EveryWare Lab

Data Management for Mobile and Pervasive Computing

Ontology-based context-aware activity recognition

Claudio Bettini

EveryWare Lab, University of Milan http://everywarelab.di.unimi.it/

Claudio Bettini - DemAAL 2013

.

EveryWare Lab

Data Management for Mobile and Pervasive Computing

- Context representation and reasoning
- Data privacy in location based services
- Assistive technologies on mobile devices

Spin-off: EveryWare Technologies srl

Claudio Bettini - DemAAL 2013

Outline

- Motivation
- Ontology-based activity recognition
- Handling uncertainty
- Hybrid data- and knowledge-driven methods
- Experiments
- Research challenges

Claudio Bettini - DemAAL 2013

-

Motivation

Claudio Bettini - DemAAL 2013

Which activities?

- Human activity recognition is about detecting:
 - Physical activities
 - Activities of daily living (ADL)
 - Social interactions

Claudio Bettini - DemAAL 2013

5

What for?

- Ubiquitous computing
- Health-care
- Recognition of critical events
- Training
- Homeland security

Claudio Bettini - DemAAL 2013

6

Based on what data?

- More invasive technologies
 - Camera, Microphone, Observers
- Less invasive technologies
 - Wearable sensors (smartwatch, smartphone, medical devices, ...)
 - Environmental sensors (position, time, temperature, object use, door openings, ...)
 - Knowledge about the subject, the environment, the possible activities

Claudio Bettini - DemAAL 2013

7

How? Statistical (data-driven) methods

- Based on the use of sound, image and scene recognition software
- Based on machine learning techniques and data coming from different sensors
 - Accelerometers
 - Body-worn sensors
 - Environmental sensors
 - RFID (objects' use)

– ...

Claudio Bettini - DemAAL 2013

How? Symbolic (knowledge-driven) methods

- Human activities can be (imprecisely) formally described
- Given the description of a general activity (e.g., giving a class) an instance of that activity can be recognized from a set of facts (e.g., 20 students in classroom C1, Prof. Brown in C1, Prof. Brown using the blackboard, ...) by firing some rules or by other reasoning mechanism

Claudio Bettini - DemAAL 2013

9

Why context/knowledge?

- Monitoring an anonymous professor ...
 - events from sensor readings :
 - reclining position (unchanged)
 - right arm reaching head (once every 2-3 minutes, span > 30min)
 - ARS can't find a good match

Sick in bed taking his hand periodically to the forehead for a headache?

Claudio Bettini - DemAAL 2013

Why context/knowledge?

- Add context:
 - it is Wed Sep 18, 3pm
 - his calendar says 'AtDemAAL summerschool'

Revised guess:

 using microphone to ask questions in a seminar? (confidence low ...)

Claudio Bettini - DemAAL 2013

11

Why context/knowledge?

 Add context/data: picture posted on FB with timestamp Wed Sep 17 12:00

Claudio Bettini - DemAAL 2013

Why context/knowledge?

- use knowledge
 - load classifiers/descriptions for possible activities on the beach
 - use profile information (possibly with personal data mining)

Claudio Bettini - DemAAL 2013

40

Why context/knowledge?

- New activity candidate
 - relaxing and drinking beer on the beach (instead of improving his presentation)

Claudio Bettini - DemAAL 2013

How to use knowledge: the DL approach

- · Description Logics (DL)
 - have a well-defined semantics
 - provide complete reasoning
 - are supported by optimized reasoning tools
- DLs are the underlying logics of OWL ontology language
- A domain is modeled by classes, individuals, and complex relationships among them
 - giving a class := the actor is a teacher, the actor's current location is a classroom, at least 5 students are in the classroom, and the actor is writing on a blackboard

Claudio Bettini - DemAAL 2013

15

DL Basics

- Terminologic Part (TBox)
 - A collection of concepts characterizing the domain (e.g., classes of activities, classes of context elements, types of actors/objects involved)
- Assertional Part (ABox)
 - A collection of facts about concrete instances in the application domain (e.g., specific objects, actors, locations observed)

