MPEG-7 Interoperability & the Semantic Web

Yiannis Kompatsiaris

Multimedia Knowledge Laboratory

CERTH - Informatics and Telematics Institute

Thanks to S. Dasiopoulou (ITI), V. Tzouvaras (NTUA)

Outline

- MM content annotation
- MPEG-7
- Semantic Web
- Interoperability issues
- MPEG-7 ontologies
- Towards Interoperable Semantic Multimedia Descriptions
- Conclusions

Evolution of Content

- I-2 exabytes (millions of terabytes) of new information produced world-wide annually
- 80 billion of digital images are captured each year
- Over I billion images related to commercial transactions are available through the Internet
- This number is estimated to increase by ten times in the next two years.
- 4 000 new films are produced each year
- 300 000 world-wide available films
- 33 000 television stations and 43 000 radio stations
- 100 billions of hours of audiovisual content

Multimedia Knowledge Laboratory Informatics and Telematics Institute

Need for annotation + medatata

"The value of information depends on how easily it can be found, retrieved, accessed, filtered or managed in an active, personalized way"

MM Content Metadata

- Two levels within the annotation context from analysis, search and retrieval perspective
 - conceptual (descriptive, domain specific)
 - media (structural, decomposition specific)

(signal level: feature representation)

(example from http://comm.semanticweb.org/examples)

Conceptual and media annotation Media level

Conceptual level

```
cDescription walltype="Conten
 «Image id-"IMG1">
  cStillRegion id="SRi";
   c/StillRegion>
   <5%illRegion id="5R2";

c/-- TextAnnotetionType -->
     -GeywordAnnotation>
-Keyword> Churchill 
-Keyword>
-KeywordAnnotation>
    </TextAnnotation>
   </StillRegion>
   <5%111Region 16-"SR3">
    (Semantic)
     (Definition) </-- Also TestAnnotationType -->
      <StructuredAnnotation>(Nbo>(Name> Stalin </Same></Nbo></StructuredAnnotation>
     c/Definition>
    </Semantion
                                                                                         в
   </StillRegion>
```


MM Content Metadata

- Domain specific ontologies (Semantic Web) provide the vocabulary & semantics for descriptive-related annotations
- MPEG-7 provides (among others) standardised description tools for mediarelated annotations
- How can they be combined?
- What happens with interoperability?

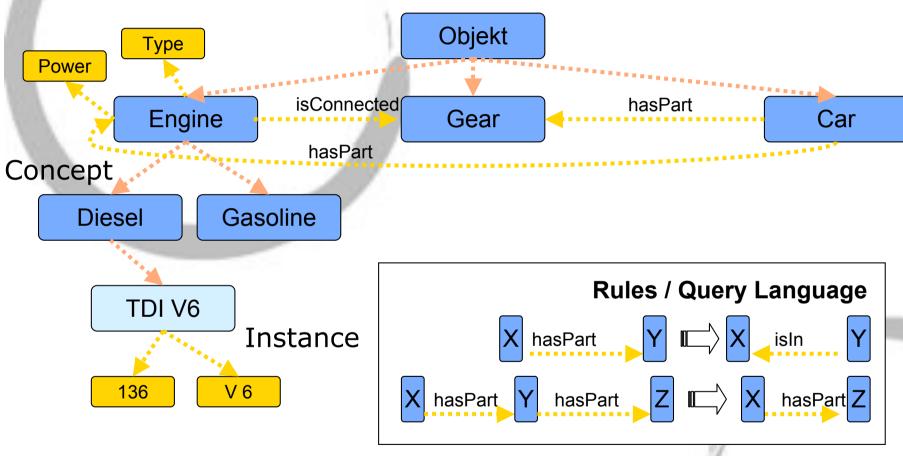
MPEG-7

- MPEG-7: greatest effort towards standardised multimedia content descriptions
 - rich set of broad coverage tools
 - generic schema: usage flexibility
- Interoperability issues
 - XML Schema (lack of precise semantics)
 - ambiguous interpretations
 - incompatibility with proliferating SW technologies

Interoperability Issues in MPEG-7

- XML Schemas define only the structure of wellformed descriptions
 - e.g. MovingRegion DS vs VideoSegment DS
- Multiple representations per semantic notion
 - e.g. an image can be represented using either of StillRegion DS, VideoSegment DS, etc.

