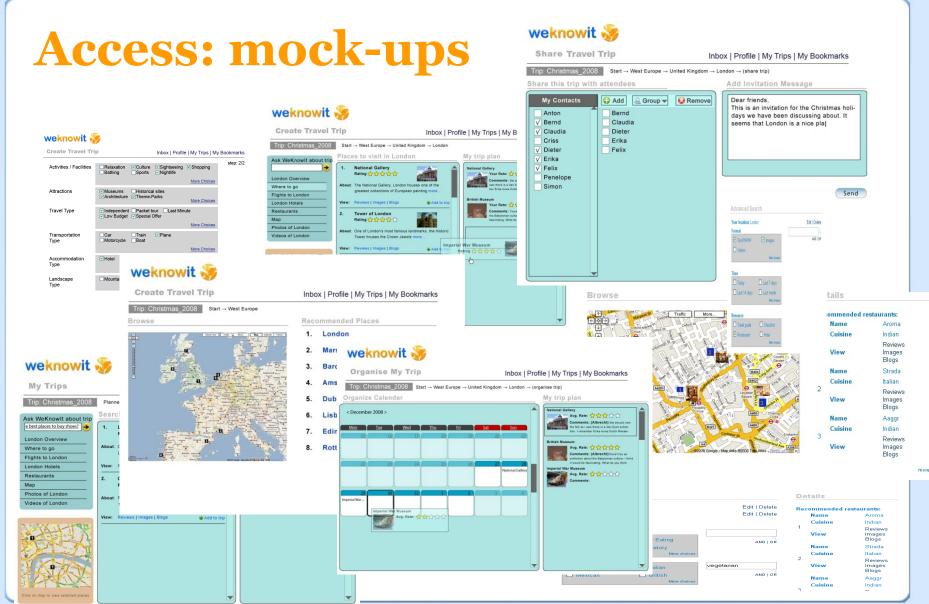
Personal Intelligence

"enable personalized effective and efficient interaction with the applications"

The User is one part of the whole. One member of the COLLECTIVE

WeKnowIt aims at harnessing the individual intelligence and provide personalized services to the user

- Modeling and extraction of users preferences
- Efficient upload of user content
- Personalized access to content and generated intelligence



Harnessing CI @ WeKnowIt

Media Intelligence

"Knowledge and information extraction from raw content in conjunction with contextual information, personal and social context"

Intelligent Content Analysis: fusing information from

diverse modalities (video/image, audio, text)

contextual information (location, time)

personal Context (user profile)

- **social Context** (friends, communities, tags, related items)
- fusion task, semantic analysis of content

A Source of Collective Intelligence

Which source to trust? **Social Intelligence** directed friendship network

Social Network Analysis

- Individuals (actors) are not isolates regarding their actions. They always act within the possibilities and constraints given by their social environment
- Examples
 - Smoking in groups of high school kids
 - Fashion
 - Trading at the stock market
- Interactions are modelled as networks
- Methods from such fields as graph theory, mathematics, physics, sociology, social psychology are used to analyze these networks



Social Tagging & Multimedia Content Clustering

Background

- High availability of multimedia content in social media sharing sites as source of CI
- Plenty of user-generated metadata
- Stable patterns in tagging systems over time

