Rule-based Contextual Reasoning in Ambient Intelligence

Antonis Bikakis

Department of Information Studies
University College London

Dem@Care Summer School on Ambient Assisted Living Chania, Crete, September 2013

Outline

- Context and Contextual Reasoning in Ambient Intelligence
- A Centralized Reasoning Framework
- R-CoRe A Distributed Approach
- Centralized vs. Distributed Reasoning
- Open Problems

Ambient Intelligence

- Goal: Transform our living and working environments into smart spaces
- Requirement: Augment environments with sensing, computing, communication and reasoning capabilities

Context

Context is any information that can be used to characterize the situation of an entity. An entity is a person, place or object that is considered relevant to the interaction between a user and application, including the user and applications themselves

[Dey and Abowd, 1999]

Context Representation

- Key-value models
 - Service: list of attributes in a key-value manner
- Markup scheme models
 - XML-based
- Graphical models
 - UML like
- Object oriented models
 - Context data encapsulated in data objects
- Logic-based models
 - First Order Logic, Logic Programming
- Ontology-based models
 - Based on Description Logics

Contextual Reasoning

Aims

- Inference of high-level context knowledge
- Consistency checking
- Context-aware decision making

Challenges

- Imperfect context information
- Heterogeneous entities
- Highly dynamic and open environments
- Distributed context information
- Unreliable wireless communications
- ...restricted by the range of transmitters

Contextual Reasoning (cont'd)

Approaches

- Ontological reasoning
 - DL rules used to derive implicit knowledge
 - Natural integration with ontology model
 - Limited reasoning capabilities
- Rule-based reasoning
 - More expressive rule languages
 - FOL, Logic Programming, Defeasible Logic
- Probabilistic reasoning
 - Explicit model uncertainty, confidence values, causal relationships
 - + Rich expressive capabilities
 - High complexity

Rule-based Contextual Reasoning

Benefits

- Simplicity & Flexibility
- Formality
- Expressiveness
- Modularity
- High-level abstraction & Information hiding
- Integration with ontology languages

Outline

- Context and Contextual Reasoning in Ambient Intelligence
- A Centralized Reasoning Framework
- R-CoRe A Distributed Approach
- Centralized vs. Distributed Reasoning
- Open Problems

Aims & Architecture

 Part of a large-scale Ambient Intelligence facility developed for the needs of the ICS-FORTH Ambient Intelligence Programme

Computer Science

- Design Goals
 - efficient representation, monitoring, dissemination of context
 - reasoning about the available information
 - context-aware decisions

Rule Types

- Inference rules
 - Triggered by new assertions in the KB
 - Assert new relations in the KB
- Action rules
 - Reactive (to events) or Triggered (by assertions in the KB)
 - Assert new relations in the KB
 - Determine and send commands for actions
- Rule Scheme (ECA)

Special Features

- Seamless Interaction
 - Adjust services to user's context
 - Achieved through
 - Sensing keep track of user's context
 - high-level context inference identify state / situation
 - context-aware reasoning situation-based policies
- Vast amount of context information
 - Context Classification
 - Context Segmentation
- Inconsistency Resolution
 - Conflicts due to competing policies
 - Priority-based rule classification

Outline

- Context and Contextual Reasoning in Ambient Intelligence
- A Centralized Reasoning Framework
- R-CoRe: A Distributed Approach
- Centralized vs. Distributed Reasoning
- Demo

Features & Underlying Technologies

- R-CoRe: A Rule-based Contextual Reasoning Platform for Aml
- Developed with SnT Luxembourg for the needs of the CoPAInS
 (Conviviality and Privacy in Ambient Intelligence Systems) project
 - Funded by FNR Luxembourg
- Main Features
 - Distributed
 - Rule-based
 - Non-monotonic
 - Preference-based conflict resolution
 - Dynamic & Adaptive
- Underlying technologies
 - Multi-Context Systems
 - Contextual Defeasible Logic (CDL)
 - Kevoree

Mr. 1

 None of the observers can make out the depth of the box

Mr. 1

- None of the observers can make out the depth of the box
- Mr. 1's beliefs may regard concepts that are meaningless for Mr.2 and vice versa

- None of the observers can make out the depth of the box
- Mr. 1's beliefs may regard concepts that are meaningless for Mr.2 and vice versa
- Mr. 1 and Mr. 2 may use common concepts but interpret them in different ways

- None of the observers can make out the depth of the box
- Mr. 1's beliefs may regard concepts that are meaningless for Mr.2 and vice versa
- Mr. 1 and Mr. 2 may use common concepts but interpret them in different ways
- The observers may have partial access to each other's beliefs about the box.