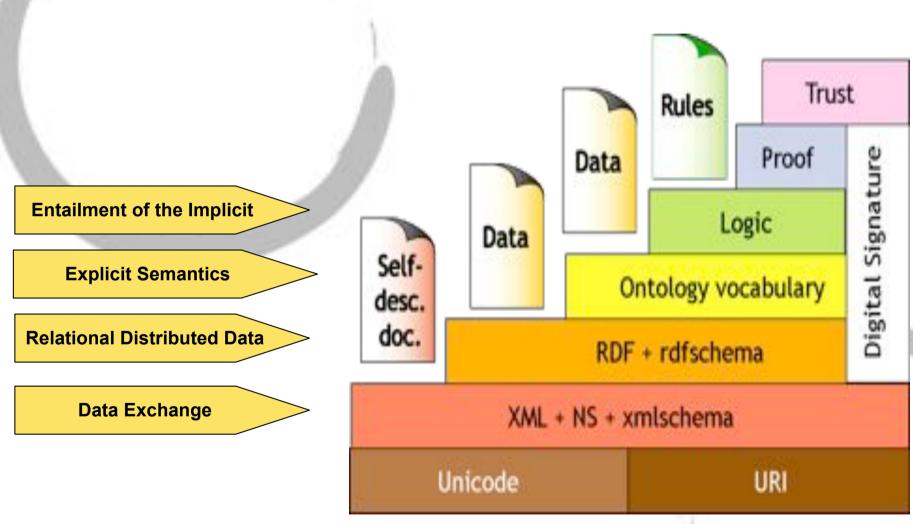
```
<Mpeq7>
                                                                 How do you formulate
                 <Description xsi:type="ContentEntityType">
                  <MultimediaContent xsi:type=""
</pre>
                                                              a query to get all segments
                   <Image>
                                                                    that show "Sky"?
                    <SpatialDecomposition>
                     <StillRegion id="SR1">
                      <TextAnnotation>
                                                                (syntactic interoperability)
                       <KeywordAnnotation xml:lang="en">
                        <Keyword>Sky</Keyword>
Segme
                       </KeywordAnnotation>
                      </TextAnnotation>
                                                                     What is "Sky"?
                     </StillRegion>
                                                               No ability to automatically
                      <StillRegion id="SR2">
                      <Semantic>
                                                              process the information in a
                       <Label:
                                                               machine-understandable
Segment 2
                                v</Name>
                                                                         manner
                       </Semantic>
                                                               (semantic interoperability)
                     </StillRegion>
                     <StillRegion id="SR3">
                       <Semantic>
                       <Definition> <!-- Also TextAnnotation!! -->
                        <StructuredAnnotation>
                         <WhatObject>
                          <Name xml:lang="en">Sky</Name>
Segment 3
                         </WhatObject>
                        </StructuredAnnotation>
                                       (example from Semantics in Multimedia Content for Multimedia Use,
                       </Definition>
                       </Semantic>
                                            Steffen Staab, University of Koblenz - Landau, Germany,
                      </StillRegion>
                                                         http://mklab.iti.gr/ist2006)
```