Motivation

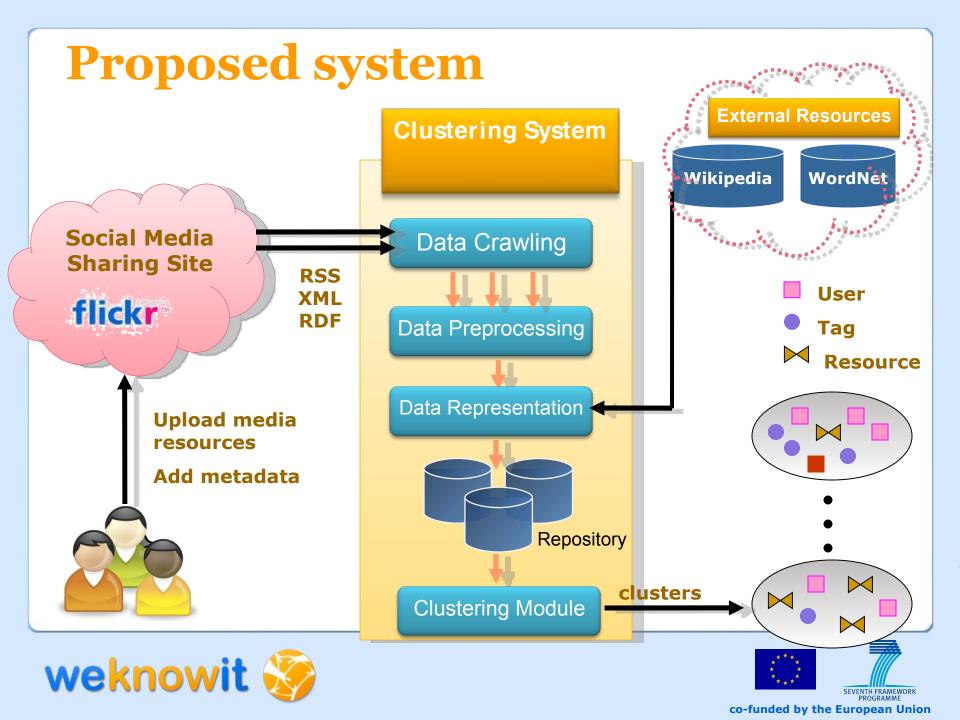
- Poor IR (lack of structure of information, tag polysemy/ambiguity, chaotic environment)
- Questionable tag validity

Problem Formulation

 Overcome of limitations and exploitation of (hidden) knowledge harvested in social media sharing sites through clustering.

Clustering Approaches

- Tag-Based
- Content-Based
- Co-clustering
 - Tags resources
 - Time-based: users and tags

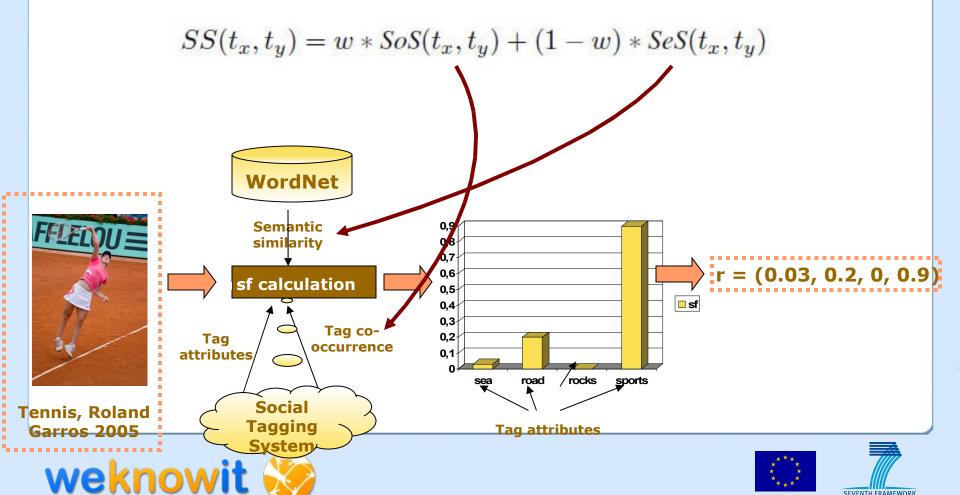


Tag-based Clustering (I)

- 1. Vector data model
- Assume n resources and d attribute-tags
 - d: a representative set of tags
- A resource representation in vector space (sf) is based on semantic similarity and tag cooccurrence between the resource's tags and the attribute-tags
- A resource r_i is represented by a d-dimensional vector r_i = (sf₁,sf₂,...,sf_d)
- All resources can be represented by an n x d matrix

Tag-based Clustering (II)

 2. Clustering on n (resources, r) x d (attributes) matrix (K-means, Hierarchical, COBWEB)



co-funded by the European Union

Tag-based Clustering - Experimental Results

- Dataset: 3000 images downloaded from Flickr
- Meaningful subdomains of roadside:

buildings, roof, street, road

cars, vehicles, race

(b)

people, street, festival

(c)

Different clusters for the ambiguous tag wave, rock:

Tag & Content-based Clustering

- Method: After performing tag-based clustering, lowlevel features of resources are used for cluster refinement (outlier detection)
- Vector data model
- For each resource the following visual descriptors are extracted:
 - Scalable Color, SC
 - Color Structure, CS
 - Color Layout, CL
 - Edge Histogram, EH
 - Homogenous Texture, HT
- A single image feature vector per each resource is produced, encompassing all descriptors normalized in [0,1]
- Feature extraction and distances between image feature vectors are according to MPEG-7 XM.