The TBox is often referred as *ontology* TBox + ABox make the *knowledge base*

Claudio Bettini - DemAAL 2013

DL syntax

DL syntax and semantics of \mathcal{ALC} -concept descriptions and the corresponding OWL syntax.

constructor name	DL syntax	semantics	OWL syntax
negation	$\neg C$	$\Delta \setminus C^{\mathcal{I}}$	complementOf
conjunction	$C\sqcap D$	$C^{\mathcal{I}} \cap D^{\mathcal{I}}$	intersectionOf
disjunction	$C \sqcup D$	$C^{\mathcal{I}} \cup D^{\mathcal{I}}$	unionOf
existential restriction	$\exists r.C$	$\{x \in \Delta \mid \exists y : (x, y) \in r^{\mathcal{I}} \land y \in C^{\mathcal{I}}\}\$	someValuesFrom
value restriction	$\forall r.C$	$\{x \in \Delta \mid \forall y : (x,y) \in r^{\mathcal{I}} \to y \in C^{\mathcal{I}}\}$	allValuesFrom

From [T. Springer et al, JAISE 2009]

Mother \equiv Person \sqcap Female \sqcap \exists has-child.Person

Person(Alice)
Female(Alice)
has-child(Alice, Marc)

Claudio Bettini - DemAAL 2013

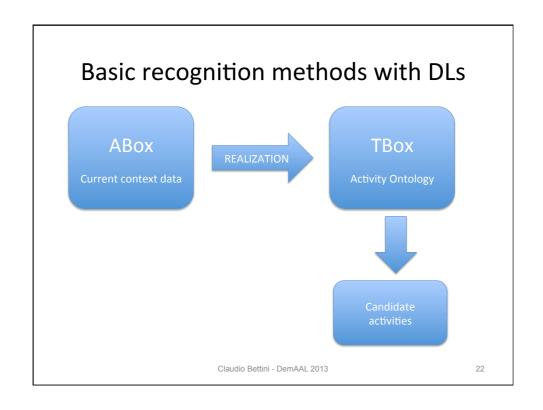
17

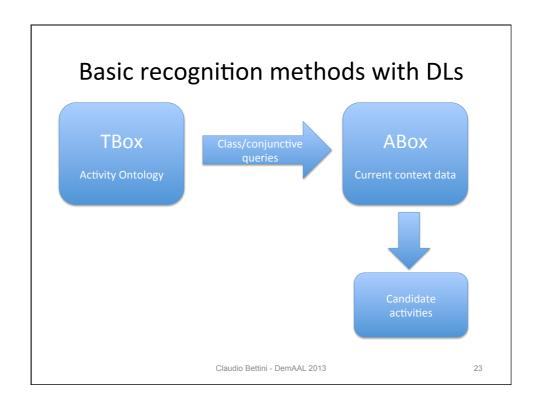
Higher expressivity with OWL2

TeaParty \sqsubseteq SocialActivity $\sqcap \forall$ hasTimeExtent.Afternoon $\sqcap \forall$ hasActor.(Person $\sqcap \exists$ hasCurrentPosture.Seated $\sqcap \exists$ hasCurrentActivity.Sipping $\sqcap \exists$ hasCurrentLocation.
(LivingRoom $\sqcap \geq 2$ contains.TeaCup $\sqcap \forall$ hasSoundSensor.(MeasuredSoundDb $\leq 35[int]$)),

 ${\tt LivesInBuilding} \circ {\tt HomeBuildingOf} \mathrel{\dot\sqsubseteq} {\tt NextDoorNeighbor}$

Claudio Bettini - DemAAL 2013


DL reasoning


- TBox inconsistency, concept subsumption, classification, equivalence
- Realization
 - Example: Given an ABox context instance description find the most specific class of activities it belongs to
- Class and conjunctive queries
 - Examples:
 - find (in ABox) all instances of the activity "having_Tea"
 - find (in ABox) all objects that have been used in the kitchen in the last 2 hours

Claudio Bettini - DemAAL 2013

19

Activity Ontology example • OWL-DL ontology TimeExtent Person Route Class Activity Italiaside Class Activity Route Person Communication Communication Communication Communication Communication Communication Communication Communication Communication TimeExtent T

Example of ontological reasoning

- "Can activity A be executed in context C?"
 - Add an assertion stating that an instance of A is performed in an instance of C
 - Perform consistency checking to detect whether the execution A is consistent with C

BrushingTeeth ☐ PersonalActivity ☐ ∀ performedIn. (∃ hasArtifact.Sink) ☐ ...