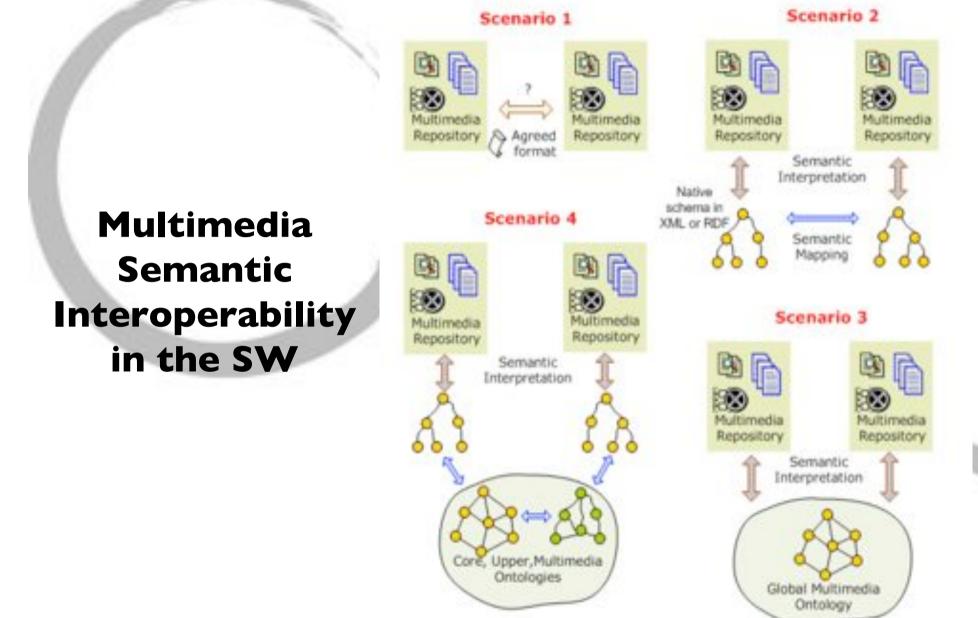


Multimedia Knowledge Laboratory Informatics and Telematics Institute

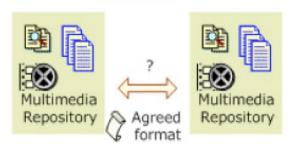
Semantic Web vision

- Technologies to capture, represent, exchange, and share metadata
- Logic-grounded formal semantics
- Explicit, machine processable semantics
 - challenge & prerequisite for realistic semantic enabled applications


What is an ontology?


(example from "Semantic Web: ontologies, applications and EU projects", Professor Juergen Angele, http://www.multimine.gr)

Semantic Web Architecture



Scenario 1

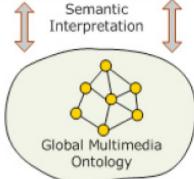
Scenario I

- Information exchange in predefined format
- XML-based → "meaning" lies in strict conformance to exchanging format
- Achieves interoperability at functional level

However: it's syntactic interoperability, **not** semantic interoperability

- Scenario 2
- Formal representation language Schema in ML or RDF
 - machine understandable interpretation
 - Unified Resource Identifiers (URIs)
- Each MM repository adopts its own representation formalism and conceptual schema

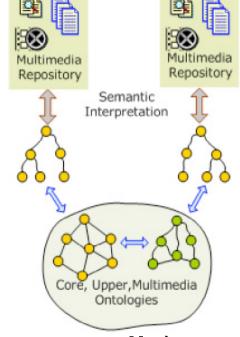
Automated mapping and reasoning required to achieve information/meaning integration



Scenario 3

Multimedia Repository

οl


- "Semantic Version" of scenario I
- Reference framework: upper multimedia ontologies
 - common understanding for semantic meaning
- All multimedia repositories use the common, upper multimedia ontologies

Scenario 4

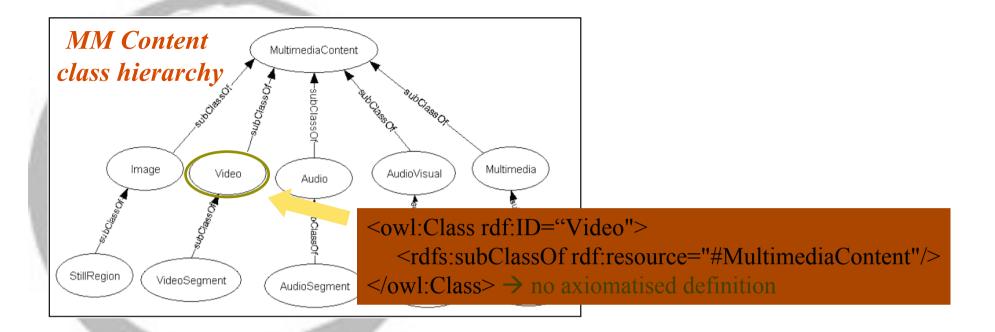
- An attempt to fulfill the SW vision
- Each multimedia repository uses its own ontologies

 Mappings are defined (manually/ automatically) to shared, upper multimedia ontologies

inability of semantic technologies to support a satisfactory level of automation, especially for highly expressive semantics