Evaluation Method

 <u>Definition</u>: Cluster Topic, CT, are the tags that have frequency in cluster's resources annotation over a threshold T.

Evaluation Metrics

Precision

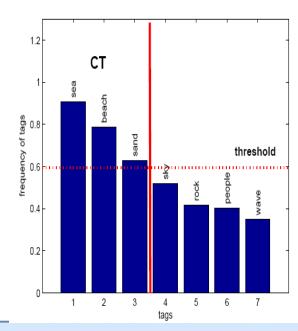
$$Pr\left(C_{j}\right) = \frac{\left|C_{j} \cap RR(C_{j})\right|}{\left|C_{j}\right|}$$

Recall

$$R(C_j) = \frac{|RR(C_j) \cap C_j|}{|RR(C_j)|}$$

F-Measure

$$F(C_j) = \frac{2 * Pr(C_j) * R(C_j)}{Pr(C_j) + R(C_j)}$$



Tag & Content-based Clustering – Experimental Results

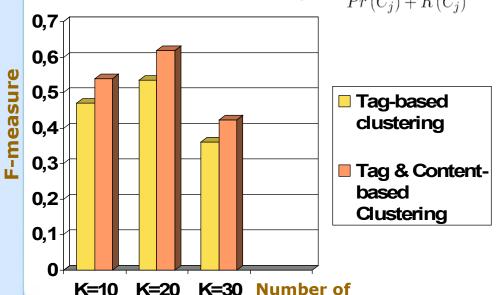
Dataset: 10000 images (with their

tags) downloaded from Flickr

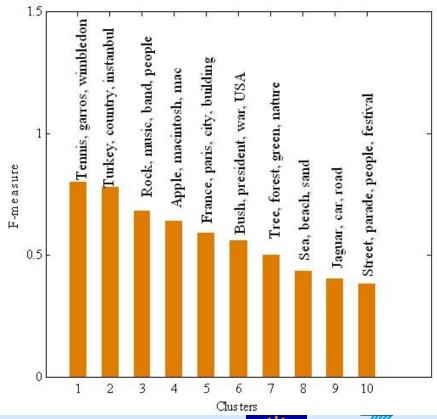
Evaluation: Manual annotation and

use of F-Measure.

$$F\left(C_{j}\right) = \frac{2 * Pr\left(C_{j}\right) * R\left(C_{j}\right)}{Pr\left(C_{j}\right) + R\left(C_{j}\right)}$$

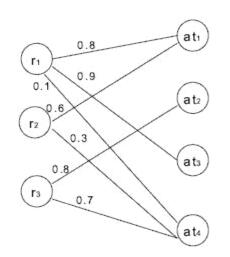


clusters

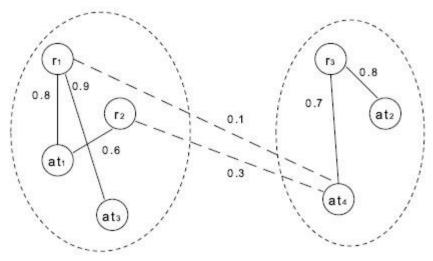


Co-clustering

- Graph data model
- A graph structure $\mathbf{G} = \{\mathbf{V_1}, \mathbf{V_2}; \mathbf{E}\}$ is used for the representation of the dataset, where $\mathbf{V_1}$ and $\mathbf{V_2}$ can be sets of resources, users, tags or time intervals and \mathbf{E} denotes the relations between the nodes of $\mathbf{V_1}$ and $\mathbf{V_2}$.