RestRoom ☐ Room ☐ ∃ hasArtifact.Sink ☐ ...

LivingRoom ☐ Room ☐ ¬∃ hasArtifact.WaterFixture ☐ ...

BrushingTeeth(CURR_ACT); RestRoom(CURR_LOC_1); LivingRoom(CURR_LOC_2)

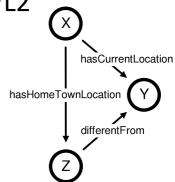
performedIn(CURR_ACT,CURR_LOC_2); isABoxConsistent()

Claudio Bettini - DemAAL 2013

24

Ontology Tools Portegé Fact++ Pellet Claudio Bettini - DemAAL 2013 Ontology Tools Porter Porter SHIQ(D-) SHIQ(D-) Claudio Bettini - DemAAL 2013

Drawbacks of existing techniques


- Statistical (data-driven):
 - Scalability
 - with the number of sensors and candidate activities
 - Adaptability
 - change in sensors, position, orientation, environment requires expensive re-training and reconfiguration
 - hard for complex activities
- Symbolic (knowledge-driven):
 - Not well suited to the recognition of low-level activities
 - difficult knowledge engineering task
 - Expressiveness and efficiency issues

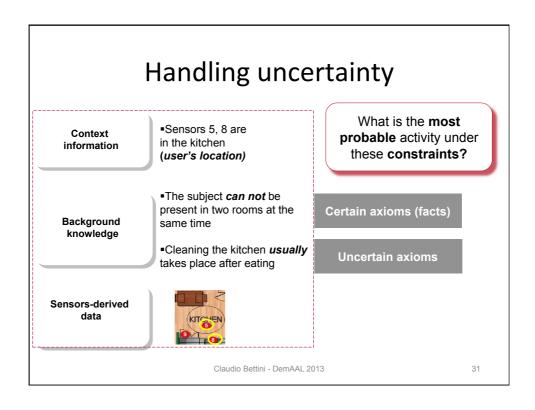
Claudio Bettini - DemAAL 2013

26

Limits of OWL2

- Expressiveness
 - Tree model property
 - Lack of rules support
 - time
 - uncertainty

 $\forall X \forall Y \forall Z \ (Person(X) \land Location(Y) \land Location(Z) \land \\ hasCurrentLocation(X, Y) \land hasHomeTownLocation(X, Z) \land \\ differentFrom(Z, Y) \rightarrow hasCurrentActivity(X, traveling))$


Claudio Bettini - DemAAL 2013

20

Augmenting ontological reasoning with rules

- Two approaches
 - tightly coupled: a unified language for rules and ontologies
 - Example: OWL+SWRL
 - Drawback: easy to end up with undecidable logics
 - Loosely coupled: rule-based and ontological reasoning are executed separately
 - Drawback: limited reasoning capabilities (no feedback)

Claudio Bettini - DemAAL 2013

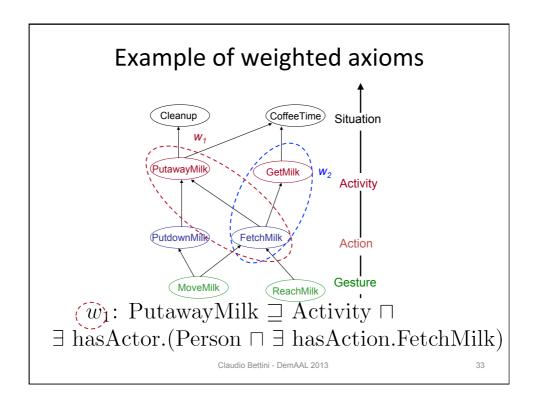
Using Log-linear DLs

■ Input: DL axioms with and without weights

Output: A most probable consistent ontology

Method: Probabilistic approach to ontological reasoning

Maximize: Sum of weights


Subject to: Constraints ensuring Consistency of

ontology

■ Tool: Elog Reasoner

[Helaui et al, Ubicomp 2013]