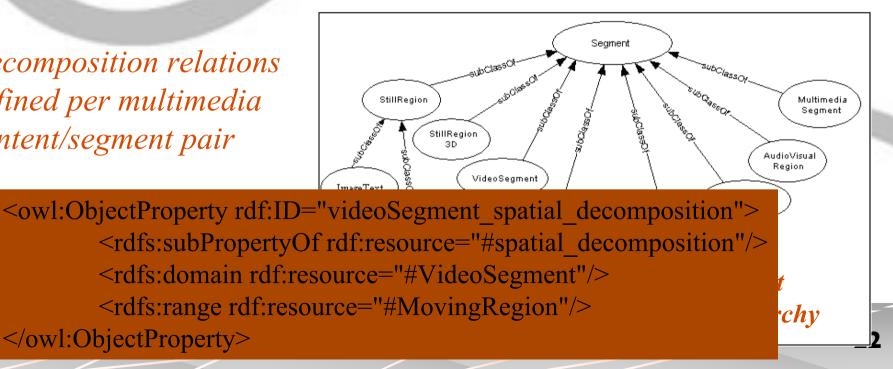
Semantic Multimedia Descriptions

- SW technologies: subject descriptive
- MPEG-7: media descriptive
 - structure (decomposition, localisation)
 - signal descriptors (colour, motion)

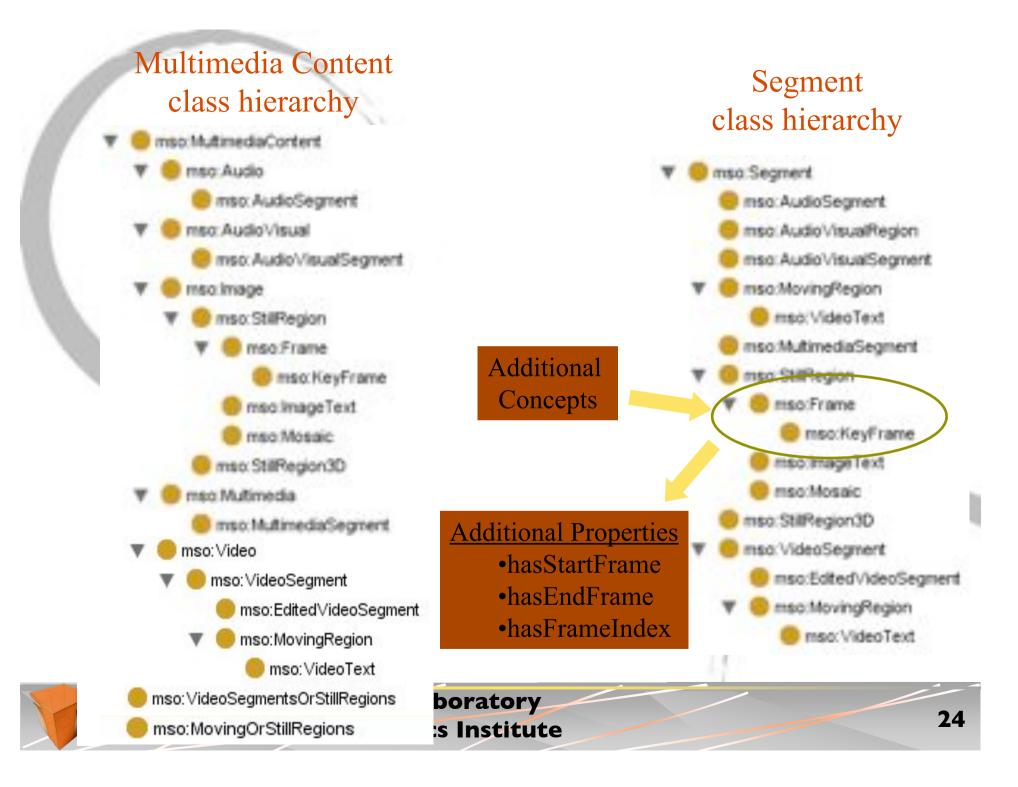

Attach formal semantics to MPEG-7 through its ontological representation, overcoming its interoperability issues

State-of-the-Art in MPEG-7 ontologies

- Different approaches
 - normative semantics allow for individual interpretations of descriptions
- Lack of interoperability at conceptual level
- MPEG-7 ambiguities propagate