Graph representation



Graph-partitioning problem

Co-clustering Tags & Resources

Problem: Find *k* clusters of both resources and tags, such that:

$$\sum_{x=1}^{k} \sum_{r_{i}, a_{j} \in C_{x}} Similarity(r_{i}, a_{j}), \forall r_{i} R, a_{j} AS$$

is maximized ■

R: Resources Set

AS: Tag-attributes Set

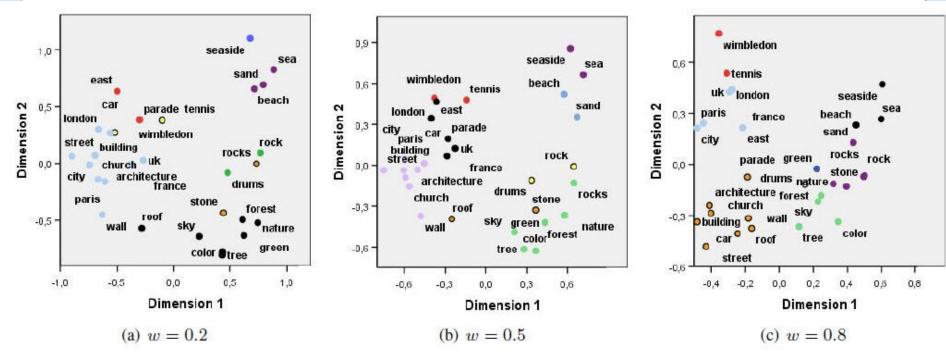
Algorithm 1 The CO-CLUSTERING algorithm.

Input: The set R of n resources, the set T of l tags and two integers k and w where $w \in [0..1]$

Output: A set $C = \{C_1, \dots, C_k\}$ of k subsets consisting of elements from both R and T, such that the sum of inter-clusters similarities defined by (6) is minimized.

- 1: /*Preprocessing*/
- 2: $T^* = Preprocess(T)$
- 3: $AS = ExtractAttributes(T^*)$
- 4: /*capturing similarities*/
- 5: SoS = CalculateSocialSimilarity(R, AS)
- 6: SeS = CalculateSemanticSimilarity(R, AS)
- 7: SS = w * SoS + (1 w) * SeS
- 8: RA = Similarity(SS)
- 9: /*Co-clustering process*/
- 10: $(D_r, D_{at}) = ComputeDegreeTables(RA)$
- 11: $NRA = D_r^{-1/2}RAD_{at}^{-1/2}$
- 12: $(L_r, R_{at}) = SVD(NRA)$
- 13: $SV = CreateIntegratedTable(D_r, D_{at}, L_r, R_{at})$
- 14: C = k means(SV, k)

Co-clustering Tags & Resources - Experimental Results (I)



Attributes Assignment to k=8 clusters,

W: weighting factor of semantic similarity against similarity derived from tag co-occurrence

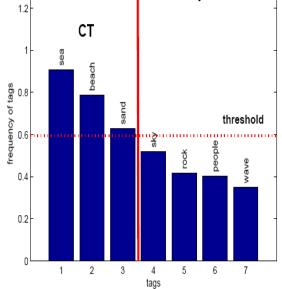
Co-clustering Tags & Resources - Evaluation Method

- **<u>Definition:</u>** Cluster Topic, CT, are the tags that have frequency in cluster's resources annotation over a threshold *T*.
- A resource is considered correctly assigned to a cluster C, if it contains **all** the tags of the CT of C.
- Evaluation Metrics

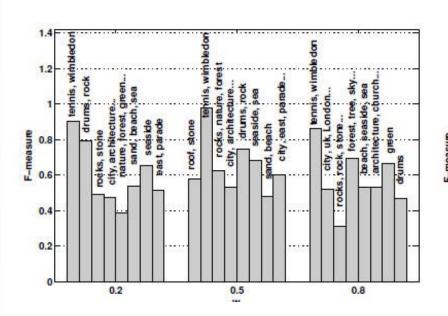
• Precision
$$Pr\left(C_{j}\right) = \frac{|C_{j} \cap RR(C_{j})|}{|C_{j}|}$$