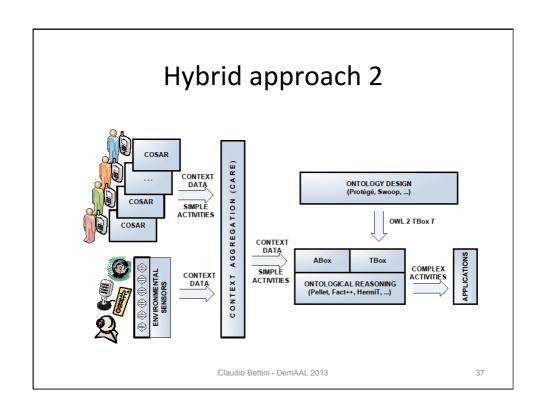
Claudio Bettini - DemAAL 2013

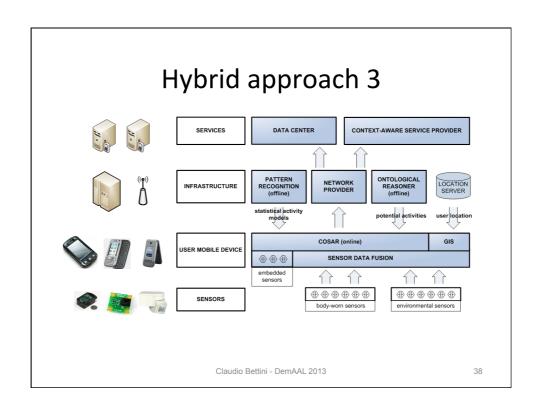
Hybrid methods

Claudio Bettini - DemAAL 2013

Towards a hybrid framework

- Overall goal: coupling symbolic and statistical methods to get the best of the two worlds
- Research issues:
 - Devising a hybrid intelligent system
 - Defining a common ontology for activities and context data
 - Flexibility
 - Efficiency


Claudio Bettini - DemAAL 2013


35

Different hybrid approaches

- Ontology used only as a common "vocabulary" for context and activities + possibly for recognition goals guidance
- 2. Knowledge-driven recognition applied as a second stage after data-driven methods
- 3. Knowledge-driven methods intertwined with datadriven methods

Claudio Bettini - DemAAL 2013

Hybrid approach 3: example

- Statistical technique applied over ontologybased selected candidates
- Temporal smoothing based on a sliding window

	1	2	3	4	5	6	7	8	9	10
Garden	0	0	0	1	1	1	1	0	0	0
HospitalBuilding	1	0	0	0	0	1	0	1	1	1
Kitchen	1	0	0	0	0	1	0	0	0	1
Laboratory	0	0	0	0	0	1	0	0	0	1
LivingRoom	0	0	0	0	0	1	0	0	0	0
Meadow	0	0	0	1	1	1	1	0	0	0
RestRoom	1	0	0	0	0	1	0	0	0	0
UrbanArea	0	0	0	1	1	1	1	1	1	0
Wood	0	1	1	1	1	1	1	0	0	0

Columns: 1=brushingTeeth; 2=hikingUp; 3=hikingDown; 4=ridingBycicle; 5=jogging; 6=standingStill; 7=strolling; 8=walkingDownstairs; 9=walkingUpstairs; 10=writingOnBlackboard

Claudio Bettini - DemAAL 2013

39

Datasets and Experiments

Claudio Bettini - DemAAL 2013

COSAR Experimental setup

[Riboni-Bettini, PUC 2011]

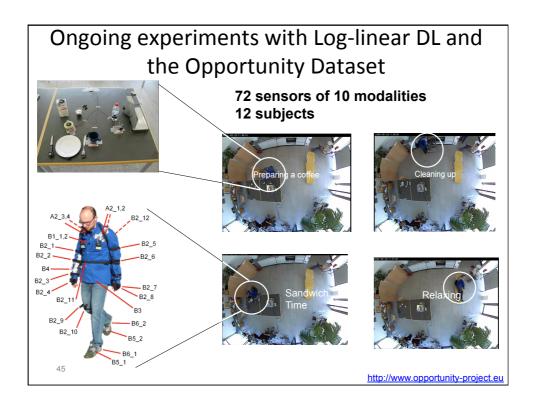
- Data acquired from a GPS receiver and two Sun SPOTs
 - Programmable in Java
 - Fully capable JME CLDC 1.1 Java VM
 - 180 MHz 32 bit processor, 512K RAM/4M flash memory, IEEE 802.15.4 radio
 - http://www.sunspotworld.com
- 5-hours activity data collected by 6 volunteers
- 10 activities