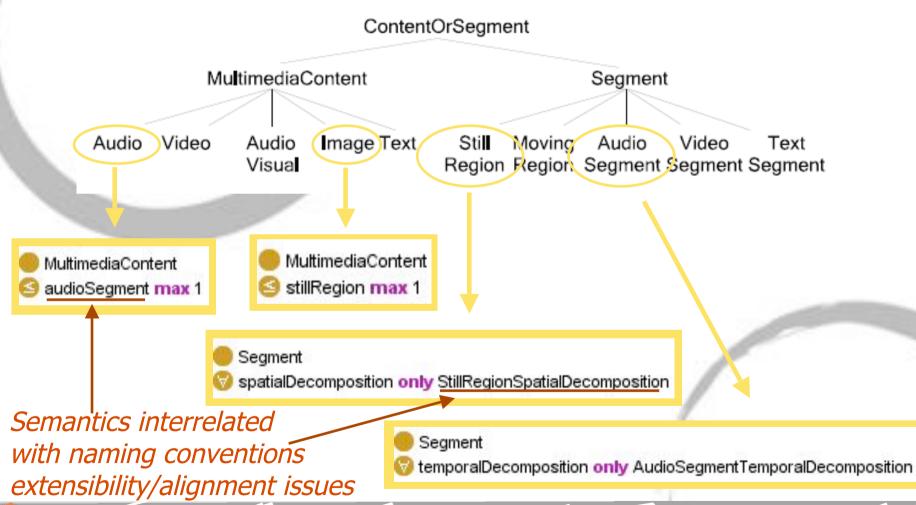

Hunter's (FUSION) approach

- Chronologically the first approach
- Addresses Multimedia DSs plus the Audio and Visual Parts
- Expressed in RDFS (plus OIL constructs), eventually ported to OWL
- Direct translation from the specifications
 - maintains MPEG-7 intended flexibility
 - can be handy for handling part-whole semantics
- Conceptual differences are not addressed


Decomposition relations defined per multimedia content/segment pair

</owl>

The aceMedia approach

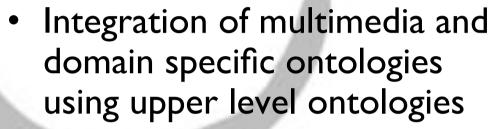

- Extends the Hunter approach
- RDFS ontology
 - expressivity restricted to subclass and domain/range
- Introduction of additional concepts not included in MPEG-7 to account for notions semantically distinct in humans (e.g. video frame)
- Two ontologies
 - MSO (MPEG-7 Multimedia Description Scheme)
 - VDO (MPEG-7 Visual Part)

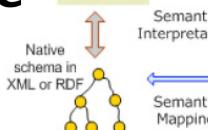
The SmartWeb approach

- OWL DL ontology covering the Content Description and Content Management DSs
- MultimediaContent and Segment classes are defined as disjoint
- Definition of properties for the representation of decomposition description tools
- Semantics "hidden" in the employed linguistic terms to a large extend

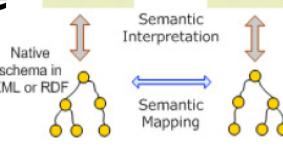
Multimedia Content & Segment class hierarchies

The BOEMIE approach


- Goal: cleaner, explicit conceptualisation
- OWL DL
- Identification of different types of MM content
 - discrimination between single & composite
- Identification of respective segment types
 - grouped based on the applicable decomposition dimension (spatial, temporal, spatiotemporal)
- MM content types are defined using the decomposition relations in conjunction with the applicable segment types
- Two ontologies (MCO & MDO)


Multimedia Content & Segment Inferred Multimedia Locator class hierarchy ContentOrSegment Segment class hierarchy AutimediaContentitem Autimeda/Segment MultipleMedialtem SpaceSegment. AudioVisual \$ Stifflegor CaptionedImage WebPage extSegment SingleMedialtem egment hasSegmentLocator only SpaceLocator Audio TSegment. hasSegmentLocator some SpaceLocator) Image segmentSpaceDecomposition only StillRegion ingRegion. Text segmentSpaceDecomposition some StillRegion VideoText Caption VideoScene 1. Colone VideoSuperimposed hasMediaDecomposition only StillRegion TimePointSTSegment hasMediaDecomposition some StillRegion MovingRegionInstance vaceLocator TimeSegment extualLocator tervalTemporalSegment Character Audio/Seignent TokenLocator VideoSegment Visual_ocator ImePointTemporalSegment imeLocator VideoFrame dge Laboratory imeinstance 28 ematics Institute TimeInterval