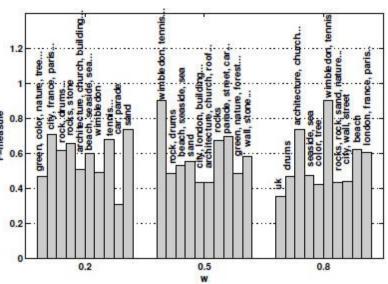
• Recall
$$R(C_j) = \frac{|RR(C_j) \cap C_j|}{|RR(C_j)|}$$

F-Measure
$$F(C_j) = \frac{2*Pr(C_j)*R(C_j)}{Pr(C_i)+R(C_j)}$$



Co-clustering Tags & Resources - Experimental Results (II)



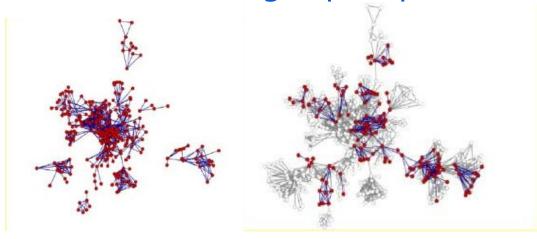


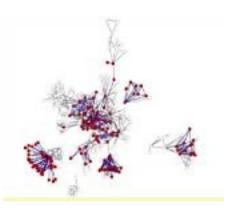
k = 8

k = 10

Users-Tags Co-clustering over time

- Problem:
- Compute similarities over time between users and tags
- Find Dominating topics per time slot

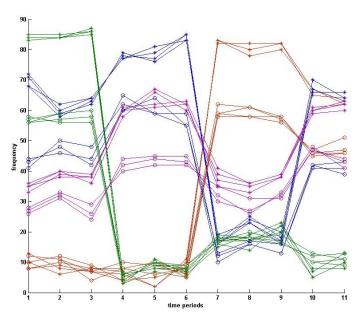




Sample Co-Clustering Results

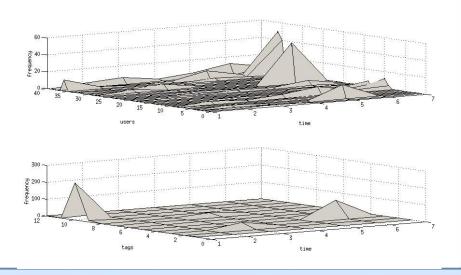
Synthetic data

- -15 users over a period of 11 time slots
- -14 tags over a period of 11 time slots



Real data

- Period: August 2007-August 2008
- Topics: earthquake, wedding, ancient Greece, Olympic games
- -1218 users, 4713 tags, 210 days



Conclusions

- Tag co-occurrence, semantic similarity of tags and content-based similarity of resources are useful indicators of IR in a social tagging system.
- Tag ambiguity, lack of structure and tag spamming can be sufficiently tackled.

Use Cases

- Inducing ontology from Flickr tags (crawling, clustering, relationship extraction)
- Domain Ontology enrichment
- Social assisted analysis
- User profiles
- Recommendations
- Trend detection

Future work

- Improvement of Clustering Methods
- Testing of more Clustering Methods, Metrics, etc.
- Application of proposed use-cases
- Extension to geo-data analysis and clustering for social maps enrichment

Harnessing CI @ WeKnowIt

Mass Intelligence

"is recognition and understanding of facts and trends by exploitation of massive user contributions"

Sources of Collective Intelligence

Blogs (comments)

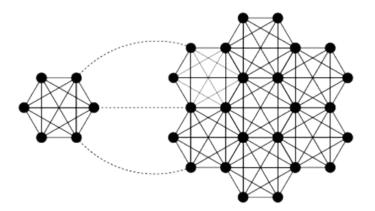
Forums (threads/discussions)

Ratings

Questions & Answers

Community Detection in Complex Networks

- Community Detection: The Problem
- Global vs. Local Community Detection
- Bridge Bounding
- Future Work



Problem Statement

- No common definition of community.
- Some definitions:
 - A community is a group of vertices with:
 - more edges among them than $\sum_{v \in C} w_{uv} \ge \sum_{v \in V C} w_{uv}$ for all $u \in C$. between them and the rest of the graph,
 - high modularity, $Q = \sum_{i} (e_{ii} a_i^2) = \text{Tr } \mathbf{e} \|\mathbf{e}^2\|$
 - high conductance. $\phi(S) = \frac{\sum_{i \in S, j \notin S} A_{ij}}{\min\{A(S), A(\overline{S})\}}$
- In any case, the output of a community detection process on a graph is a set of vertex sets.