Claudio Bettini - DemAAL 2013

COSAR Experimental results

(a) Evaluation of statistical classifiers

(b) Overall accuracy


Classifier	Accuracy
Bayesian Network	72.95%
C4.5 Decision Tree	66.23%
Multiclass Logistic Regression	80.21%
Naive Bayes	68.55%
SVM	71.81%

Accuracy
80.21%
84.72%
89.20%
93.44%

(c) Error reduction

$versus \rightarrow$	statistical	statistical-voted	COSAR
statistical-voted	22.79%		
COSAR	45.43%	29.32%	
COSAR-voted	66.85%	57.07%	39.26%

Claudio Bettini - DemAAL 2013

The SECURE project

- Intelligent System for Early Diagnosis and Follow-up at Home
- Partners: Health Telematic company, ICT service provider, Hospital institution specialised on dementia, EveryWare lab
- monitoring 3-10 patients in their homes, non intrusive sensors

Claudio Bettini - DemAAL 2013

Research Challenges

Claudio Bettini - DemAAL 2013

47

Research challenges

- Integration of temporal reasoning (qualitative and/or quantitative)
 - Among other existing work see [Meditskos et al.
 COMOREA 2013, Riboni et al. COMOREA 2011]

Claudio Bettini - DemAAL 2013

Research challenges

- Devising smart techniques to increase efficiency of ontological reasoning (while dealing with uncertainty and time)
- Recognizing concurrent and interleaved activities (possibly with multiple actors)
- · Devising adaptive techniques

Claudio Bettini - DemAAL 2013

49

Research challenges

Enriching context data collection to enhance activity recognition and prediction by mining *Small Data*

See Deborah Estrin's TEDMED talk

(http://tedmed.com/)

Claudio Bettini - DemAAL 2013

References

- D. Roggen, Gerhard Troster, P. Lukowicz, A. Ferscha, Jose del R. Millan, R. Chavarriaga, Opportunistic human activity and context recognition, Computer, vol. 46, no. 2, pp. 36-45, Feb., 2013
- F. Baader and W. Nutt. chapter Basic Description Logics, In The Description Logic Handbook: Theory, Implementation, and Applications, pages 43–96. Cambridge University Press, 2003
- T. Springer, A-Y. Turhan, Employing Description Logics in Ambient Intelligence for Modeling and Reasoning about Complex Situations, Journal of Ambient Intelligence and Smart Environments, 1 (2009)

Claudio Bettini - DemAAL 2013

51

References

- D. Riboni, C. Bettini, COSAR: Hybrid Reasoning for Context-aware Activity Recognition. Personal and Ubiquitous Computing, 15(3), Springer, 2011.
- D. Riboni, C. Bettini, *OWL 2 Modeling and Reasoning with Complex Human Activities*. **Journal of Pervasive and Mobile Computing**, 7 (3): 379-395, Elsevier, 2011.
- D. Riboni, L. Pareschi, L. Radaelli, C. Bettini. *Ontology-based Activity Recognition Really Effective?*, **CoMoRea**, IEEE, 2011.
- R. Helaoui, D. Riboni, H. Stuckenschmidt, A Probabilistic Ontological Framework for the Recognition of Multilevel Human Activities, **UbiComp** 2013.
- G. Meditskos, S. Dasiopoulou, V. Efstathiou, I. Kompatsiaris, SP-ACT:
 A hybrid framework for complex activity recognition combining
 OWL and SPARQL rules. CoMoRea, IEEE, 2013.

Claudio Bettini - DemAAL 2013

EveryWare Lab

Data Management for Mobile and Pervasive Computing

Thanks for your attention

Claudio Bettini - DemAAL 2013