Ontology Infrastructure



- DOLCE (aceMedia, SmartWeb)
- SUMO (SmartWeb)
- ABC (Fusion)
- Examples of Scenario 2
 - upper ontologies serve as reference for the domain specific ontologies
 - provide means for linking to multimedia ones, not

upper multimedia reference framework

Garcia's and Celma's approach

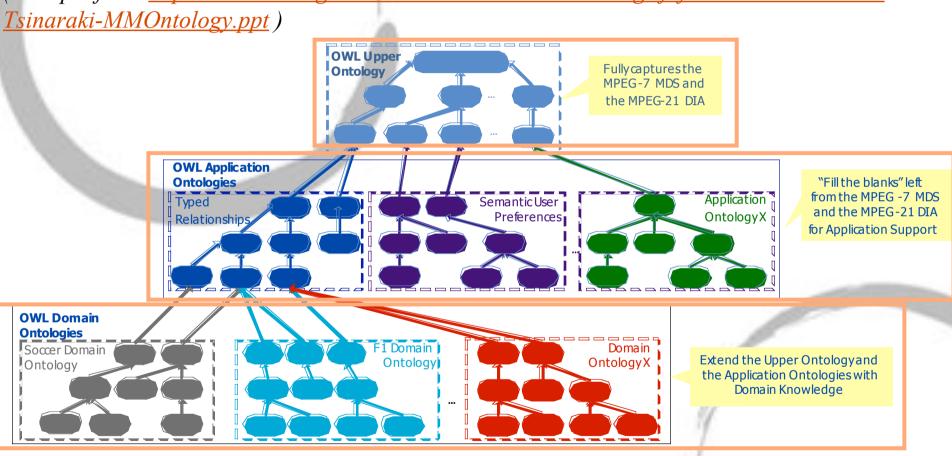
- Automatic translation of entire MPEG-7 based on a generic XML Schema to OWL mapping
- The MM DS, the Audio and Visual Parts have been evaluated against the manually created Hunter's ontology
- OWL Full ontology
 - limits practical applicability (tool support, sound automated inference)

The DS-MIRF approach

- Methodology for the complete MPEG-7 translation into OWL DL
- Focus on the Semantic DS
- Intended to serve as a core multimedia ontology
 - domain specific ontologies attachment through subclass/subproperty relations