Global vs. Local

- Global: Process the whole graph to derive a partition into communities
 - + Abundant research
 - + Good results (community quality, algorithm efficiency)
 - Not practical for huge graphs or for real-time applications
- Local: Incremental process of the graph and output communities (streaming)
 - Relatively little research
 - Great potential for demanding applications

Bridge Bounding

Algorithm

- Start a community with a seed node
- Add neighbouring nodes as long as they are connected by edges that are not inter-community ("bridges").
- Stop when it is not possible to add any more nodes.

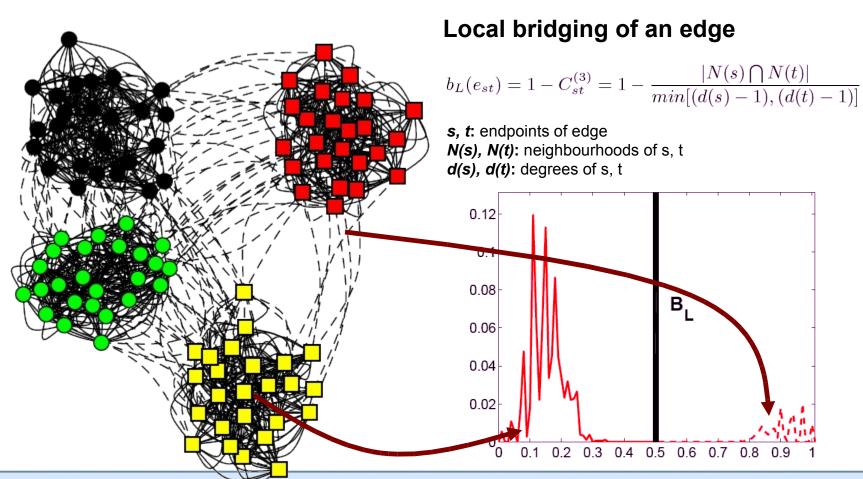
Algorithm 1 LocalCommunityDetection

```
Require: Seed node s \in G = (V, E)
Require: Community mapping q_C: V \to \mathbf{P}
Require: Bridge function b: E \to [0.0, 1.0]
 1: C_s = \emptyset
 2: Frontier set F = \{s\}
 3: while |F| > 0 do \{F \text{ is non-empty}\}
 4: c ← F.pop()
     C_s \leftarrow C_s \bigcup \{c\}
     C_U \leftarrow C_U \setminus \{c\}
       for all n \in N(c) such that e_{cn} = (c, n) \in E do
          if g_C(n) = C_U and b(e_{cn}) \leq B_L then
             F.\operatorname{push}(n)
 9:
          end if
10:
11:
       end for
12: end while
13: \mathbf{P} \leftarrow \mathbf{P} \bigcup C_s
```

Basic success factor:

Edge Bridge-ness: The property of an edge to lie between two communities.

Bridge Bounding – Toy Example



weknowit

co-funded by the European Union

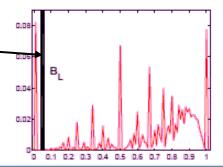
Bridge Bounding - Problems

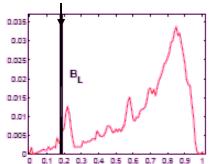
- Local bridging not suitable for scale-free networks
- Solution (partial) 2nd order local bridging.

$$b_L'(e_{st}) = \alpha \cdot b_L(e_{st}) + (1 - \alpha) \frac{1}{|N(e_{st})|} \sum_{e \in N(e_{st})} b_L(e)$$

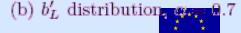
 $B_L = 0.17$ leaves just 1% of edges as non-bridges.

 B_L as low as 0.05 leaves 8% of edges as non-bridges.