Multi-Context Systems: Intuitions and Model

Context

- A partial and approximate theory of the world from some individual's perspective
- A logical theory a set of axioms and inference rules
- Multi-Context Systems
 - Distributed context theories connected through mappings that enable information flow between different contexts
 - Mappings modeled as inference rules with premises and consequences in different contexts

Nonmonotonic MCS

 MCS enriched with nonmonotonic features to handle imperfections, e.g. incomplete knowledge, inconsistencies

Contextual Defeasible Logic

A Defeasible MCS C is a collection of contexts C_i

Each context C_i is a tuple (V_i, R_i, T_i)

 $\Box V_i$: vocabulary used by C_i

 \square R_i : set of rules

 \Box T_i : preference ordering on C

 V_i : a set of literals of the form $a, \neg a$

Contextual Defeasible Logic (cont'd)

Three types of rules in R_i

Strict local rules

$$r_i^1: (c_i: a^1), ..., (c_i: a^{n-1}) \to (c_i: a^n)$$

Defeasible local rules

$$r_i^{d}: (c_i: a^1), ..., (c_i: a^{n-1}) \Rightarrow (c_i: a^n)$$

Mapping rules

$$r_i^{\text{m}}: (c_j: a^1), ..., (c_k: a^{n-1}) \Rightarrow (c_i: a^n)$$

 T_i is a partial preference ordering on C modeled as a Directed Acyclic Graph

AAL Example Scenario

Distributed Query Evaluation

- When a context receives a query for one of its local literals q
 - Evaluates answer based on local knowledge

If not possible

- Collects relevant information from other contexts through mappings
- Checks applicability of rules for and against q
- Evaluates answer based on
 - Applicable rules
 - Preferences

Example Scenario: Query Evaluation

 r_{hcs}^{m2} : (arm:lyingOnFloor), (med:proneToHA) T_{hcs}^{m2} =[med,arm,br]

Rule-based Contextual Reasoning in Ambient Intelligence

 \Rightarrow (*hcs*: \neg emergency)

 \Rightarrow (*hcs*: emergency)

Example Scenario: Query Evaluation

Rule-based Contextual Reasoning in Ambient Intelligence

 $r_{\text{hcs}}^{\text{m2}}$: (arm:lyingOnFloor), (med:proneToHA) T_{hcs} =[med,arm,br]

 \Rightarrow (hcs: \neg emergency)

 \Rightarrow (*hcs*: emergency)

Kevoree

- Open source project available at: www.kevoree.org
 - Enables distributed reconfigurable software development
 - Any sensor, software application, web service can be represented as a component (with I/O) in Kevoree
 - □ The set of services/applications offered by a single entity (e.g. device) is represented as a Kevoree **node**
 - Channels represent different types of communication among components (TCP/IP, email, SMS, etc.)

Kevoree in R-CoRe

- Each entity (mobile computing device) is implemented as a Kevoree node.
- Each context is implemented as a Kevoree component.
- Kevoree channels enable exchange of information (messages) between different components.
- Kevoree's adaptive and auto-discovery capabilities enable detecting new nodes and adapting to any context changes.

R-CoRe Architecture

Rule-based Contextual Reasoning in Ambient Intelligence

Example Scenario: in R-CoRe terms Interceptor: node0: Another component JavaSENode we developed to queryOut -Interceptor sync capture and display all QueryInterceptor — BasicGroup the interactions Bracelet (Queries/responses) —QueryComponent QueriesIn QueriesOut MedProfile -**MSGChannel MSGChannel** QueryComponent consoleIn HCS **Query components:** QueryComponent_ Each one corresponds to ARM the context of a different QueryComponententity SMSModule_ -QueryComponentconsoleln consoleOut consoleln **MSGChannel** MSGChannel, _SMSConsole_ akeConsole

Rule-based Contextual Reasoning in Ambient Intelligence

Example Scenario: in R-CoRe terms (cont'd)

File Name	File contents
smsModuleKB.txt	M1: (hcs:emergency) \rightarrow (sms:dispatchSMS)
BraceletKB.txt	$L1: \rightarrow (br:normalPulse)$
${\bf MedProfileKB.txt}$	$L1: \rightarrow (med:proneToHA)$
ArmKB.txt	L1: \rightarrow (arm:lyingOnFloor)
HCSKB.txt	M1: (br:normalPulse) $\Rightarrow \neg$ (hcs:emergency)
	M2: (arm:lyingOnFloor), (med:proneToHA) \Rightarrow (has:emergency)
HCSPref.txt	med, arm, br

Rule bases and preferences in the example scenario

R-CoRe: Demo

You can download the demo and test it yourself from

https://github.com/securityandtrust/ruleml13

A Smart Classroom Scenario

A Social Mobile Computing Scenario

Outline

- Context and Contextual Reasoning in Ambient Intelligence
- A Centralized Reasoning Framework
- R-CoRe: A Distributed Approach
- Centralized vs. Distributed Reasoning
- Open Problems

Centralized vs. Distributed Reasoning

- Distribution of knowledge
- Reasoning with the whole picture
- Scalability
- Computational Issues
 - Single powerful computervs.
 - Devices with limited resources
- Communication Issues
 - Small size of messagesvs.
 - Small number of messages
- Points of failure
- Privacy

Outline

- Context and Contextual Reasoning in Ambient Intelligence
- A Centralized Reasoning Framework
- R-CoRe: A Distributed Approach
- Centralized vs. Distributed Reasoning
- Open Problems

Open Problems

- Privacy Security
 - Open environments
 - Unnoticeable access to personal data
- Conviviality
 - Means and incentives for cooperation
 - Reconciling conviviality with privacy
- Planning
 - Common plans
 - Efficient Plan Execution
- Learning
 - Identify user's needs and intentions
 - Computational Benefits
- Verification & Validation

Rule-based Contextual Reasoning in Ambient Intelligence