Ontology Infrastructure

Multimedia Repository

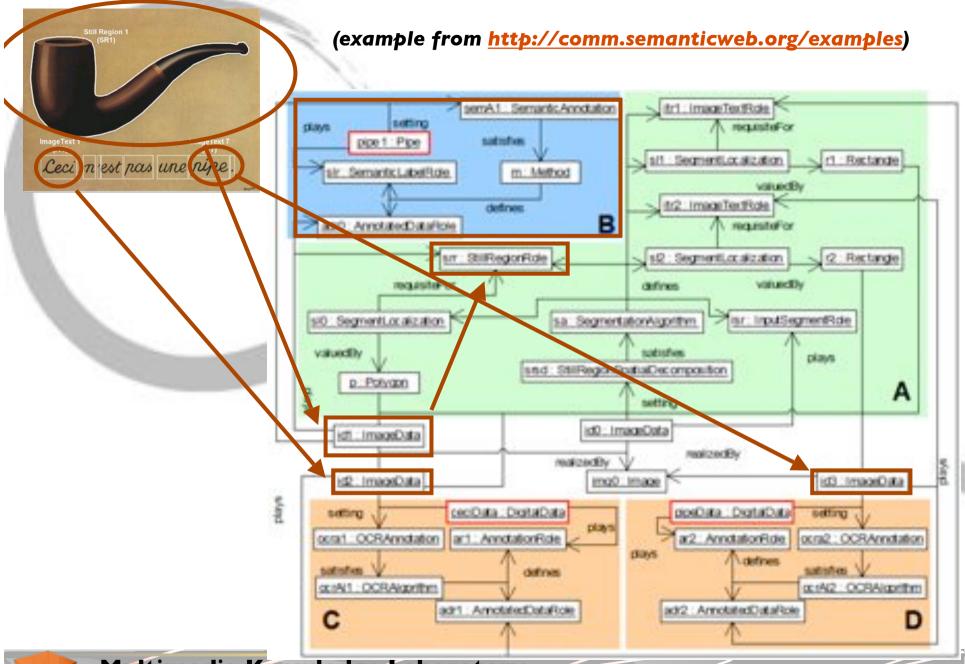


- Semantic Interpretation

 Global Multimedia Ontology
- Approaches within Scenario 3 using MPEG-7 as the reference multimedia ontology
- MPEG-7 as upper ontology for both multimedia and domain specific ontologies
 - verbose to adapt (media oriented)
 - MPEG-7 conceptual ambiguities aren't resolved making infeasible the definition of mappings from individual mm ontologies

The DS-MIRF Ontological Infrastructure

(example from http://www.w3.org/2005/Incubator/mmsem/meetings/f2f-athens/2006-12-08-



The Core Ontology for Multimedia (COMM) initiative

- Extends the Descriptions & Situations (D&S) and Ontology of Information Objects (OIO) design patterns
- Models at semiotic level the aspects involved
 - aims to conceptualise the conceptualisation process itself

The axiomatisation does not cover the media related representations (i.e. the design patterns don't propagate to the MPEG-7 concept/properties subtrees)

The Core Ontology for Multimedia (COMM) initiative (cont'd)

- Does not resolve interoperability issues
 - two multimedia repositories using the COMM in combination with the FUSION and SmartWeb approaches respectively cannot exchange meaning
- Systematic exploration towards a conceptual schema for structuring semantically different multimedia related aspects

Towards Interoperable Semantic Multimedia Descriptions

- MPEG-7 (multimedia) ontologies
 - explicit semantics
 - Semantic Web compliant
- Possible solution: manual definition of mappings
 - relatively straightforward with upper ontologies
 - hardly possible when considering conceptual differences in the individual multimedia ontologies

Common Multimedia Ontology Framework

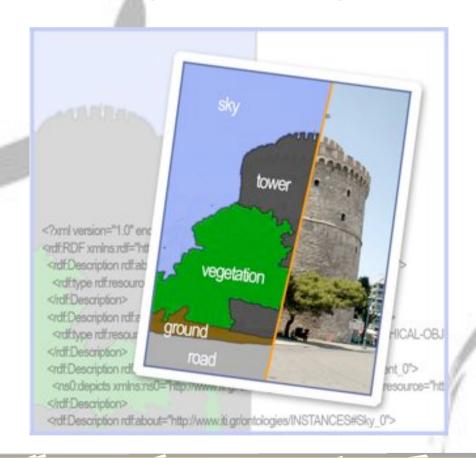
- Multimedia ontologies harmonisation
- Collaborative specification of aspects involved in multimedia description
- Definition of "minimum set" for a multimedia ontology to be used as a basis for all multimedia related applications to build on and extend

W3c Multimedia Semantics Incubator Group (XG)

- Mission: show how metadata interoperability can be achieved by using the Semantic Web technologies to integrate existing multimedia metadata standards
- Selection of use cases demonstrating common interoperability problems
- Possible solutions roadmap

Conclusion

- MPEG-7 is the greatest effort towards standardised multimedia descriptions
- The Semantic Web provides the means to represent, exchange and process semantics of information
- Explicit, unambiguous MPEG-7 semantics (rich axiomatisation)
 - definition of semantics mappings
 - automated inference services
- Upper multimedia ontologies (conceptual clarity)
 - reference framework for multimedia related aspects
 - Modularity & extensibility


References

- I. http://www.acemedia.org/acemedia/reference/multimedia_ontology/
- 2. http://www.w3.org/2005/Incubator/mmsem/
- 3. http://www.acemedia.org/
- 4. http://www.boemie.org/
- 5. http://www.smartweb-project.de/
- 6. http://metadata.net/sunago/fusion.htm/
- 7. http://comm.semanticweb.org/

Thank you!

CERTH-ITI / Multimedia Knowledge Laboratory http://mklab.iti.gr