(a) b_L distribution



Experiments on Synthetic Community Networks

 Synthetic networks according to method of Newman and Girvan.

$$S_{PAR} = \{N, K, z_{tot}, p_{out}, s_{var}\}$$

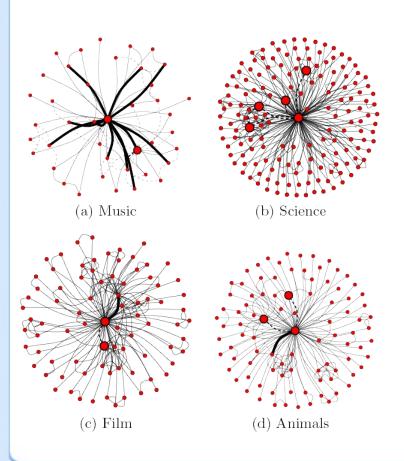
Change conspicuity of underlying communities.

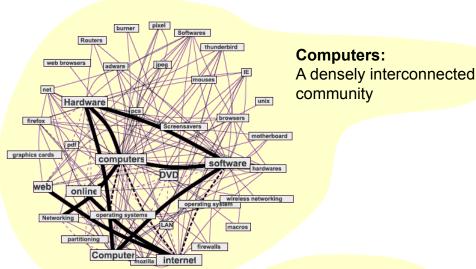
	F_C			NMI		
p_{out}	BB	BB'	GN	BB	BB'	GN
0.01	100	100	100	1.0	1.0	1.0
0.05	100	100	100	1.0	1.0	1.0
0.1	100	100	50	1.0	1.0	0.86
0.15	100	99	50	1.0	.98	0.86
0.20	99	74	50	0.98	0.84	0.86
0.25	24	24	0	0.54	0.56	0.02

Change relative sizes of underlying communities.

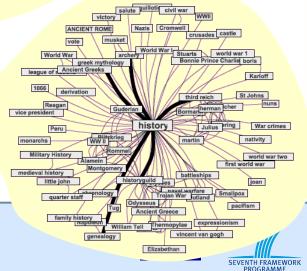
		F_C			NMI		
Г	s_{var}	BB	BB'	GN	BB	BB'	GN
	1.1	100	100	100	1.0	1.0	1.0
	1.5	100	100	100	1.0	1.0	1.0
	1.6	99.5	100	100	0.99	1.0	1.0
Г	1.7	88	98	100	0.82	0.96	1.0
Г	1.8	85.5	97	100	0.79	0.95	1.0
Г	1.9	58.5	87	90	0.68	0.82	0.88
	2.0	12.5	80	82	0.45	0.73	0.81
	2.5	0	62	75	0.45	0.63	0.72

LYCOS iQ Tag Network





History: A star-shaped community



Future Work

- Remove ad-hoc parts of the algorithm:
 - Selection of B_L threshold.
 - Heuristics for artificially stopping community building process (e.g. co-occurrence frequency)
- Compare with other methods.
- Evaluate on real networks.
- Other applications

CI Issues

- Trust, security, privacy, wrong data
- Applications and commercialization
- Integration with services organizations
- Efficiency of semantics and analysis
- Real integration
 - not just sum of different analysis
 - formal framework and approach
- User interaction
- Performance, scalability
 - speed, storage, power

Thank you!

CERTH-ITI
Multimedia Knowledge Laboratory

://mklab.iti.gr

Symeon Papadopoulos, PhD student Eirini Yiann akidou, PhD student

Profescription Vakali, Authorite The

</rdf:Description>

<rdf:Description rdf:about="http://www.iti.gr/ontologies/INSTANCES#Sky_0">

WeKnowIt Consortium

CERTH – ITI ⇒ Multimedia, Personalization, Management

UoKob ⇒ Collaborative Data Analysis, Knowledge Management

Lycos ⇒ Web 2.0 Platform, Data Provision, Mass Feedback

Telefonica ⇒ Personalization, Data Mining, Exploitation

USFD ⇒ Human-Computer Interaction, Text Analysis

EM-KA ⇒ Recommendation Systems, Social Networks

SMIND ⇒ Software Architecture & Integration, Exploitation

SCC ⇒ Emergency Response

... > work decomposition > management > impact > consortium

